1
|
Cellini BR, Edachola SV, Faw TD, Cigliola V. Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice. BMC Biol 2025; 23:115. [PMID: 40307837 PMCID: PMC12044871 DOI: 10.1186/s12915-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
In adult mammals, including humans, neurons, and axons in the brain and spinal cord are inherently incapable of regenerating after injury. Studies of animals with innate capacity for regeneration are providing valuable insights into the mechanisms driving tissue healing. The aim of this review is to summarize recent data on regeneration mechanisms in the brain and spinal cord of zebrafish and neonatal mice. We infer that elucidating these mechanisms and understanding how and why they are lost in adult mammals will contribute to the development of strategies to promote central nervous system regeneration.
Collapse
Affiliation(s)
- Brianna R Cellini
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Timothy D Faw
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Valentina Cigliola
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
2
|
Goto A, Komura S, Kato K, Maki R, Hirakawa A, Aoki H, Tomita H, Taguchi J, Ozawa M, Matsushima T, Kishida A, Kimura T, Asahara H, Imai Y, Yamada Y, Akiyama H. PI3K-Akt signalling regulates Scx-lineage tenocytes and Tppp3-lineage paratenon sheath cells in neonatal tendon regeneration. Nat Commun 2025; 16:3734. [PMID: 40254618 PMCID: PMC12010001 DOI: 10.1038/s41467-025-59010-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
Tendon injuries are frequently occurring disorders; it is clinically important to enhance tendon regeneration and prevent functional impairment post-injury. While tendon injuries in children heal quickly with minimal scarring, those in adults heal slowly and are accompanied by fibrotic scarring. Therefore, investigating the healing mechanisms after tendon injury, and identifying the factors that regulate the inherent regenerative capacity of tendons are promising approaches to promoting tendon regeneration. Here, we identify that the PI3K-Akt signalling pathway is preferentially upregulated in injured neonatal murine Achilles tendons. Inhibition of PI3K-Akt signalling in a neonatal murine Achilles tendon rupture model decreases cell proliferation and migration in both Scx-lineage intrinsic tenocytes and Tppp3-lineage extrinsic paratenon sheath cells. Moreover, the inhibition of PI3K-Akt signalling decreases stemness and promotes mature tenogenic differentiation in both Scx- and Tppp3-lineage cells. Collectively, these results suggest that PI3K-Akt signalling plays a pivotal role in neonatal tendon regeneration.
Collapse
Affiliation(s)
- Atsushi Goto
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Shingo Komura
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan.
| | - Koki Kato
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Rie Maki
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Akihiro Hirakawa
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hitomi Aoki
- Department of Stem Cell and Regenerative Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| | - Jumpei Taguchi
- Core Laboratory for Developing Advanced Animal Models, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Manabu Ozawa
- Core Laboratory for Developing Advanced Animal Models, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Akio Kishida
- Department of Material-Based Medical Engineering, Laboratory for Biomaterials and Bioengineering, Institute of Integrated Research, Institute of Science Tokyo, Tokyo, Japan
| | - Tsuyoshi Kimura
- Materials-based Medical Engineering Laboratory, Department of Biomedical Engineering, Faculty of Life Science, Toyo University, Tokyo, Japan
| | - Hiroshi Asahara
- Department of Systems BioMedicine, Institute of Science Tokyo, Tokyo, Japan
| | - Yuuki Imai
- Division of Integrative Pathophysiology, Proteo-Science Center, Ehime University, Toon, Ehime, Japan
| | - Yasuhiro Yamada
- Department of Molecular Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Sun Z, Chen Z, Yin M, Wu X, Guo B, Cheng X, Quan R, Sun Y, Zhang Q, Fan Y, Jin C, Yin Y, Hou X, Liu W, Shu M, Xue X, Shi Y, Chen B, Xiao Z, Dai J, Zhao Y. Harnessing developmental dynamics of spinal cord extracellular matrix improves regenerative potential of spinal cord organoids. Cell Stem Cell 2024; 31:772-787.e11. [PMID: 38565140 DOI: 10.1016/j.stem.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Neonatal spinal cord tissues exhibit remarkable regenerative capabilities as compared to adult spinal cord tissues after injury, but the role of extracellular matrix (ECM) in this process has remained elusive. Here, we found that early developmental spinal cord had higher levels of ECM proteins associated with neural development and axon growth, but fewer inhibitory proteoglycans, compared to those of adult spinal cord. Decellularized spinal cord ECM from neonatal (DNSCM) and adult (DASCM) rabbits preserved these differences. DNSCM promoted proliferation, migration, and neuronal differentiation of neural progenitor cells (NPCs) and facilitated axonal outgrowth and regeneration of spinal cord organoids more effectively than DASCM. Pleiotrophin (PTN) and Tenascin (TNC) in DNSCM were identified as contributors to these abilities. Furthermore, DNSCM demonstrated superior performance as a delivery vehicle for NPCs and organoids in spinal cord injury (SCI) models. This suggests that ECM cues from early development stages might significantly contribute to the prominent regeneration ability in spinal cord.
Collapse
Affiliation(s)
- Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenni Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Guo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaokang Cheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Quan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Jin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyun Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xianglin Hou
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiyuan Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Muya Shu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ya Shi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Vargas Aguilar S, Cui M, Tan W, Sanchez-Ortiz E, Bassel-Duby R, Liu N, Olson EN. The PD-1-PD-L1 pathway maintains an immunosuppressive environment essential for neonatal heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:389-402. [PMID: 38737787 PMCID: PMC11086661 DOI: 10.1038/s44161-024-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/05/2024] [Indexed: 05/14/2024]
Abstract
The adult mouse heart responds to injury by scarring with consequent loss of contractile function, whereas the neonatal heart possesses the ability to regenerate. Activation of the immune system is among the first events upon tissue injury. It has been shown that immune response kinetics differ between regeneration and pathological remodeling, yet the underlying mechanisms of the distinct immune reactions during tissue healing remain unclear. Here we show that the immunomodulatory PD-1-PD-L1 pathway is highly active in regenerative neonatal hearts but rapidly silenced later in life. Deletion of the PD-1 receptor or inactivation of its ligand PD-L1 prevented regeneration of neonatal hearts after injury. Disruption of the pathway during neonatal cardiac injury led to increased inflammation and aberrant T cell activation, which ultimately impaired cardiac regeneration. Our findings reveal an immunomodulatory and cardioprotective role for the PD-1-PD-L1 pathway in heart regeneration and offer potential avenues for the control of adult tissue regeneration.
Collapse
Affiliation(s)
- Stephanie Vargas Aguilar
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Miao Cui
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Cardiology, Boston Children's Hospital and Department of Genetics, Harvard Medical School, Boston, MA, USA
- These authors contributed equally: Stephanie Vargas Aguilar, Miao Cui
| | - Wei Tan
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Efrain Sanchez-Ortiz
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rhonda Bassel-Duby
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ning Liu
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric N Olson
- Department of Molecular Biology and the Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
5
|
Yang X, Li L, Zeng C, Wang WE. The characteristics of proliferative cardiomyocytes in mammals. J Mol Cell Cardiol 2023; 185:50-64. [PMID: 37918322 DOI: 10.1016/j.yjmcc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Better understanding of the mechanisms regulating the proliferation of pre-existing cardiomyocyte (CM) should lead to better options for regenerating injured myocardium. The absence of a perfect research model to definitively identify newly formed mammalian CMs is lacking. However, methodologies are being developed to identify and enrich proliferative CMs. These methods take advantages of the different proliferative states of CMs during postnatal development, before and after injury in the neonatal heart. New approaches use CMs labeled in lineage tracing animals or single cell technique-based CM clusters. This review aims to provide a timely update on the characteristics of the proliferative CMs, including their structural, functional, genetic, epigenetic and metabolic characteristics versus non-proliferative CMs. A better understanding of the characteristics of proliferative CMs should lead to the mechanisms for inducing endogenous CMs to self-renew, which is a promising therapeutic strategy to treat cardiac diseases that cause CM death in humans.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liangpeng Li
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| | - Wei Eric Wang
- Department of Geriatrics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
6
|
Seifert AW, Duncan EM, Zayas RM. Enduring questions in regenerative biology and the search for answers. Commun Biol 2023; 6:1139. [PMID: 37945686 PMCID: PMC10636051 DOI: 10.1038/s42003-023-05505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023] Open
Abstract
The potential for basic research to uncover the inner workings of regenerative processes and produce meaningful medical therapies has inspired scientists, clinicians, and patients for hundreds of years. Decades of studies using a handful of highly regenerative model organisms have significantly advanced our knowledge of key cell types and molecular pathways involved in regeneration. However, many questions remain about how regenerative processes unfold in regeneration-competent species, how they are curtailed in non-regenerative organisms, and how they might be induced (or restored) in humans. Recent technological advances in genomics, molecular biology, computer science, bioengineering, and stem cell research hold promise to collectively provide new experimental evidence for how different organisms accomplish the process of regeneration. In theory, this new evidence should inform the design of new clinical approaches for regenerative medicine. A deeper understanding of how tissues and organs regenerate will also undoubtedly impact many adjacent scientific fields. To best apply and adapt these new technologies in ways that break long-standing barriers and answer critical questions about regeneration, we must combine the deep knowledge of developmental and evolutionary biologists with the hard-earned expertise of scientists in mechanistic and technical fields. To this end, this perspective is based on conversations from a workshop we organized at the Banbury Center, during which a diverse cross-section of the regeneration research community and experts in various technologies discussed enduring questions in regenerative biology. Here, we share the questions this group identified as significant and unanswered, i.e., known unknowns. We also describe the obstacles limiting our progress in answering these questions and how expanding the number and diversity of organisms used in regeneration research is essential for deepening our understanding of regenerative capacity. Finally, we propose that investigating these problems collaboratively across a diverse network of researchers has the potential to advance our field and produce unexpected insights into important questions in related areas of biology and medicine.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Elizabeth M Duncan
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA.
| | - Ricardo M Zayas
- Department of Biology, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
7
|
Kankuri E, Karjalainen P, Vento A. Atrial Appendage-Derived Cardiac Micrografts: An Emerging Cellular Therapy for Heart Failure. CARDIOVASCULAR APPLICATIONS OF STEM CELLS 2023:155-181. [DOI: 10.1007/978-981-99-0722-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|