1
|
Yue N, Li D, Pan Y, Chen L, Liu S, Hou M, Luo Y. Structure, transduction pathway, behavior and toxicity of fish olfactory in aquatic environments. Comp Biochem Physiol C Toxicol Pharmacol 2025; 294:110195. [PMID: 40107438 DOI: 10.1016/j.cbpc.2025.110195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/26/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025]
Abstract
The olfactory system in teleost fish plays a vital role as chemosensory organ that directly interacts with the aquatic environment, exhibiting high sensitivity to chemical alteration in aquatic environments. However, despite its importance, there has been a lack of systematic reviews in the past decade on fish olfactory structure, transduction mechanisms, and the impact of environmental pollutants on olfactory toxicity. This study analyzed 272 relevant studies, focusing on the role of the olfactory system and the disruption of olfactory function by contaminants. Fish processes odors through olfactory receptor neurons, olfactory nerves, mitral/ruffed cells, glomeruli, and neurotransmitters, mediated by membrane potentials resulting from ion channels in the olfactory epithelium and olfactory bulb, which are then relayed to higher brain regions via the medial olfactory tracts and lateral olfactory tracts for further integration and modulation. This process minimizes the overlap between complex odor sets, ensuring distinct representation of each odor and eliciting appropriate olfactory-mediated behaviors, such as feeding, migration, alarm responses, and reproduction. Current research identifies four main types of contaminants affecting the fish olfactory system: heavy metals (51.60 %), organic contaminants (33.79 %), acidification (12.33 %), and salinity (5.94 %). The main mechanisms of impact are: morphological changes (21.19 %), alterations in olfactory receptors (29.24 %), damage to olfactory receptor neurons and neurotransmitters disruption (26.69 %), plasticity (2.97 %), and defense mechanisms (19.92 %). We also identify uncertainties and proposes future research directions on the effects of contaminants on fish olfactory. Overall, this review provides valuable insights into the toxicity of contaminants on fish olfactory.
Collapse
Affiliation(s)
- Ning Yue
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dan Li
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; The Research Institution of Beautiful China and Ecological Civilization (A University Think Tank of Shanghai Municipality), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yanling Pan
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Liting Chen
- Guangxi Academy of Fishery Sciences, Nanning City 530021, China
| | - Sisi Liu
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; The Research Institution of Beautiful China and Ecological Civilization (A University Think Tank of Shanghai Municipality), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning City 530021, China
| |
Collapse
|
2
|
Zhu J, Chen Y, Liu X, Sun Z, Zhang J, Shen T, Niu Y, Xiao Z. Zebrafish as a model for olfactory research: A systematic review from molecular mechanism to technology application. Food Chem 2025; 487:144698. [PMID: 40373719 DOI: 10.1016/j.foodchem.2025.144698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/25/2025] [Accepted: 05/08/2025] [Indexed: 05/17/2025]
Abstract
Zebrafish with unique biological traits can serve as an ideal model for studying olfactory mechanisms. This review analyzes their olfactory system, focusing on the regulation of receptor gene expression, mechanisms of odor recognition, and research methodologies including behavioral assays, molecular docking, and biotechnological approaches. Current limitations include predominantly qualitative data, insufficient cross-species comparisons, and unclear mechanisms of environmental modulation. Nevertheless, zebrafish models show significant potential in deciphering human olfaction and applications in neuroscience, biotechnology, healthcare, food safety, and environmental monitoring. Future research should establish cross-species olfactory databases, standardize behavioral assessments, and resolve technical bottlenecks to advance applications in precision medicine, food quality control, and pollutant detection.
Collapse
Affiliation(s)
- JianCai Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YingQian Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - XiaoJie Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - ZhenChun Sun
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Jing Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - TianYin Shen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - YunWei Niu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - ZuoBing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Sommariva M, Dolci M, Triulzi T, Ambrogi F, Dugo M, De Cecco L, Le Noci V, Bernardo G, Anselmi M, Montanari E, Pupa SM, Signorini L, Gagliano N, Sfondrini L, Delbue S, Tagliabue E. Impact of in vitro SARS-CoV-2 infection on breast cancer cells. Sci Rep 2024; 14:13134. [PMID: 38849411 PMCID: PMC11161491 DOI: 10.1038/s41598-024-63804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The pandemic of coronavirus disease 19 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), had severe repercussions for breast cancer patients. Increasing evidence indicates that SARS-CoV-2 infection may directly impact breast cancer biology, but the effects of SARS-CoV-2 on breast tumor cells are still unknown. Here, we analyzed the molecular events occurring in the MCF7, MDA-MB-231 and HCC1937 breast cancer cell lines, representative of the luminal A, basal B/claudin-low and basal A subtypes, respectively, upon SARS-CoV-2 infection. Viral replication was monitored over time, and gene expression profiling was conducted. We found that MCF7 cells were the most permissive to viral replication. Treatment of MCF7 cells with Tamoxifen reduced the SARS-CoV-2 replication rate, suggesting an involvement of the estrogen receptor in sustaining virus replication in malignant cells. Interestingly, a metagene signature based on genes upregulated by SARS-CoV-2 infection in all three cell lines distinguished a subgroup of premenopausal luminal A breast cancer patients with a poor prognosis. As SARS-CoV-2 still spreads among the population, it is essential to understand the impact of SARS-CoV-2 infection on breast cancer, particularly in premenopausal patients diagnosed with the luminal A subtype, and to assess the long-term impact of COVID-19 on breast cancer outcomes.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy.
| | - Maria Dolci
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Tiziana Triulzi
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Federico Ambrogi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Celoria 22, 20133, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Martina Anselmi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Elena Montanari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Serenella M Pupa
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Lucia Signorini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Elda Tagliabue
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| |
Collapse
|
4
|
Takesono A, Dimitriadou S, Clark NJ, Handy RD, Mourabit S, Winter MJ, Kudoh T, Tyler CR. Zinc oxide nanoparticles disrupt development and function of the olfactory sensory system impairing olfaction-mediated behaviour in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 180:108227. [PMID: 37826893 DOI: 10.1016/j.envint.2023.108227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
Zinc (Zn) is an essential metal present in numerous enzymes throughout the body, playing a vital role in animal and human health. However, the increasing use of zinc oxide nanomaterials (ZnONPs) in a diverse range of products has raised concerns regarding their potential impacts on health and the environment. Despite these concerns, the toxicity of ZnONP exposure on animal health remain poorly understood. To help address this knowledge gap, we have developed a highly sensitive oxidative stress (OS) biosensor zebrafish capable of detecting cell/tissue-specific OS responses to low doses of various oxidative stressors, including Zn, in a live fish embryo. Using live-imaging analysis with this biosensor zebrafish embryo, we discovered that the olfactory sensory neurons in the brain are especially sensitive to ZnOP exposure. Furthermore, through studies monitoring neutrophil migration and neuronal activation in the embryonic brain and via behaviour analysis, we have found that sub-lethal doses of ZnONPs (ranging from 0.033 to 1 mg/L nominal concentrations), which had no visible effect on embryo growth or morphology, cause significant localised inflammation, disrupting the neurophysiology of olfactory brain tissues and ultimately impaired olfaction-mediated behaviour. Collectively, these findings establish a potent and important effect mechanism for ZnONP toxicity, indicating the olfactory sensory system as the primary target for ZnONPs as an environmental toxicant in aquatic environments. Our result also highlights that even low doses of ZnONPs can have detrimental effects on the olfactory sensory system, surpassing previous expectations. The importance of olfaction in environment sensing, sex behaviours and overall fitness across species raises concerns about the potential impact of ZnONPs on olfaction-mediated brain function and behaviour in animals and humans. Our study emphasises the need for greater consideration of the potential risks associated with these nanomaterials.
Collapse
Affiliation(s)
- Aya Takesono
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom.
| | - Sylvia Dimitriadou
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Nathaniel J Clark
- Faculty of Science and Engineering, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Richard D Handy
- Faculty of Science and Engineering, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, United Kingdom
| | - Sulayman Mourabit
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, Devon EX4 4QD, United Kingdom.
| |
Collapse
|
5
|
Boueid MJ, El-Hage O, Schumacher M, Degerny C, Tawk M. Zebrafish as an emerging model to study estrogen receptors in neural development. Front Endocrinol (Lausanne) 2023; 14:1240018. [PMID: 37664862 PMCID: PMC10469878 DOI: 10.3389/fendo.2023.1240018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/27/2023] [Indexed: 09/05/2023] Open
Abstract
Estrogens induce several regulatory signals in the nervous system that are mainly mediated through estrogen receptors (ERs). ERs are largely expressed in the nervous system, yet the importance of ERs to neural development has only been elucidated over the last decades. Accumulating evidence shows a fundamental role for estrogens in the development of the central and peripheral nervous systems, hence, the contribution of ERs to neural function is now a growing area of research. The conservation of the structure of the ERs and their response to estrogens make the zebrafish an interesting model to dissect the role of estrogens in the nervous system. In this review, we highlight major findings of ER signaling in embryonic zebrafish neural development and compare the similarities and differences to research in rodents. We also discuss how the recent generation of zebrafish ER mutants, coupled with the availability of several transgenic reporter lines, its amenability to pharmacological studies and in vivo live imaging, could help us explore ER function in embryonic neural development.
Collapse
Affiliation(s)
| | | | | | | | - Marcel Tawk
- *Correspondence: Cindy Degerny, ; Marcel Tawk,
| |
Collapse
|
6
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|