1
|
Chen BH, Lin ZY, Zeng XX, Jiang YH, Geng F. LRP4-related signalling pathways and their regulatory role in neurological diseases. Brain Res 2024; 1825:148705. [PMID: 38065285 DOI: 10.1016/j.brainres.2023.148705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/28/2024]
Abstract
The mechanism of action of low-density lipoprotein receptor related protein 4 (LRP4) is mediated largely via the Agrin-LRP4-MuSK signalling pathway in the nervous system. LRP4 contributes to the development of synapses in the peripheral nervous system (PNS). It interacts with signalling molecules such as the amyloid beta-protein precursor (APP) and the wingless type protein (Wnt). Its mechanisms of action are complex and mediated via interaction between the pre-synaptic motor neuron and post-synaptic muscle cell in the PNS, which enhances the development of the neuromuscular junction (NMJ). LRP4 may function differently in the central nervous system (CNS) than in the PNS, where it regulates ATP and glutamate release via astrocytes. It mayaffect the growth and development of the CNS by controlling the energy metabolism. LRP4 interacts with Agrin to maintain dendrite growth and density in the CNS. The goal of this article is to review the current studies involving relevant LRP4 signaling pathways in the nervous system. The review also discusses the clinical and etiological roles of LRP4 in neurological illnesses, such as myasthenia gravis, Alzheimer's disease and epilepsy. In this review, we provide a theoretical foundation for the pathogenesis and therapeutic application of LRP4 in neurologic diseases.
Collapse
Affiliation(s)
- Bai-Hui Chen
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Ze-Yu Lin
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Xiao-Xue Zeng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Yi-Han Jiang
- Department of Physiology, Shantou University Medical College, Shantou 515041, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou 515041, China; Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China.
| |
Collapse
|
2
|
Chen X, Qiu J, Gao Z, Liu B, Zhang C, Yu W, Yang J, Shen Y, Qi L, Yao X, Sun H, Yang X. Myasthenia gravis: Molecular mechanisms and promising therapeutic strategies. Biochem Pharmacol 2023; 218:115872. [PMID: 37865142 DOI: 10.1016/j.bcp.2023.115872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
Myasthenia gravis (MG) is a type of autoimmune disease caused by the blockage of neuromuscular junction transmission owing to the attack of autoantibodies on transmission-related proteins. Related antibodies, such as anti-AChR, anti-MuSK and anti-LRP4 antibodies, can be detected in most patients with MG. Although traditional therapies can control most symptoms, several challenges remain to be addressed, necessitating the development of more effective and safe treatment strategies for MG. With the in-depth exploration on the mechanism and immune targets of MG, effective therapies, especially therapies using biologicals, have been reported recently. Given the important roles of immune cells, cytokines and intercellular interactions in the pathological process of MG, B-cell targeted therapy, T-cell targeted therapy, proteasome inhibitors targeting plasma cell, complement inhibitors, FcRn inhibitors have been developed for the treatment of MG. Although these novel therapies exert good therapeutic effects, they may weaken the immunity and increase the risk of infection in MG patients. This review elaborates on the pathogenesis of MG and discusses the advantages and disadvantages of the strategies of traditional treatment and biologicals. In addition, this review emphasises that combined therapy may have better therapeutic effects and reducing the risk of side effects of treatments, which has great prospects for the treatment of MG. With the deepening of research on immunotherapy targets in MG, novel opportunities and challenges in the treatment of MG will be introduced.
Collapse
Affiliation(s)
- Xin Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiayi Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Zihui Gao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Chen Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Weiran Yu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Jiawen Yang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Lei Qi
- Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, PR China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Department of Neurology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu Province 226001, PR China.
| |
Collapse
|
3
|
DePew AT, Bruckner JJ, O’Connor-Giles KM, Mosca TJ. Neuronal LRP4 directs the development, maturation, and cytoskeletal organization of peripheral synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.564481. [PMID: 37961323 PMCID: PMC10635100 DOI: 10.1101/2023.11.03.564481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synapse development requires multiple signaling pathways to accomplish the myriad of steps needed to ensure a successful connection. Transmembrane receptors on the cell surface are optimally positioned to facilitate communication between the synapse and the rest of the neuron and often function as synaptic organizers to synchronize downstream signaling events. One such organizer, the LDL receptor-related protein LRP4, is a cell surface receptor most well-studied postsynaptically at mammalian neuromuscular junctions. Recent work, however, has identified emerging roles for LRP4 as a presynaptic molecule, but how LRP4 acts as a presynaptic organizer, what roles LRP4 plays in organizing presynaptic biology, and the downstream mechanisms of LRP4 are not well understood. Here we show that LRP4 functions presynaptically at Drosophila neuromuscular synapses, acting in motor neurons to instruct multiple aspects of pre- and postsynaptic development. Loss of presynaptic LRP4 results in a range of developmental defects, impairing active zone organization, synapse growth, physiological function, microtubule organization, synaptic ultrastructure, and synapse maturation. We further demonstrate that LRP4 promotes most aspects of presynaptic development via a downstream SR-protein kinase, SRPK79D. SRPK79D overexpression suppresses synaptic defects associated with loss of lrp4. These data demonstrate a function for LRP4 as a peripheral synaptic organizer acting presynaptically, highlight a downstream mechanism conserved with its CNS function, and indicate previously unappreciated roles for LRP4 in cytoskeletal organization, synapse maturation, and active zone organization, underscoring its developmental importance.
Collapse
Affiliation(s)
- Alison T. DePew
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
| | - Joseph J. Bruckner
- Cell and Molecular Biology Training Program, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Kate M. O’Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI 02912 USA
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Timothy J. Mosca
- Dept. of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107 USA
- Lead Contact
| |
Collapse
|
4
|
Walker LJ, Guevara C, Kawakami K, Granato M. Target-selective vertebrate motor axon regeneration depends on interaction with glial cells at a peripheral nerve plexus. PLoS Biol 2023; 21:e3002223. [PMID: 37590333 PMCID: PMC10464982 DOI: 10.1371/journal.pbio.3002223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 08/29/2023] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from 3 nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real-time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J. Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
5
|
Prömer J, Barresi C, Herbst R. From phosphorylation to phenotype - Recent key findings on kinase regulation, downstream signaling and disease surrounding the receptor tyrosine kinase MuSK. Cell Signal 2023; 104:110584. [PMID: 36608736 DOI: 10.1016/j.cellsig.2022.110584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
Muscle-specific kinase (MuSK) is the key regulator of neuromuscular junction development. MuSK acts via several distinct pathways and is responsible for pre- and postsynaptic differentiation. MuSK is unique among receptor tyrosine kinases as activation and signaling are particularly tightly regulated. Initiation of kinase activity requires Agrin, a heparan sulphate proteoglycan derived from motor neurons, the low-density lipoprotein receptor-related protein-4 (Lrp4) and the intracellular adaptor protein Dok-7. There is a great knowledge gap between MuSK activation and downstream signaling. Recent studies using omics techniques have addressed this knowledge gap, thereby greatly contributing to a better understanding of MuSK signaling. Impaired MuSK signaling causes severe muscle weakness as described in congenital myasthenic syndromes or myasthenia gravis but the underlying pathophysiology is often unclear. This review focuses on recent advances in deciphering MuSK activation and downstream signaling. We further highlight latest break-throughs in understanding and treatment of MuSK-related disorders and discuss the role of MuSK in non-muscle tissue.
Collapse
Affiliation(s)
- Jakob Prömer
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Cinzia Barresi
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ruth Herbst
- Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Walker LJ, Guevara C, Kawakami K, Granato M. A glia cell dependent mechanism at a peripheral nerve plexus critical for target-selective axon regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522786. [PMID: 36712008 PMCID: PMC9881934 DOI: 10.1101/2023.01.05.522786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A critical step for functional recovery from peripheral nerve injury is for regenerating axons to connect with their pre-injury targets. Reestablishing pre-injury target specificity is particularly challenging for limb-innervating axons as they encounter a plexus, a network where peripheral nerves converge, axons from different nerves intermingle, and then re-sort into target-specific bundles. Here, we examine this process at a plexus located at the base of the zebrafish pectoral fin, equivalent to tetrapod forelimbs. Using live cell imaging and sparse axon labeling, we find that regenerating motor axons from three nerves coalesce into the plexus. There, they intermingle and sort into distinct branches, and then navigate to their original muscle domains with high fidelity that restores functionality. We demonstrate that this regeneration process includes selective retraction of mistargeted axons, suggesting active correction mechanisms. Moreover, we find that Schwann cells are enriched and associate with axons at the plexus, and that Schwann cell ablation during regeneration causes profound axonal mistargeting. Our data provide the first real time account of regenerating vertebrate motor axons navigating a nerve plexus and reveal a previously unappreciated role for Schwann cells to promote axon sorting at a plexus during regeneration.
Collapse
Affiliation(s)
- Lauren J Walker
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Camilo Guevara
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Michael Granato
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Luderman LN, Michaels MT, Levic DS, Knapik EW. Zebrafish Erc1b mediates motor innervation and organization of craniofacial muscles in control of jaw movement. Dev Dyn 2023; 252:104-123. [PMID: 35708710 DOI: 10.1002/dvdy.511] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Movement of the lower jaw, a common behavior observed among vertebrates, is required for eating and processing food. This movement is controlled by signals sent from the trigeminal motor nerve through neuromuscular junctions (NMJs) to the masticatory muscles. Dysfunctional jaw movements contribute to craniomandibular disorders, yet the pathophysiology of these disorders is not well understood, as limited studies have been conducted on the molecular mechanisms of jaw movement. RESULTS Using erc1b/kimm533 genetic loss of function mutant, we evaluated lower jaw muscle organization and innervation by the cranial motor nerves in developing zebrafish. Using time-lapse confocal imaging of the erc1b mutant in a transgenic fluorescent reporter line, we found delayed trigeminal nerve growth and disrupted nerve branching architecture during muscle innervation. By automated 3D image analysis of NMJ distribution, we identified an increased number of small, disorganized NMJ clusters in erc1b mutant larvae compared to WT siblings. Using genetic replacement experiments, we determined the Rab GTPase binding domain of Erc1b is required for cranial motor nerve branching, but not NMJ organization or muscle attachment. CONCLUSIONS We identified Erc1b/ERC1 as a novel component of a genetic pathway contributing to muscle organization, trigeminal nerve outgrowth, and NMJ spatial distribution during development that is required for jaw movement.
Collapse
Affiliation(s)
- Lauryn N Luderman
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Mackenzie T Michaels
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel S Levic
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
- Neuroscience Graduate Program, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, USA
| | - Ela W Knapik
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
8
|
He X, Zhou S, Ji Y, Zhang Y, Lv J, Quan S, Zhang J, Zhao X, Cui W, Li W, Liu P, Zhang L, Shen T, Fang H, Yang J, Zhang Y, Cui X, Zhang Q, Gao F. Sorting nexin 17 increases low-density lipoprotein receptor-related protein 4 membrane expression: A novel mechanism of acetylcholine receptor aggregation in myasthenia gravis. Front Immunol 2022; 13:916098. [PMID: 36311763 PMCID: PMC9601310 DOI: 10.3389/fimmu.2022.916098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
Myasthenia gravis (MG) is characterized by autoimmune damage to the postsynaptic membrane of the neuromuscular junction (NMJ) with impaired postsynaptic acetylcholine receptor (AChR) aggregation. Low-density lipoprotein receptor-related protein 4 (LRP4) plays an important role in AChR aggregation at endplate membranes via the Agrin–LRP4–muscle-specific receptor tyrosine kinase (MuSK) cascade. Sorting nexin 17 (SNX17) regulates the degradation and recycling of various internalized membrane proteins. However, whether SNX17 regulates LRP4 remains unclear. Therefore, we examined the regulatory effects of SNX17 on LRP4 and its influence on AChR aggregation in MG. We selected C2C12 myotubes and induced LRP4 internalization via stimulation with anti-LRP4 antibody and confirmed intracellular interaction between SNX17 and LRP4. SNX17 knockdown and overexpression confirmed that SNX17 promoted MuSK phosphorylation and AChR aggregation by increasing cell surface LRP4 expression. By establishing experimental autoimmune MG (EAMG) mouse models, we identified that SNX17 upregulation improved fragmentation of the AChR structure at the NMJ and alleviated leg weakness in EAMG mice. Thus, these results reveal that SNX17 may be a novel target for future MG therapy.
Collapse
Affiliation(s)
- Xiaoxiao He
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shuxian Zhou
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Ying Ji
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingna Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jie Lv
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shangkun Quan
- Department of Pathophysiology, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jing Zhang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xue Zhao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Weike Cui
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wenbo Li
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Peipei Liu
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Basic Medical College, Zhengzhou University, Zhengzhou, China
| | - Linyuan Zhang
- BGI College, Zhengzhou University, Zhengzhou, China
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Tong Shen
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Hua Fang
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Junhong Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yunke Zhang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xinzheng Cui
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Qingyong Zhang
- Myasthenia Gravis Comprehensive Diagnosis and Treatment Center, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Feng Gao
- Department of Neuroimmunology, Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Feng Gao,
| |
Collapse
|
9
|
Limbach LE, Penick RL, Casseday RS, Hyland MA, Pontillo EA, Ayele AN, Pitts KM, Ackerman SD, Harty BL, Herbert AL, Monk KR, Petersen SC. Peripheral nerve development in zebrafish requires muscle patterning by tcf15/paraxis. Dev Biol 2022; 490:37-49. [PMID: 35820658 DOI: 10.1016/j.ydbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/03/2022]
Abstract
The vertebrate peripheral nervous system (PNS) is an intricate network that conveys sensory and motor information throughout the body. During development, extracellular cues direct the migration of axons and glia through peripheral tissues. Currently, the suite of molecules that govern PNS axon-glial patterning is incompletely understood. To elucidate factors that are critical for peripheral nerve development, we characterized the novel zebrafish mutant, stl159, that exhibits abnormalities in PNS patterning. In these mutants, motor and sensory nerves that develop adjacent to axial muscle fail to extend normally, and neuromasts in the posterior lateral line system, as well as neural crest-derived melanocytes, are incorrectly positioned. The stl159 genetic lesion lies in the basic helix-loop-helix (bHLH) transcription factor tcf15, which has been previously implicated in proper development of axial muscles. We find that targeted loss of tcf15 via CRISPR-Cas9 genome editing results in the PNS patterning abnormalities observed in stl159 mutants. Because tcf15 is expressed in developing muscle prior to nerve extension, rather than in neurons or glia, we predict that tcf15 non-cell-autonomously promotes peripheral nerve patterning in zebrafish through regulation of extracellular patterning cues. Our work underscores the importance of muscle-derived factors in PNS development.
Collapse
Affiliation(s)
| | - Rocky L Penick
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | - Rudy S Casseday
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | | | - Afomia N Ayele
- Department of Neuroscience, Kenyon College, Gambier, OH, USA
| | | | - Sarah D Ackerman
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Breanne L Harty
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Amy L Herbert
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Kelly R Monk
- Department of Developmental Biology, Washington University in St. Louis, MO, USA
| | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, OH, USA; Department of Biology, Kenyon College, Gambier, OH, USA; Department of Developmental Biology, Washington University in St. Louis, MO, USA.
| |
Collapse
|