1
|
Ogienko AA, Andreyeva EN, Yarinich LA, Pindyurin AV, Battulina NV, Omelina ES. Expression Pattern of the AB1-Gal4 Driver in Drosophila Third-Instar Larvae. Int J Mol Sci 2025; 26:3923. [PMID: 40362166 PMCID: PMC12071433 DOI: 10.3390/ijms26093923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/18/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Drosophila has provided a highly attractive model system for studying various tissue- and stage-specific processes as well as their pathologies, including a range of human diseases. The existence of a large number of diverse Gal4 drivers to precisely control the expression patterns of UAS transgenes simplifies such studies. However, the choice of driver is always critical, as its possible ectopic expression in non-target cells and tissues can directly impact the results. Therefore, it is very important to thoroughly characterize both the molecular nature and expression pattern of each Gal4 driver line. Here, we aim to fill such gaps regarding the AB1-Gal4 driver, which is typically used to express UAS transgenes in larval salivary glands. In this fly line, the P{GawB} enhancer trap construct encoding the Gal4 protein resides within overlapping evolutionary conserved spastin (spas) and Mitochondrial Rho (Miro) genes. Both these genes are expressed in a number of tissues, including the central nervous system (CNS), and their human orthologs are associated with neurodegenerative diseases. Consistently, we demonstrate that, in third-instar larvae, the expression pattern of AB1-Gal4 is also not restricted to salivary glands. We detect its activity in a subset of Elav-positive neurons in the CNS, including motor neurons, as well as in specific photoreceptor cells in eye discs.
Collapse
Affiliation(s)
| | | | | | | | | | - Evgeniya S. Omelina
- Institute of Molecular and Cellular Biology of the Siberian Branch of the Russian Academy of Sciences (IMCB SB RAS), 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Castillo-Mancho V, Atienza-Manuel A, Sarmiento-Jiménez J, Ruiz-Gómez M, Culi J. Phospholipid scramblase 1: an essential component of the nephrocyte slit diaphragm. Cell Mol Life Sci 2024; 81:261. [PMID: 38878170 PMCID: PMC11335299 DOI: 10.1007/s00018-024-05287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/03/2024] [Accepted: 05/20/2024] [Indexed: 06/29/2024]
Abstract
Blood ultrafiltration in nephrons critically depends on specialized intercellular junctions between podocytes, named slit diaphragms (SDs). Here, by studying a homologous structure found in Drosophila nephrocytes, we identify the phospholipid scramblase Scramb1 as an essential component of the SD, uncovering a novel link between membrane dynamics and SD formation. In scramb1 mutants, SDs fail to form. Instead, the SD components Sticks and stones/nephrin, Polychaetoid/ZO-1, and the Src-kinase Src64B/Fyn associate in cortical foci lacking the key SD protein Dumbfounded/NEPH1. Scramb1 interaction with Polychaetoid/ZO-1 and Flotillin2, the presence of essential putative palmitoylation sites and its capacity to oligomerize, suggest a function in promoting SD assembly within lipid raft microdomains. Furthermore, Scramb1 interactors as well as its functional sensitivity to temperature, suggest an active involvement in membrane remodeling processes during SD assembly. Remarkably, putative Ca2+-binding sites in Scramb1 are essential for its activity raising the possibility that Ca2+ signaling may control the assembly of SDs by impacting on Scramb1 activity.
Collapse
Affiliation(s)
- Vicente Castillo-Mancho
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Alexandra Atienza-Manuel
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Jorge Sarmiento-Jiménez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| | - Joaquim Culi
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
3
|
Xi G, Lamba SA, Mysh M, Poulton JS. Oxidative Stress Contributes to Slit Diaphragm Defects Caused by Disruption of Endocytosis. Kidney Int Rep 2024; 9:451-463. [PMID: 38344712 PMCID: PMC10851022 DOI: 10.1016/j.ekir.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/27/2023] [Accepted: 11/20/2023] [Indexed: 03/04/2024] Open
Abstract
Introduction Podocyte slit diaphragms are an important component of the glomerular filtration barrier. Podocyte injury frequently includes defects in slit diaphragms, and various mechanisms for these defects have been described, including altered endocytic trafficking of slit diaphragm proteins or oxidative stress. However, the potential relationship between endocytosis and oxidative stress in the context of slit diaphragm integrity has not been extensively considered. Methods To examine the potential relationships between endocytosis, oxidative stress, and slit diaphragm integrity, we induced genetic or pharmacological disruption of endocytosis in Drosophila nephrocytes (the insect orthologue of podocytes) and cultured human podocytes. We then employed immunofluorescence microscopy to analyze protein localization and levels, and to quantify signal from reactive oxygen species (ROS) dyes. Immunoprecipitation from podocyte cell lysates was used to examine effects on slit diaphragm protein complex formation (i.e., nephrin/podocin and nephrin/ZO-1). Results Disruption of endocytosis in nephrocytes and podocytes led to slit diaphragm defects, elevated levels of ROS (oxidative stress), and activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway. In nephrocytes with defective endocytosis, perturbation of Nrf2 signaling exacerbated slit diaphragm defects. Conversely, overexpression of Nrf2 target genes catalase or glucose-6-phosphate dehydrogenase (G6PD) significantly ameliorated slit diaphragm defects caused by disruption of endocytosis. Conclusion Oxidative stress is an important consequence of defective endocytosis and contributes to the defects in slit diaphragm integrity associated with disruption of endocytic trafficking.
Collapse
Affiliation(s)
- Gang Xi
- UNC Kidney Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sajan A. Lamba
- UNC Kidney Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael Mysh
- UNC Kidney Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John S. Poulton
- UNC Kidney Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
4
|
Koehler S, Huber TB. Insights into human kidney function from the study of Drosophila. Pediatr Nephrol 2023; 38:3875-3887. [PMID: 37171583 PMCID: PMC10584755 DOI: 10.1007/s00467-023-05996-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/13/2023]
Abstract
Biological and biomedical research using Drosophila melanogaster as a model organism has gained recognition through several Nobel prizes within the last 100 years. Drosophila exhibits several advantages when compared to other in vivo models such as mice and rats, as its life cycle is very short, animal maintenance is easy and inexpensive and a huge variety of transgenic strains and tools are publicly available. Moreover, more than 70% of human disease-causing genes are highly conserved in the fruit fly. Here, we explain the use of Drosophila in nephrology research and describe two kidney tissues, Malpighian tubules and the nephrocytes. The latter are the homologous cells to mammalian glomerular podocytes and helped to provide insights into a variety of signaling pathways due to the high morphological similarities and the conserved molecular make-up between nephrocytes and podocytes. In recent years, nephrocytes have also been used to study inter-organ communication as links between nephrocytes and the heart, the immune system and the muscles have been described. In addition, other tissues such as the eye and the reproductive system can be used to study the functional role of proteins being part of the kidney filtration barrier.
Collapse
Affiliation(s)
- Sybille Koehler
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
5
|
Carrasco-Rando M, Culi J, Campuzano S, Ruiz-Gómez M. An acytokinetic cell division creates PIP2-enriched membrane asymmetries leading to slit diaphragm assembly in Drosophila nephrocytes. Development 2023; 150:dev201708. [PMID: 37681291 PMCID: PMC10546876 DOI: 10.1242/dev.201708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Vertebrate podocytes and Drosophila nephrocytes display slit diaphragms, specialised cell junctions that are essential for the execution of the basic excretory function of ultrafiltration. To elucidate the mechanisms of slit diaphragm assembly we have studied their formation in Drosophila embryonic garland nephrocytes. These cells of mesenchymal origin lack overt apical-basal polarity. We find that their initial membrane symmetry is broken by an acytokinetic cell division that generates PIP2-enriched domains at their equator. The PIP2-enriched equatorial cortex becomes a favourable domain for hosting slit diaphragm proteins and the assembly of the first slit diaphragms. Indeed, when this division is either prevented or forced to complete cytokinesis, the formation of diaphragms is delayed to larval stages. Furthermore, although apical polarity determinants also accumulate at the equatorial cortex, they do not appear to participate in the recruitment of slit diaphragm proteins. The mechanisms we describe allow the acquisition of functional nephrocytes in embryos, which may confer on them a biological advantage similar to the formation of the first vertebrate kidney, the pronephros.
Collapse
Affiliation(s)
- Marta Carrasco-Rando
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Joaquim Culi
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Sonsoles Campuzano
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| | - Mar Ruiz-Gómez
- Centro de Biología Molecular Severo Ochoa, CSIC and UAM, Nicolás Cabrera 1, Cantoblanco 28049, Madrid, Spain
| |
Collapse
|
6
|
Maruzs T, Feil-Börcsök D, Lakatos E, Juhász G, Blastyák A, Hargitai D, Jean S, Lőrincz P, Juhász G. Interaction of the sorting nexin 25 homologue Snazarus with Rab11 balances endocytic and secretory transport and maintains the ultrafiltration diaphragm in nephrocytes. Mol Biol Cell 2023; 34:ar87. [PMID: 37314856 PMCID: PMC10398886 DOI: 10.1091/mbc.e22-09-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023] Open
Abstract
Proper balance of exocytosis and endocytosis is important for the maintenance of plasma membrane lipid and protein homeostasis. This is especially critical in human podocytes and the podocyte-like Drosophila nephrocytes that both use a delicate diaphragm system with evolutionarily conserved components for ultrafiltration. Here, we show that the sorting nexin 25 homologue Snazarus (Snz) binds to Rab11 and localizes to Rab11-positive recycling endosomes in Drosophila nephrocytes, unlike in fat cells where it is present in plasma membrane/lipid droplet/endoplasmic reticulum contact sites. Loss of Snz leads to redistribution of Rab11 vesicles from the cell periphery and increases endocytic activity in nephrocytes. These changes are accompanied by defects in diaphragm protein distribution that resemble those seen in Rab11 gain-of-function cells. Of note, co-overexpression of Snz rescues diaphragm defects in Rab11 overexpressing cells, whereas snz knockdown in Rab11 overexpressing nephrocytes or simultaneous knockdown of snz and tbc1d8b encoding a Rab11 GTPase-activating protein (GAP) leads to massive expansion of the lacunar system that contains mislocalized diaphragm components: Sns and Pyd/ZO-1. We find that loss of Snz enhances while its overexpression impairs secretion, which, together with genetic epistasis analyses, suggest that Snz counteracts Rab11 to maintain the diaphragm via setting the proper balance of exocytosis and endocytosis.
Collapse
Affiliation(s)
- Tamás Maruzs
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
| | - Dalma Feil-Börcsök
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
- Doctoral School of Biology, University of Szeged, Szeged, H-6726 Hungary
| | - Enikő Lakatos
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
- Doctoral School of Biology, University of Szeged, Szeged, H-6726 Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
| | - András Blastyák
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
| | - Dávid Hargitai
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117 Hungary
| | - Steve Jean
- Department of Anatomy and Cell Biology, University of Sherbrooke, Sherbrooke, J1E 4K8 Canada
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117 Hungary
| | - Gábor Juhász
- Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network, Szeged, H-6726 Hungary
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, H-1117 Hungary
| |
Collapse
|
7
|
Sivakumar S, Miellet S, Clarke C, Hartley PS. Insect nephrocyte function is regulated by a store operated calcium entry mechanism controlling endocytosis and Amnionless turnover. JOURNAL OF INSECT PHYSIOLOGY 2022; 143:104453. [PMID: 36341969 DOI: 10.1016/j.jinsphys.2022.104453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/22/2022] [Accepted: 10/21/2022] [Indexed: 05/26/2023]
Abstract
Insect nephrocytes are ultrafiltration cells that remove circulating proteins and exogenous toxins from the haemolymph. Experimental disruption of nephrocyte development or function leads to systemic impairment of insect physiology as evidenced by cardiomyopathy, chronic activation of immune signalling and shortening of lifespan. The genetic and structural basis of the nephrocyte's ultrafiltration mechanism is conserved between arthropods and mammals, making them an attractive model for studying human renal function and systemic clearance mechanisms in general. Although dynamic changes to intracellular calcium are fundamental to the function of many cell types, there are currently no studies of intracellular calcium signalling in nephrocytes. In this work we aimed to characterise calcium signalling in the pericardial nephrocytes of Drosophila melanogaster. To achieve this, a genetically encoded calcium reporter (GCaMP6) was expressed in nephrocytes to monitor intracellular calcium both in vivo within larvae and in vitro within dissected adults. Larval nephrocytes exhibited stochastically timed calcium waves. A calcium signal could be initiated in preparations of adult nephrocytes and abolished by EGTA, or the store operated calcium entry (SOCE) blocker 2-APB, as well as RNAi mediated knockdown of the SOCE genes Stim and Orai. Neither the presence of calcium-free buffer nor EGTA affected the binding of the endocytic cargo albumin to nephrocytes but they did impair the subsequent accumulation of albumin within nephrocytes. Pre-treatment with EGTA, calcium-free buffer or 2-APB led to significantly reduced albumin binding. Knock-down of Stim and Orai was non-lethal, caused an increase to nephrocyte size and reduced albumin binding, reduced the abundance of the endocytic cargo receptor Amnionless and disrupted the localisation of Dumbfounded at the filtration slit diaphragm. These data indicate that pericardial nephrocytes exhibit stochastically timed calcium waves in vivo and that SOCE mediates the localisation of the endocytic co-receptor Amnionless. Identifying the signals both up and downstream of SOCE may highlight mechanisms relevant to the renal and excretory functions of a broad range of species, including humans.
Collapse
Affiliation(s)
- Shruthi Sivakumar
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Sara Miellet
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons, University of Wollongong, NSW, Australia
| | - Charlotte Clarke
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK
| | - Paul S Hartley
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Dorset BH12 5BB, UK.
| |
Collapse
|
8
|
Koehler S, Huber TB, Denholm B. A protective role for <i>Drosophila</i> Filamin in nephrocytes via Yorkie mediated hypertrophy. Life Sci Alliance 2022; 5:e202101281. [PMID: 35922155 PMCID: PMC9351128 DOI: 10.26508/lsa.202101281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Podocytes are specialized epithelial cells of the kidney glomerulus and are an essential part of the filtration barrier. Because of their position, they are exposed to constant biomechanical forces such as shear stress and hydrostatic pressure. These forces increase during disease, resulting in podocyte injury. It is likely podocytes have adaptative responses to help buffer against deleterious mechanical force and thus reduce injury. However, these responses remain largely unknown. Here, using the <i>Drosophila</i> model, we show the mechanosensor Cheerio (dFilamin) provides a key protective role in nephrocytes. We found expression of an activated mechanosensitive variant of Cheerio rescued filtration function and induced compensatory and hypertrophic growth in nephrocytes depleted of the nephrocyte diaphragm proteins Sns or Duf. Delineating the protective pathway downstream of Cheerio we found repression of the Hippo pathway induces nephrocyte hypertrophy, whereas Hippo activation reversed the Cheerio-mediated hypertrophy. Furthermore, we find Yorkie was activated upon expression of active Cheerio. Taken together, our data suggest that Cheerio acts via the Hippo pathway to induce hypertrophic growth, as a protective response in abnormal nephrocytes.
Collapse
Affiliation(s)
- Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias B Huber
- III Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Barry Denholm
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|