1
|
Begeman IJ, Guyer ME, Kang J. Cardiac enhancers: Gateway to the regulatory mechanisms of heart regeneration. Semin Cell Dev Biol 2025; 170:103610. [PMID: 40215762 PMCID: PMC12064385 DOI: 10.1016/j.semcdb.2025.103610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/17/2025] [Accepted: 03/31/2025] [Indexed: 05/10/2025]
Abstract
The adult mammalian heart has limited regenerative capacity. Cardiac injury, such as a myocardial infarction (MI), leads to permanent scarring and impaired heart function. In contrast, neonatal mice and zebrafish possess the ability to repair injured hearts. Cardiac regeneration is driven by profound transcriptional changes, which are controlled by gene regulatory elements, such as tissue regeneration enhancer elements (TREEs). Here, we review recent studies on cardiac injury/regeneration enhancers across species. We further explore regulatory mechanisms governing TREE activities and their associated binding regulators. We also discuss the potential of TREE engineering and how these enhancers can be utilized for heart repair. Decoding the regulatory logic of cardiac regeneration enhancers presents a promising avenue for understanding heart regeneration and advancing therapeutic strategies for heart failure.
Collapse
Affiliation(s)
- Ian J Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Megan E Guyer
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
2
|
Swiech O, Boguszewska-Czubara A. Enhancing cardiac safety: Liposomal ciprofloxacin mitigates anthracycline-induced cardiotoxicity without compromising anticancer efficacy. Chem Biol Interact 2025; 414:111496. [PMID: 40157626 DOI: 10.1016/j.cbi.2025.111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Anthracyclines, such as doxorubicin and epirubicin (EPI), are integral in the treatment of solid tumors and hematological malignancies but are associated with cardiotoxicity, potentially leading to heart failure. The underlying mechanisms involve the generation of reactive oxygen species (ROS), alterations in iron metabolism, and the inhibition of topoisomerase 2β (Top2β), resulting in mitochondrial dysfunction and cell death. Fluoroquinolones, including ciprofloxacin (CPX), enhance the efficacy of anthracyclines by inhibiting topoisomerase II and inducing apoptosis, thereby indicating a promising combination therapy. This study investigated the impact of environmental pH on the cardiotoxicity and myocardial accumulation of anthracyclines, as well as the cardioprotective and synergistic potential of CPX when co-administered with epirubicin. The findings revealed that only the zwitterionic form of CPX, either free or encapsulated in liposomes, offers significant cardioprotection without compromising the anticancer activity of EPI. Remarkably, the combination of liposomal CPX and EPI completely attenuates EPI's cardiotoxicity. These results suggest that initiating treatment with liposomal CPX prior to EPI administration may optimize cardioprotection while maintaining therapeutic efficacy against cancer.
Collapse
Affiliation(s)
- Olga Swiech
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093, Warsaw, Poland; BS Biotechna S.A, Szlak 77/222, Cracow, Poland.
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, Chodzki 4a, 20-093, Lublin, Poland
| |
Collapse
|
3
|
Llorens-Giralt P, Ruiz-Romero M, Nurtdinov R, Herranz-Itúrbide M, Vicent GP, Serras F, Fabregat I, Corominas M. Sequential activation of transcription factors promotes liver regeneration through specific and developmental enhancers. CELL GENOMICS 2025:100887. [PMID: 40409273 DOI: 10.1016/j.xgen.2025.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/10/2025] [Accepted: 04/28/2025] [Indexed: 05/25/2025]
Abstract
The mammalian liver exhibits remarkable regenerative capabilities after injury or resection. Central to this process is the precise modulation of gene expression, driven by changes in chromatin structure and the temporal activation of distal regulatory elements. In this study, we integrated chromatin accessibility and transcriptomic data after partial hepatectomy in mice. We show that the expression of crucial regeneration genes is orchestrated by a diverse array of cis-regulatory elements, including regeneration-specific enhancers and enhancers repurposed from various developmental stages. These enhancers collaborate to activate the transcriptional programs required for hepatocyte priming and proliferation, with their activity initially regulated by the activator protein-1 (AP-1) complex and ATF3, and subsequently by nuclear factor erythroid 2 (NFE2)-related factor 2 (NRF2) during proliferation. Our results also indicate that hepatic regeneration involves the repression of enhancers regulating liver-specific metabolic functions, particularly those involved in lipid metabolism. This study provides a genome-wide atlas of enhancer-gene interactions, offering new insights into the regulatory mechanisms underlying liver regeneration.
Collapse
Affiliation(s)
- Palmira Llorens-Giralt
- Department of Genetics, Microbiology and Statistics, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Marina Ruiz-Romero
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ramil Nurtdinov
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Macarena Herranz-Itúrbide
- TGF-beta and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Granvia de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Guillermo P Vicent
- Molecular Biology Institute of Barcelona, Consejo Superior de Investigaciones Científicas (IBMB-CSIC), Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | - Florenci Serras
- Department of Genetics, Microbiology and Statistics, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Diagonal 643, 08028 Barcelona, Catalonia, Spain
| | - Isabel Fabregat
- TGF-beta and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Av. Granvia de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Barcelona, Spain; Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Montserrat Corominas
- Department of Genetics, Microbiology and Statistics, Faculty of Biology and Institute of Biomedicine (IBUB), University of Barcelona, Diagonal 643, 08028 Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Cellini BR, Edachola SV, Faw TD, Cigliola V. Blueprints for healing: central nervous system regeneration in zebrafish and neonatal mice. BMC Biol 2025; 23:115. [PMID: 40307837 PMCID: PMC12044871 DOI: 10.1186/s12915-025-02203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
In adult mammals, including humans, neurons, and axons in the brain and spinal cord are inherently incapable of regenerating after injury. Studies of animals with innate capacity for regeneration are providing valuable insights into the mechanisms driving tissue healing. The aim of this review is to summarize recent data on regeneration mechanisms in the brain and spinal cord of zebrafish and neonatal mice. We infer that elucidating these mechanisms and understanding how and why they are lost in adult mammals will contribute to the development of strategies to promote central nervous system regeneration.
Collapse
Affiliation(s)
- Brianna R Cellini
- Department of Psychology and Neuroscience, Duke University, Durham, NC, 27710, USA
| | | | - Timothy D Faw
- Department of Orthopaedic Surgery, Duke University, Durham, NC, 27710, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA
| | - Valentina Cigliola
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
5
|
Rao A, Russell A, Segura-Bermudez J, Franz C, Dockery R, Blatnik A, Panten J, Zevallos M, McNulty C, Pietrzak M, Goldman JA. A cardiac transcriptional enhancer is repurposed during regeneration to activate an anti-proliferative program. Development 2025; 152:DEV204458. [PMID: 39803985 PMCID: PMC11883283 DOI: 10.1242/dev.204458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/17/2024] [Indexed: 02/18/2025]
Abstract
Zebrafish have a high capacity to regenerate their hearts. Several studies have surveyed transcriptional enhancers to understand how gene expression is controlled during heart regeneration. We have identified REN (the runx1 enhancer) that, during regeneration, regulates the expression of the nearby runx1 gene. We show that runx1 mRNA is reduced with deletion of REN (ΔREN), and cardiomyocyte proliferation is enhanced in ΔREN mutants only during regeneration. Interestingly, in uninjured hearts, ΔREN mutants have reduced expression of adamts1, a nearby gene that encodes a Collagen protease. This results in excess Collagen within cardiac valves of uninjured hearts. The ΔREN Collagen phenotype is rescued by an allele with Δrunx1 mutations, suggesting that in uninjured hearts REN regulates adamts1 independently of runx1. Taken together, this suggests that REN is rewired from adamts1 in uninjured hearts to stimulate runx1 transcription during regeneration. Our data point to a previously unappreciated mechanism for gene regulation during zebrafish heart regeneration. We report that an enhancer is rewired from expression in a distal cardiac domain to activate a different gene in regenerating tissue.
Collapse
Affiliation(s)
- Anupama Rao
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Andrew Russell
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jose Segura-Bermudez
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Charles Franz
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Rejenae Dockery
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Anton Blatnik
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Jacob Panten
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Mateo Zevallos
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Carson McNulty
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph Aaron Goldman
- Department of Biological Chemistry and Pharmacology, The Ohio State University Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Chen Y, Hou Y, Zeng Q, Wang I, Shang M, Shin K, Hemauer C, Xing X, Kang J, Zhao G, Wang T. Common and specific gene regulatory programs in zebrafish caudal fin regeneration at single-cell resolution. Genome Res 2025; 35:202-218. [PMID: 39809530 PMCID: PMC11789645 DOI: 10.1101/gr.279372.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 11/04/2024] [Indexed: 01/16/2025]
Abstract
Following amputation, zebrafish regenerate their injured caudal fin through lineage-restricted reprogramming. Although previous studies have charted various genetic and epigenetic dimensions of this process, the intricate gene regulatory programs shared by, or unique to, different regenerating cell types remain underinvestigated. Here, we mapped the regulatory landscape of fin regeneration by applying paired snRNA-seq and snATAC-seq on uninjured and regenerating fins. This map delineates the regulatory dynamics of predominant cell populations at multiple stages of regeneration. We observe a marked increase in the accessibility of chromatin regions associated with regenerative and developmental processes at 1 dpa, followed by a gradual closure across major cell types at later stages. This pattern is distinct from that of transcriptomic dynamics, which is characterized by several waves of gene upregulation and downregulation. We identified and in vivo validated cell-type-specific and position-specific regeneration-responsive enhancers and constructed regulatory networks by cell type and stage. Our single-cell resolution transcriptomic and chromatin accessibility map across regenerative stages provides new insights into regeneration regulatory mechanisms and serves as a valuable resource for the community.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiran Hou
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Qinglin Zeng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Irene Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Meiru Shang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Christopher Hemauer
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin 53705, USA
| | - Guoyan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Chen Y, Liang R, Li Y, Jiang L, Ma D, Luo Q, Song G. Chromatin accessibility: biological functions, molecular mechanisms and therapeutic application. Signal Transduct Target Ther 2024; 9:340. [PMID: 39627201 PMCID: PMC11615378 DOI: 10.1038/s41392-024-02030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/04/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
The dynamic regulation of chromatin accessibility is one of the prominent characteristics of eukaryotic genome. The inaccessible regions are mainly located in heterochromatin, which is multilevel compressed and access restricted. The remaining accessible loci are generally located in the euchromatin, which have less nucleosome occupancy and higher regulatory activity. The opening of chromatin is the most important prerequisite for DNA transcription, replication, and damage repair, which is regulated by genetic, epigenetic, environmental, and other factors, playing a vital role in multiple biological progresses. Currently, based on the susceptibility difference of occupied or free DNA to enzymatic cleavage, solubility, methylation, and transposition, there are many methods to detect chromatin accessibility both in bulk and single-cell level. Through combining with high-throughput sequencing, the genome-wide chromatin accessibility landscape of many tissues and cells types also have been constructed. The chromatin accessibility feature is distinct in different tissues and biological states. Research on the regulation network of chromatin accessibility is crucial for uncovering the secret of various biological processes. In this review, we comprehensively introduced the major functions and mechanisms of chromatin accessibility variation in different physiological and pathological processes, meanwhile, the targeted therapies based on chromatin dynamics regulation are also summarized.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Rui Liang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Yong Li
- Hepatobiliary Pancreatic Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, PR China
| | - Lingli Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Di Ma
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, PR China.
| |
Collapse
|
8
|
Kawaguchi A, Wang J, Knapp D, Murawala P, Nowoshilow S, Masselink W, Taniguchi-Sugiura Y, Fei JF, Tanaka EM. A chromatin code for limb segment identity in axolotl limb regeneration. Dev Cell 2024; 59:2239-2253.e9. [PMID: 38788714 DOI: 10.1016/j.devcel.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 07/25/2023] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
The salamander limb correctly regenerates missing limb segments because connective tissue cells have segment-specific identities, termed "positional information". How positional information is molecularly encoded at the chromatin level has been unknown. Here, we performed genome-wide chromatin profiling in mature and regenerating axolotl limb connective tissue cells. We find segment-specific levels of histone H3K27me3 as the major positional mark, especially at limb homeoprotein gene loci but not their upstream regulators, constituting an intrinsic segment information code. During regeneration, regeneration-specific regulatory elements became active prior to the re-appearance of developmental regulatory elements. In the hand, the permissive chromatin state of the homeoprotein gene HoxA13 engages with the regeneration program bypassing the upper limb program. Comparison of regeneration regulatory elements with those found in other regenerative animals identified a core shared set of transcription factors, supporting an ancient, conserved regeneration program.
Collapse
Affiliation(s)
- Akane Kawaguchi
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dunja Knapp
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Prayag Murawala
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Sergej Nowoshilow
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wouter Masselink
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Yuka Taniguchi-Sugiura
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Ji-Feng Fei
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|
9
|
Wong D, Martinez J, Quijada P. Exploring the Function of Epicardial Cells Beyond the Surface. Circ Res 2024; 135:353-371. [PMID: 38963865 PMCID: PMC11225799 DOI: 10.1161/circresaha.124.321567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.
Collapse
Affiliation(s)
- David Wong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Julie Martinez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Pearl Quijada
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Eli and Edythe Broad Stem Research Center, University of California, Los Angeles, CA 90029
- Molecular Biology Institute, University of California, Los Angeles, CA 90029
| |
Collapse
|
10
|
Chang Y, Francois M, Bagnall RD. Transcription Factors Leave Their Mark on the Heart. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004598. [PMID: 38497209 DOI: 10.1161/circgen.124.004598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Affiliation(s)
- Yuchen Chang
- Bioinformatics and Molecular Genetics at Centenary Institute, The University of Sydney, Sydney, NSW, Australia (Y.C., R.D.B.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia (Y.C., R.D.B.)
| | - Mathias Francois
- Rare Disease and Gene Therapy Division, The Centenary Institute, School of Biomedical Sciences, The University of Sydney, NSW, Australia (M.F.)
| | - Richard D Bagnall
- Bioinformatics and Molecular Genetics at Centenary Institute, The University of Sydney, Sydney, NSW, Australia (Y.C., R.D.B.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia (Y.C., R.D.B.)
| |
Collapse
|
11
|
Ando K, Ou J, Thompson JD, Welsby J, Bangru S, Shen J, Wei X, Diao Y, Poss KD. A screen for regeneration-associated silencer regulatory elements in zebrafish. Dev Cell 2024; 59:676-691.e5. [PMID: 38290519 PMCID: PMC10939760 DOI: 10.1016/j.devcel.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/03/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024]
Abstract
Regeneration involves gene expression changes explained in part by context-dependent recruitment of transcriptional activators to distal enhancers. Silencers that engage repressive transcriptional complexes are less studied than enhancers and more technically challenging to validate, but they potentially have profound biological importance for regeneration. Here, we identified candidate silencers through a screening process that examined the ability of DNA sequences to limit injury-induced gene expression in larval zebrafish after fin amputation. A short sequence (s1) on chromosome 5 near several genes that reduce expression during adult fin regeneration could suppress promoter activity in stable transgenic lines and diminish nearby gene expression in knockin lines. High-resolution analysis of chromatin organization identified physical associations of s1 with gene promoters occurring preferentially during fin regeneration, and genomic deletion of s1 elevated the expression of these genes after fin amputation. Our study provides methods to identify "tissue regeneration silencer elements" (TRSEs) with the potential to reduce unnecessary or deleterious gene expression during regeneration.
Collapse
Affiliation(s)
- Kazunori Ando
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jianhong Ou
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John D Thompson
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - John Welsby
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sushant Bangru
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jingwen Shen
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Xiaolin Wei
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Yarui Diao
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Dong Y, Yang Y, Wang H, Feng D, Nist E, Yapundich N, Spurlock B, Craft M, Qian L, Liu J. Single-cell chromatin profiling reveals genetic programs activating proregenerative states in nonmyocyte cells. SCIENCE ADVANCES 2024; 10:eadk4694. [PMID: 38381829 PMCID: PMC10881044 DOI: 10.1126/sciadv.adk4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Cardiac regeneration requires coordinated participation of multiple cell types whereby their communications result in transient activation of proregenerative cell states. Although the molecular characteristics and lineage origins of these activated cell states and their contribution to cardiac regeneration have been studied, the extracellular signaling and the intrinsic genetic program underlying the activation of the transient functional cell states remain largely unexplored. In this study, we delineated the chromatin landscapes of the noncardiomyocytes (nonCMs) of the regenerating heart at the single-cell level and inferred the cis-regulatory architectures and trans-acting factors that control cell type-specific gene expression programs. Moreover, further motif analysis and cell-specific genetic manipulations suggest that the macrophage-derived inflammatory signal tumor necrosis factor-α, acting via its downstream transcription factor complex activator protein-1, functions cooperatively with discrete transcription regulators to activate respective nonCM cell types critical for cardiac regeneration. Thus, our study defines the regulatory architectures and intercellular communication principles in zebrafish heart regeneration.
Collapse
Affiliation(s)
- Yanhan Dong
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuchen Yang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haofei Wang
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dong Feng
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth Nist
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nicholas Yapundich
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian Spurlock
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Madison Craft
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Weinberger M, Simões FC, Gungoosingh T, Sauka-Spengler T, Riley PR. Distinct epicardial gene regulatory programs drive development and regeneration of the zebrafish heart. Dev Cell 2024; 59:351-367.e6. [PMID: 38237592 DOI: 10.1016/j.devcel.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/12/2023] [Accepted: 12/20/2023] [Indexed: 02/08/2024]
Abstract
Unlike the adult mammalian heart, which has limited regenerative capacity, the zebrafish heart fully regenerates following injury. Reactivation of cardiac developmental programs is considered key to successfully regenerating the heart, yet the regulation underlying the response to injury remains elusive. Here, we compared the transcriptome and epigenome of the developing and regenerating zebrafish epicardia. We identified epicardial enhancer elements with specific activity during development or during adult heart regeneration. By generating gene regulatory networks associated with epicardial development and regeneration, we inferred genetic programs driving each of these processes, which were largely distinct. Loss of Hif1ab, Nrf1, Tbx2b, and Zbtb7a, central regulators of the regenerating epicardial network, in injured hearts resulted in elevated epicardial cell numbers infiltrating the wound and excess fibrosis after cryoinjury. Our work identifies differences between the regulatory blueprint deployed during epicardial development and regeneration, underlining that heart regeneration goes beyond the reactivation of developmental programs.
Collapse
Affiliation(s)
- Michael Weinberger
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK; Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK
| | - Filipa C Simões
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Trishalee Gungoosingh
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, Oxfordshire, UK; Stowers Institute for Medical Research, Kansas City, MO, USA.
| | - Paul R Riley
- Department of Physiology, Anatomy and Genetics, Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford OX3 7TY, Oxfordshire, UK.
| |
Collapse
|
14
|
Abstract
Permanent fibrosis and chronic deterioration of heart function in patients after myocardial infarction present a major health-care burden worldwide. In contrast to the restricted potential for cellular and functional regeneration of the adult mammalian heart, a robust capacity for cardiac regeneration is seen during the neonatal period in mammals as well as in the adults of many fish and amphibian species. However, we lack a complete understanding as to why cardiac regeneration takes place more efficiently in some species than in others. The capacity of the heart to regenerate after injury is controlled by a complex network of cellular and molecular mechanisms that form a regulatory landscape, either permitting or restricting regeneration. In this Review, we provide an overview of the diverse array of vertebrates that have been studied for their cardiac regenerative potential and discuss differential heart regeneration outcomes in closely related species. Additionally, we summarize current knowledge about the core mechanisms that regulate cardiac regeneration across vertebrate species.
Collapse
Affiliation(s)
- Michael Weinberger
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul R Riley
- Institute of Developmental & Regenerative Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Shin K, Begeman IJ, Cao J, Kang J. leptin b and its regeneration enhancer illustrate the regenerative features of zebrafish hearts. Dev Dyn 2024; 253:91-106. [PMID: 36495292 PMCID: PMC10256838 DOI: 10.1002/dvdy.556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zebrafish possess a remarkable regenerative capacity, which is mediated by the induction of various genes upon injury. Injury-dependent transcription is governed by the tissue regeneration enhancer elements (TREEs). Here, we utilized leptin b (lepb), an injury-specific factor, and its TREE to dissect heterogeneity of noncardiomyocytes (CMs) in regenerating hearts. RESULTS Our single-cell RNA sequencing (scRNA-seq) analysis demonstrated that the endothelium/endocardium(EC) is activated to induce distinct subpopulations upon injury. We demonstrated that lepb can be utilized as a regeneration-specific marker to subset injury-activated ECs. lepb+ ECs robustly induce pro-regenerative factors, implicating lepb+ ECs as a signaling center to interact with other cardiac cells. Our scRNA-seq analysis identified that lepb is also produced by subpopulation of epicardium (Epi) and epicardium-derived cells (EPDCs). To determine whether lepb labels injury-emerging non-CM cells, we tested the activity of lepb-linked regeneration enhancer (LEN) with chromatin accessibility profiles and transgenic lines. While nondetectable in uninjured hearts, LEN directs EC and Epi/EPDC expression upon injury. The endogenous LEN activity was assessed using LEN deletion lines, demonstrating that LEN deletion abolished injury-dependent expression of lepb, but not other nearby genes. CONCLUSIONS Our integrative analyses identify regeneration-emerging cell-types and factors, leading to the discovery of regenerative features of hearts.
Collapse
Affiliation(s)
- Kwangdeok Shin
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Ian J. Begeman
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10021, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin – Madison, Madison, WI, 53705, USA
| |
Collapse
|
16
|
Tamaki T, Yoshida T, Shibata E, Nishihara H, Ochi H, Kawakami A. Splashed E-box and AP-1 motifs cooperatively drive regeneration response and shape regeneration abilities. Biol Open 2023; 12:286596. [PMID: 36636913 PMCID: PMC9922731 DOI: 10.1242/bio.059810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/14/2023] Open
Abstract
Injury triggers a genetic program that induces gene expression for regeneration. Recent studies have identified regeneration-response enhancers (RREs); however, it remains unclear whether a common mechanism operates in these RREs. We identified three RREs from the zebrafish fn1b promoter by searching for conserved sequences within the surrounding genomic regions of regeneration-induced genes and performed a transgenic assay for regeneration response. Two regions contained in the transposons displayed RRE activity when combined with the -0.7 kb fn1b promoter. Another non-transposon element functioned as a stand-alone enhancer in combination with a minimum promoter. By searching for transcription factor-binding motifs and validation by transgenic assays, we revealed that the cooperation of E-box and activator protein 1 motifs is necessary and sufficient for regenerative response. Such RREs respond to variety of tissue injuries, including those in the zebrafish heart and Xenopus limb buds. Our findings suggest that the fidelity of regeneration response is ensured by the two signals evoked by tissue injuries. It is speculated that a large pool of potential enhancers in the genome has helped shape the regenerative capacities during evolution.
Collapse
Affiliation(s)
- Teruhisa Tamaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Takafumi Yoshida
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Hidenori Nishihara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, Yamagata Pref. 990-9585, Japan
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan,Author for correspondence ()
| |
Collapse
|
17
|
Yan R, Cigliola V, Oonk KA, Petrover Z, DeLuca S, Wolfson DW, Vekstein A, Mendiola MA, Devlin G, Bishawi M, Gemberling MP, Sinha T, Sargent MA, York AJ, Shakked A, DeBenedittis P, Wendell DC, Ou J, Kang J, Goldman JA, Baht GS, Karra R, Williams AR, Bowles DE, Asokan A, Tzahor E, Gersbach CA, Molkentin JD, Bursac N, Black BL, Poss KD. An enhancer-based gene-therapy strategy for spatiotemporal control of cargoes during tissue repair. Cell Stem Cell 2023; 30:96-111.e6. [PMID: 36516837 PMCID: PMC9830588 DOI: 10.1016/j.stem.2022.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022]
Abstract
The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.
Collapse
Affiliation(s)
- Ruorong Yan
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Valentina Cigliola
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Kelsey A Oonk
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA
| | - Zachary Petrover
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sophia DeLuca
- Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - David W Wolfson
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Andrew Vekstein
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | | | - Garth Devlin
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Muath Bishawi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Matthew P Gemberling
- Department of Biomedical Engineering, Duke University, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Tanvi Sinha
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle A Sargent
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Allen J York
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | - David C Wendell
- Duke Cardiovascular Magnetic Resonance Center, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University, Durham, NC, USA
| | - Junsu Kang
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Joseph A Goldman
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - Gurpreet S Baht
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Ravi Karra
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Adam R Williams
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Dawn E Bowles
- Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Aravind Asokan
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Charles A Gersbach
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Surgery, Duke University School of Medicine, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC, USA
| | - Jeffery D Molkentin
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brian L Black
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kenneth D Poss
- Duke Regeneration Center, Duke University, Durham, NC, USA; Department of Cell Biology, Duke University Medical School, Durham, NC, USA; Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
| |
Collapse
|
18
|
Xia Y, Duca S, Perder B, Dündar F, Zumbo P, Qiu M, Yao J, Cao Y, Harrison MRM, Zangi L, Betel D, Cao J. Activation of a transient progenitor state in the epicardium is required for zebrafish heart regeneration. Nat Commun 2022; 13:7704. [PMID: 36513650 PMCID: PMC9747719 DOI: 10.1038/s41467-022-35433-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
The epicardium, a mesothelial cell tissue that encompasses vertebrate hearts, supports heart regeneration after injury through paracrine effects and as a source of multipotent progenitors. However, the progenitor state in the adult epicardium has yet to be defined. Through single-cell RNA-sequencing of isolated epicardial cells from uninjured and regenerating adult zebrafish hearts, we define the epithelial and mesenchymal subsets of the epicardium. We further identify a transiently activated epicardial progenitor cell (aEPC) subpopulation marked by ptx3a and col12a1b expression. Upon cardiac injury, aEPCs emerge from the epithelial epicardium, migrate to enclose the wound, undergo epithelial-mesenchymal transition (EMT), and differentiate into mural cells and pdgfra+hapln1a+ mesenchymal epicardial cells. These EMT and differentiation processes are regulated by the Tgfβ pathway. Conditional ablation of aEPCs blocks heart regeneration through reduced nrg1 expression and mesenchymal cell number. Our findings identify a transient progenitor population of the adult epicardium that is indispensable for heart regeneration and highlight it as a potential target for enhancing cardiac repair.
Collapse
Affiliation(s)
- Yu Xia
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Sierra Duca
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Björn Perder
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Friederike Dündar
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Paul Zumbo
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Miaoyan Qiu
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jun Yao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Yingxi Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Michael R M Harrison
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Lior Zangi
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Doron Betel
- Applied Bioinformatics Core, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Division of Hematology and Oncology, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
- Institute for Computational Biomedicine, Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA
| | - Jingli Cao
- Cardiovascular Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
19
|
Investigating chromatin accessibility during development and differentiation by ATAC-sequencing to guide the identification of cis-regulatory elements. Biochem Soc Trans 2022; 50:1167-1177. [PMID: 35604124 PMCID: PMC9246326 DOI: 10.1042/bst20210834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
Abstract
Mapping accessible chromatin across time scales can give insights into its dynamic nature, for example during cellular differentiation and tissue or organism development. Analysis of such data can be utilised to identify functional cis-regulatory elements (CRE) and transcription factor binding sites and, when combined with transcriptomics, can reveal gene regulatory networks (GRNs) of expressed genes. Chromatin accessibility mapping is a powerful approach and can be performed using ATAC-sequencing (ATAC-seq), whereby Tn5 transposase inserts sequencing adaptors into genomic DNA to identify differentially accessible regions of chromatin in different cell populations. It requires low sample input and can be performed and analysed relatively quickly compared with other methods. The data generated from ATAC-seq, along with other genomic approaches, can help uncover chromatin packaging and potential cis-regulatory elements that may be responsible for gene expression. Here, we describe the ATAC-seq approach and give examples from mainly vertebrate embryonic development, where such datasets have identified the highly dynamic nature of chromatin, with differing landscapes between cellular precursors for different lineages.
Collapse
|
20
|
The people behind the papers – Yingxi Cao, Ken Poss and Jingli Cao. Development 2022; 149:274412. [DOI: 10.1242/dev.200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Zebrafish heart regeneration is dependent on the activation of a regenerative programme in the cells surrounding the heart, known as the epicardium. A new paper in Development uses genome-wide transcriptomics and chromatin accessibility profiles to identify and validate candidate enhancers linked to genes induced during regeneration in epicardial cells. To hear more about the story, we caught up with first author Yingxi Cao and senior authors Professor Ken Poss from Duke University and Jingli Cao, Assistant Professor at Weill Cornell Medicine.
Collapse
|