1
|
Fancello I, Willett S, Castiglioni C, Amer S, Santoleri S, Bragg L, Galli F, Cossu G. TNAP expressing adventitial pericytes contribute to myogenesis during foetal development. Vascul Pharmacol 2025; 159:107489. [PMID: 40097085 DOI: 10.1016/j.vph.2025.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 02/27/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE During growth and differentiation of skeletal muscle, cell types other than canonical myoblasts can be recruited to a myogenic fate. Among these, TNAP+ pericytes can differentiate into skeletal or smooth muscle cells during postnatal growth and contribute to muscle regeneration. However, their role in muscle development has not been investigated. This study aims to characterise pericyte fate choices during embryonic and foetal myogenesis, occurring in the second half of gestation. APPROACH AND RESULTS Using Cre-loxP lineage tracing with multiple reporters including the multifluorescent Confetti, we labelled TNAP+ precursors in vivo and assessed the smooth or skeletal muscle differentiation in their lineage at a perinatal stage. We found that TNAP+ cells contribute in vivo to skeletal and smooth muscle cells, as well as other pericytes, also during pre-natal muscle development. The resulting clones showed that such fate choices are likely to depend on distinct unipotent progenitors rather than multipotent progenitors. In addition, we isolated and differentiated in vitro foetal cells derived from TNAP+ precursors, which showed that they are not spontaneously myogenic unless co-cultured with other skeletal muscle cells. CONCLUSIONS This work extends our understanding of the differentiative potency of these non- canonical skeletal muscle progenitors during prenatal life, with a view to a future application of this knowledge to optimise cell therapies for muscle wasting disorders.
Collapse
Affiliation(s)
- I Fancello
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - S Willett
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - C Castiglioni
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - S Amer
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - S Santoleri
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - L Bragg
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - F Galli
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK
| | - G Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, FBMH, University of Manchester, UK; Institute of Experimental Neurology, Division of Neurosciences, Ospedale San Raffaele, Milan, Italy; Experimental and Clinical Research Center, Charité Medical Faculty, Max Delbrück Center Berlin, Germany.
| |
Collapse
|
2
|
Borowik AK, Murach KA, Miller BF. The expanding roles of myonuclei in adult skeletal muscle health and function. Biochem Soc Trans 2024; 52:1-14. [PMID: 39700019 DOI: 10.1042/bst20241637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Skeletal muscle cells (myofibers) require multiple nuclei to support a cytoplasmic volume that is larger than other mononuclear cell types. It is dogmatic that mammalian resident myonuclei rely on stem cells (specifically satellite cells) for adding new DNA to muscle fibers to facilitate cytoplasmic expansion that occurs during muscle growth. In this review, we discuss the relationship between cell size and supporting genetic material. We present evidence that myonuclei may undergo DNA synthesis as a strategy to increase genetic material in myofibers independent from satellite cells. We then describe the details of our experiments that demonstrated that mammalian myonuclei can replicate DNA in vivo. Finally, we present our findings in the context of expanding knowledge about myonuclear heterogeneity, myonuclear mobility and shape. We also address why myonuclear replication is potentially important and provide future directions for remaining unknowns. Myonuclear DNA replication, coupled with new discoveries about myonuclear transcription, morphology, and behavior in response to stress, may provide opportunities to leverage previously unappreciated skeletal muscle biological processes for therapeutic targets that support muscle mass, function, and plasticity.
Collapse
Affiliation(s)
- Agnieszka K Borowik
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
| | - Kevin A Murach
- Exercise Science Research Center, Molecular Muscle Mass Regulation Laboratory, Department of Health, Human Performance, and Recreation, University of Arkansas, Fayetteville, AR, U.S.A
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, U.S.A
- Oklahoma City VA Medical Center, Oklahoma City, OK, U.S.A
| |
Collapse
|
3
|
Nicolas R, Bonnin MA, Blavet C, de Lima JE, Legallais C, Duprez D. 3D-environment and muscle contraction regulate the heterogeneity of myonuclei. Skelet Muscle 2024; 14:27. [PMID: 39529179 PMCID: PMC11552141 DOI: 10.1186/s13395-024-00359-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Skeletal muscle formation involves tight interactions between muscle cells and associated connective tissue fibroblasts. Every muscle displays the same type of organisation, they are innervated in the middle and attached at both extremities to tendons. Myonuclei are heterogeneous along myotubes and regionalised according to these middle and tip domains. During development, as soon as myotubes are formed, myonuclei at muscle tips facing developing tendons display their own molecular program. In addition to molecular heterogeneity, a subset of tip myonuclei has a fibroblastic origin different to the classical somitic origin, highlighting a cellular heterogeneity of myonuclei in foetal myotubes. To gain insights on the functional relevance of myonucleus heterogeneity during limb development, we used 2D culture and co-culture systems to dissociate autonomous processes (occurring in 2D-cultures) from 3D-environment of tissue development. We also assessed the role of muscle contraction in myonucleus heterogeneity in paralysed limb muscles. The regionalisation of cellular heterogeneity was not observed in 2D cell culture systems and paralyzed muscles. The molecular signature of MTJ myonuclei was lost in a dish and paralysed muscles indicating a requirement of 3D-enviroment and muscle contraction for MTJ formation. Tip genes that maintain a regionalized expression at myotube tips in cultures are linked to sarcomeres. The behaviour of regionalized markers in cultured myotubes and paralyzed muscles allows us to speculate whether the genes intervene in myogenesis, myotube attachment or MTJ formation.
Collapse
Affiliation(s)
- Rosa Nicolas
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Marie-Ange Bonnin
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Cédrine Blavet
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
| | - Joana Esteves de Lima
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France
- University Paris Est Creteil, Inserm, EnvA, EFS, AP-HP, IRMB, Creteil, 94010, France
| | - Cécile Legallais
- UMR CNRS 7338 Biomechanics & Bioengineering, Université de Technologie de Compiègne, Sorbonne Universités, Compiegne, 60203, France
| | - Delphine Duprez
- UMR7622, Developmental Biology Laboratory, Sorbonne Université, Institut Biologie Paris Seine, CNRS, Inserm U1156, Paris, 75005, France.
| |
Collapse
|
4
|
Okino R, Goda Y, Ono Y. The Hox-based positional memory in muscle stem cells. J Biochem 2024; 176:277-283. [PMID: 39194026 DOI: 10.1093/jb/mvae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/09/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024] Open
Abstract
The skeletal muscle is a contractile tissue distributed throughout the body with various anatomical sizes, shapes and functions. In pathological conditions, such as muscular dystrophy, age-related sarcopenia and cancer cachexia, skeletal muscles are not uniformly affected throughout the body. This region-specific vulnerability cannot be fully explained by known physiological classifications, including muscle fiber types. Accumulating evidence indicates that the expression patterns of topographic homeobox (Hox) genes provide a molecular signature of positional memory, reflecting the anatomical locations and embryonic history of muscles and their associated muscle stem cells in adult mice and humans. Hox-based positional memory is not merely a remnant of embryonic development but is expected to be an intrinsic determinant controlling muscle function because recent studies have shown that aberrant Hox genes affect muscle stem cells. In this review, we discuss the concept of Hox-based positional memory, which may offer a new perspective on the region-specific pathophysiology of muscle disorders.
Collapse
Affiliation(s)
- Ryosuke Okino
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yuki Goda
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yusuke Ono
- Muscle Biology Laboratory, Research Team for Aging Science, Tokyo Metropolitan Institute for Geriatrics and Gerontology (TMIG), 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
- Department of Muscle Development and Regeneration, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| |
Collapse
|
5
|
Tsuboi E, Ono SF, Cordeiro IR, Yu R, Kawanishi T, Koizumi M, Shigenobu S, Sheng G, Okabe M, Tanaka M. Immobilization secondary to cell death of muscle precursors with a dual transcriptional signature contributes to the emu wing skeletal pattern. Nat Commun 2024; 15:8153. [PMID: 39300061 DOI: 10.1038/s41467-024-52203-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 08/29/2024] [Indexed: 09/22/2024] Open
Abstract
Limb reduction has occurred multiple times in tetrapod history. Among ratites, wing reductions range from mild vestigialization to complete loss, with emus (Dromaius novaehollandiae) serving as a model for studying the genetic mechanisms behind limb reduction. Here, we explore the developmental mechanisms underlying wing reduction in emu. Our analyses reveal that immobilization resulting from the absence of distal muscles contributes to skeletal shortening, fusion and left-right intraindividual variation. Expression analysis and single cell-RNA sequencing identify muscle progenitors displaying a dual lateral plate mesodermal and myogenic signature. These cells aggregate at the proximal region of wing buds and undergo cell death. We propose that this cell death, linked to the lack of distal muscle masses, underlines the morphological features and variability in skeletal elements due to reduced mechanical loading. Our results demonstrate that differential mobility during embryonic development may drive morphological diversification in vestigial structures.
Collapse
Affiliation(s)
- Eriko Tsuboi
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Satomi F Ono
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Ingrid Rosenburg Cordeiro
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Reiko Yu
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Toru Kawanishi
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Makoto Koizumi
- Laboratory Animal Facilities, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Shuji Shigenobu
- Trans-Omics Facility, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Masataka Okabe
- Department of Anatomy, The Jikei University School of Medicine, 3-25-8 Nishi-shimbashi, Minato-ku, Tokyo, Japan
| | - Mikiko Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, B-17, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan.
| |
Collapse
|
6
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
7
|
Hirsinger E, Blavet C, Bonnin MA, Bellenger L, Gharsalli T, Duprez D. Limb connective tissue is organized in a continuum of promiscuous fibroblast identities during development. iScience 2024; 27:110305. [PMID: 39050702 PMCID: PMC11267076 DOI: 10.1016/j.isci.2024.110305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Connective tissue (CT), which includes tendon and muscle CT, plays critical roles in development, in particular as positional cue provider. Nonetheless, our understanding of fibroblast developmental programs is hampered because fibroblasts are highly heterogeneous and poorly characterized. Combining single-cell RNA-sequencing-based strategies including trajectory inference and in situ hybridization analyses, we address the diversity of fibroblasts and their developmental trajectories during chicken limb fetal development. We show that fibroblasts switch from a positional information to a lineage diversification program at the fetal period onset. Muscle CT and tendon are composed of several fibroblast populations that emerge asynchronously. Once the final muscle pattern is set, transcriptionally close populations are found in neighboring locations in limbs, prefiguring the adult fibroblast layers. We propose that the limb CT is organized in a continuum of promiscuous fibroblast identities, allowing for the robust and efficient connection of muscle to bone and skin.
Collapse
Affiliation(s)
- Estelle Hirsinger
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Cédrine Blavet
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Marie-Ange Bonnin
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| | - Léa Bellenger
- Sorbonne Université, CNRS FR3631, Inserm U1156, Institut de Biologie Paris Seine (IBPS), ARTbio Bioinformatics Analysis Facility, Paris, Institut Français de Bioinformatique (IFB), 75005 Paris, France
| | - Tarek Gharsalli
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
- Inovarion, 75005 Paris, France
| | - Delphine Duprez
- Sorbonne Université, Institut Biologie Paris Seine, CNRS UMR7622, Developmental Biology Laboratory, Inserm U1156, 75005 Paris, France
| |
Collapse
|
8
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
9
|
Wellik DM. Hox genes and patterning the vertebrate body. Curr Top Dev Biol 2024; 159:1-27. [PMID: 38729674 DOI: 10.1016/bs.ctdb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
10
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
11
|
Kloc M, Uosef A, Ubelaker HV, Kubiak JZ, Ghobrial RM. Macrophages and stem/progenitor cells interplay in adipose tissue and skeletal muscle: a review. Stem Cell Investig 2023; 10:9. [PMID: 37077316 PMCID: PMC10107080 DOI: 10.21037/sci-2023-009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023]
Abstract
Like all immune cells, macrophages do not act autonomously but in unison with other immune cells, surrounding tissues, and the niche they occupy. Constant exchange of information between cellular and noncellular participants within a tissue allows for preserving homeostasis and defining responses in a pathologic environment. Although molecular mechanisms and pathways involved in reciprocal signaling between macrophages and other immune cells have been known for decades, much less is known about interactions between macrophages and stem/progenitor cells. Based on the time when stem cells form, there are two stem cell types: embryonic stem cells existing only in an early embryo, which are pluripotent and can differentiate into any cell type present in an adult, and somatic (adult) stem cells formed in fetus and persisting for whole adult life. Tissues and organs have their own (tissue-specific and organ-specific) adult stem cells, which serve as a reserve for tissue homeostasis and regeneration after injury. It is still uncertain whether organ- and tissue-specific stem cells are actual stem cells or just progenitor cells. The important question is how stem/progenitor cells can sculpt macrophage phenotype and functions. Even less is known if or how macrophages can shape stem/progenitor cell functions, their divisions, and fate. We describe here examples from recent studies of how stem/progenitor cells can affect macrophages and how macrophages can influence stem/progenitor cell properties, functions, and destiny.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Ahmed Uosef
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Henry V. Ubelaker
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine National Research Institute (WIM-PIB), Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR6290, Rennes, France
| | - Rafik M. Ghobrial
- Transplant Immunology, The Houston Methodist Research Institute, Houston, TX, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|