1
|
Lanto J, Vehlken MMN, Abramenko V, Storch A, Markert F. Hyperoxia shows duration-dependent effects on the lengths of cell cycle phases in fetal cortical neural stem cells. Front Cell Dev Biol 2025; 13:1546131. [PMID: 39936031 PMCID: PMC11811091 DOI: 10.3389/fcell.2025.1546131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/13/2025] [Indexed: 02/13/2025] Open
Abstract
Fetal neural stem cells (NSCs) physiologically reside under low-oxygen conditions (1%-5% of tissue pO2), but are often transferred and maintained under atmospheric oxygen levels of 21% pO2 (hyperoxia) for in vitro investigations. These altered oxygen conditions lead to adaptive changes in NSCs which complicate the interpretation of in vitro data. However, the underlying adaption dynamics remain largely enigmatic. Here we investigated short-term hyperoxia effects (5 days in 3% pO2 followed by 2 days in 21% pO2) in comparison to continuous hyperoxia effects (7 days in 21% pO2) and physioxic control (7 days in 3% pO2). We utilized cortical NSCs to analyze the cell cycle phases by flow cytometry and cumulative BrdU incorporation assay. NSCs showed a severe reduction of cell proliferation when cultivated under continuous hyperoxia, but no changes after short-term hyperoxia. Subsequent cell cycle analysis as assessed by flow cytometry revealed a clear shift of NSCs from G0/G1-phase towards S- or G2/M-phase after both continuous and short-term hyperoxia. However, while cell cycle length was dramatically reduced by short-term hyperoxia, it was increased during continuous hyperoxia. Taken together, our results demonstrate the beneficial effect of physioxia for expanding NSCs in vitro and reveal differential effects of short-term hyperoxia compared to continuous hyperoxia.
Collapse
Affiliation(s)
- Jennifer Lanto
- Department of Neurology, University of Rostock, Rostock, Germany
| | | | | | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Franz Markert
- Department of Neurology, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Hua X, Zhao C, Tian J, Wang J, Miao X, Zheng G, Wu M, Ye M, Liu Y, Zhou Y. A Ctnnb1 enhancer transcriptionally regulates Wnt signaling dosage to balance homeostasis and tumorigenesis of intestinal epithelia. eLife 2024; 13:RP98238. [PMID: 39320349 PMCID: PMC11424096 DOI: 10.7554/elife.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
The β-catenin-dependent canonical Wnt signaling is pivotal in organ development, tissue homeostasis, and cancer. Here, we identified an upstream enhancer of Ctnnb1 - the coding gene for β-catenin, named ieCtnnb1 (intestinal enhancer of Ctnnb1), which is crucial for intestinal homeostasis. ieCtnnb1 is predominantly active in the base of small intestinal crypts and throughout the epithelia of large intestine. Knockout of ieCtnnb1 led to a reduction in Ctnnb1 transcription, compromising the canonical Wnt signaling in intestinal crypts. Single-cell sequencing revealed that ieCtnnb1 knockout altered epithelial compositions and potentially compromised functions of small intestinal crypts. While deletion of ieCtnnb1 hampered epithelial turnovers in physiologic conditions, it prevented occurrence and progression of Wnt/β-catenin-driven colorectal cancers. Human ieCTNNB1 drove reporter gene expression in a pattern highly similar to mouse ieCtnnb1. ieCTNNB1 contains a single-nucleotide polymorphism associated with CTNNB1 expression levels in human gastrointestinal epithelia. The enhancer activity of ieCTNNB1 in colorectal cancer tissues was stronger than that in adjacent normal tissues. HNF4α and phosphorylated CREB1 were identified as key trans-factors binding to ieCTNNB1 and regulating CTNNB1 transcription. Together, these findings unveil an enhancer-dependent mechanism controlling the dosage of Wnt signaling and homeostasis in intestinal epithelia.
Collapse
Affiliation(s)
- Xiaojiao Hua
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Junbao Wang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Gen Zheng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Mei Ye
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Deng H, Tong S, Shen D, Zhang S, Fu Y. The characteristics of excitatory lineage differentiation and the developmental conservation in Reeler neocortex. Cell Prolif 2024; 57:e13587. [PMID: 38084819 PMCID: PMC11056708 DOI: 10.1111/cpr.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 04/30/2024] Open
Abstract
The majority of neocortical projection neurons are generated indirectly from radial glial cells (RGCs) mediated by intermediate progenitor cells (IPCs) in mice. IPCs are thought to be a great breakthrough in the evolutionary expansion of the mammalian neocortex. However, the precise ratio of neuron production from IPCs and characteristics of RGC differentiation process are still unclear. Our study revealed that direct neurogenesis was seldom observed and increased slightly at late embryonic stage. Besides, we conducted retrovirus sparse labelling combined carboxyfluorescein diacetate succinimide ester (CFSE) and Tbr2-CreER strain to reconstruct individual lineage tree in situ. The lineage trees simulated the output of RGCs at per round of division in sequence with high temporal, spatial and cellular resolution at P7. We then demonstrated that only 1.90% of neurons emanated from RGCs directly in mouse cerebral neocortex and 79.33% of RGCs contributed to the whole clones through IPCs. The contribution of indirect neurogenesis was underestimated previously because approximately a quarter of IPC-derived neurons underwent apoptosis. Here, we also showed that abundant IPCs from first-generation underwent self-renewing division and generated four neurons ultimately. We confirmed that the intermediate proliferative progenitors expressed higher Cux2 characteristically at early embryonic stage. Finally, we validated that the characteristics of neurogenetic process in lineages and developmental fate of neurons were conserved in Reeler mice. This study contributes to further understanding of neurogenesis in neocortical development.
Collapse
Affiliation(s)
- Huan‐Huan Deng
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shi‐Yuan Tong
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Dan Shen
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Shu‐Qing Zhang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| | - Yinghui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain ScienceFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Hu G, Zheng Y, Zhang B, Zhao C, Xu L, Wei J, Jing J, Liu Y, Zeng T, Zhou Y. Histone methyltransferase SETD2 is required for proper hippocampal lamination and neuronal maturation. Mol Biol Cell 2024; 35:ar54. [PMID: 38446615 PMCID: PMC11064668 DOI: 10.1091/mbc.e23-12-0492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Proper formation of the hippocampus is crucial for the brain to execute memory and learning functions. However, many questions remain regarding how pyramidal neurons (PNs) of the hippocampus mature and precisely position. Here we revealed that Setd2, the methyltransferase for histone 3 lysine 36 trimethylation (H3K36me3), is essential for the precise localization and maturation of PNs in the hippocampal CA1. The ablation of Setd2 in neural progenitors leads to irregular lamination of the CA1 and increased numbers of PNs in the stratum oriens. Setd2 deletion in postmitotic neurons causes mislocalization and immaturity of CA1 PNs. Transcriptome analyses revealed that SETD2 maintains the expressions of clustered protocadherin (cPcdh) genes. Together, Setd2 is required for proper hippocampal lamination and maturation of CA1 PNs.
Collapse
Affiliation(s)
- Guangda Hu
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yue Zheng
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bo Zhang
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lichao Xu
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jiayi Wei
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Jing Jing
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tao Zeng
- Department of Neurosurgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine; Shanghai 200072, China
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| |
Collapse
|
5
|
Zheng Y, Zhao C, Song Q, Xu L, Zhang B, Hu G, Kong X, Li S, Li X, Shen Y, Zhuang L, Wu M, Liu Y, Zhou Y. Histone methylation mediated by NSD1 is required for the establishment and maintenance of neuronal identities. Cell Rep 2023; 42:113496. [PMID: 37995181 DOI: 10.1016/j.celrep.2023.113496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/28/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Appropriate histone modifications emerge as essential cell fate regulators of neuronal identities across neocortical areas and layers. Here we showed that NSD1, the methyltransferase for di-methylated lysine 36 of histone H3 (H3K36me2), controls both area and layer identities of the neocortex. Nsd1-ablated neocortex showed an area shift of all four primary functional regions and aberrant wiring of cortico-thalamic-cortical projections. Nsd1 conditional knockout mice displayed defects in spatial memory, motor learning, and coordination, resembling patients with the Sotos syndrome carrying NSD1 mutations. On Nsd1 loss, superficial-layer pyramidal neurons (PNs) progressively mis-expressed markers for deep-layer PNs, and PNs remained immature both morphologically and electrophysiologically. Loss of Nsd1 in postmitotic PNs causes genome-wide loss of H3K36me2 and re-distribution of DNA methylation, which accounts for diminished expression of neocortical layer specifiers but ectopic expression of non-neural genes. Together, H3K36me2 mediated by NSD1 is required for the establishment and maintenance of region- and layer-specific neocortical identities.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Chen Zhao
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Qiulin Song
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Eye Center, Wuhan University Renmin Hospital, Wuhan 430071, China
| | - Lichao Xu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Bo Zhang
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Guangda Hu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xiangfei Kong
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Shaowen Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China
| | - Yin Shen
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; Eye Center, Wuhan University Renmin Hospital, Wuhan 430071, China
| | - Lenan Zhuang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Min Wu
- Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China; College of Life Sciences, Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan 430071, China.
| | - Ying Liu
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| | - Yan Zhou
- Department of Neurosurgery, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Frontier Science Center of Immunology and Metabolism, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
6
|
Nguyen H, Sokpor G, Parichha A, Pham L, Saikhedkar N, Xie Y, Ulmke PA, Rosenbusch J, Pirouz M, Behr R, Stoykova A, Brand-Saberi B, Nguyen HP, Staiger JF, Tole S, Tuoc T. BAF (mSWI/SNF) complex regulates mediolateral cortical patterning in the developing forebrain. Front Cell Dev Biol 2022; 10:1011109. [PMID: 36263009 PMCID: PMC9573979 DOI: 10.3389/fcell.2022.1011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive. Here, we report that the BAF chromatin remodeling complex regulates the spatiotemporal patterning of the mouse dorsal telencephalon. To determine whether and how the BAF complex regulates cortical patterning, we conditionally deleted the BAF complex scaffolding subunits BAF155 and BAF170 in the mouse dorsal telencephalic neuroepithelium. Morphological and cellular changes in the BAF mutant forebrain were examined using immunohistochemistry and in situ hybridization. RNA sequencing, Co-immunoprecipitation, and mass spectrometry were used to investigate the molecular basis of BAF complex involvement in forebrain patterning. We found that conditional ablation of BAF complex in the dorsal telencephalon neuroepithelium caused expansion of the cortical hem and medial cortex beyond their developmental boundaries. Consequently, the hippocampal primordium is not specified, the mediolateral cortical patterning is compromised, and the cortical identity is disturbed in the absence of BAF complex. The BAF complex was found to interact with the cortical hem suppressor LHX2. The BAF complex suppresses cortical hem fate to permit proper forebrain patterning. We provide evidence that BAF complex modulates mediolateral cortical patterning possibly by interacting with the transcription factor LHX2 to drive the LHX2-dependent transcriptional program essential for dorsal telencephalon patterning. Our data suggest a putative mechanistic synergy between BAF chromatin remodeling complex and LHX2 in regulating forebrain patterning and ontogeny.
Collapse
Affiliation(s)
- Huong Nguyen
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Faculty of Biotechnology, Thai Nguyen University of Sciences, Thai Nguyen, Vietnam
| | - Godwin Sokpor
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | | | - Linh Pham
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | | | - Yuanbin Xie
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Pauline Antonie Ulmke
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Joachim Rosenbusch
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Mehdi Pirouz
- Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, United States
| | - Rüdiger Behr
- German Primate Center-Leibniz Institute for Primate Research, Goettingen, Germany
| | | | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jochen F. Staiger
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
| | - Shubha Tole
- Tata Institute of Fundamental Research, Mumbai, India
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| | - Tran Tuoc
- Institute for Neuroanatomy, University Medical Center, Georg-August-University Goettingen, Goettingen, Germany
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- *Correspondence: Shubha Tole, ; Tran Tuoc,
| |
Collapse
|
7
|
Expression of Transcription Factor ZBTB20 in the Adult Primate Neurogenic Niche under Physiological Conditions or after Ischemia. Genes (Basel) 2022; 13:genes13091559. [PMID: 36140727 PMCID: PMC9498320 DOI: 10.3390/genes13091559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
The Zbtb20 gene encodes for a transcription factor that plays an important role in mammalian cortical development. Recently, its expression was reported in the adult mouse subventricular zone (SVZ), a major neurogenic niche containing neural stem cells throughout life. Here, we analyzed its expression in the adult primate anterior SVZ (SVZa) and rostral migratory stream (RMS) using macaque monkeys (Macaca fuscata). We report that the majority of Ki67+ cells, 71.4% in the SVZa and 85.7% in the RMS, co-label for ZBTB20. Nearly all neuroblasts, identified by their Doublecortin expression, were positive for ZBTB20 in both regions. Nearly all GFAP+ neural stem cells/astrocytes were also positive for ZBTB20. Analysis of images derived from a public database of gene expression in control/ischemic monkey SVZa, showed evidence for ZBTB20 upregulation in postischemic monkey SVZa. Furthermore, the co-localization of ZBTB20 with Doublecortin and Ki67 was increased in the postischemic SVZa. Our results suggest that ZBTB20 expression is evolutionarily conserved in the mammalian neurogenic niche and is reactive to ischemia. This opens the possibility for further functional studies on the role of this transcription factor in neurogenesis in primates.
Collapse
|
8
|
Wang J, Wang A, Tian K, Hua X, Zhang B, Zheng Y, Kong X, Li W, Xu L, Wang J, Li Z, Liu Y, Zhou Y. A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discov 2022; 8:74. [PMID: 35915089 PMCID: PMC9343459 DOI: 10.1038/s41421-022-00421-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin. CRISPR/Cas9-mediated activation or interference of the neCtnnb1 locus enhanced or inhibited transcription of Ctnnb1. neCtnnb1 drove transcription predominantly in the subventricular zone of developing Ncx. Knock-out of neCtnnb1 in mice resulted in compromised expression of Ctnnb1 and the Wnt reporter in developing Ncx. Importantly, knock-out of neCtnnb1 lead to reduced production and transit-amplification of IPs, which subsequently generated fewer upper-layer Ncx projection neurons (PNs). In contrast, enhancing the canonical Wnt signaling by stabilizing β-catenin in neCtnnb1-active cells promoted the production of IPs and upper-layer Ncx PNs. ASH2L was identified as the key trans-acting factor that associates with neCtnnb1 and Ctnnb1’s promoter to maintain Ctnnb1’s transcription in both mouse and human Ncx progenitors. These findings advance understanding of transcriptional regulation of Ctnnb1, and provide insights into mechanisms underlying Ncx expansion during development.
Collapse
Affiliation(s)
- Junbao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Andi Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Hua
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Yue Zheng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiangfei Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Neurology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|