1
|
Li H, Zhang L, Jiao J, Zhang H, Si X, Huang Y, Chen W. Distinct roles of the circMKNK2/miR-15a Axis in regulating chicken skeletal muscle development and glucose metabolism. Int J Biol Macromol 2025; 313:144201. [PMID: 40373921 DOI: 10.1016/j.ijbiomac.2025.144201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/09/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Circular RNAs (circRNAs) have emerged as critical regulators of biological processes, but their roles in avian muscle development remain less explored. Here we characterize circMKNK2, a novel circRNA derived from the MKNK2 gene, which is highly expressed in slow-growing Silky chickens compared to fast-growing broilers. Functional studies demonstrate that circMKNK2 acts as a sponge for miR-15a, with overexpression inhibiting myoblast proliferation, differentiation, apoptosis, and glucose metabolism, while miR-15a knockdown produces similar effects except for enhanced glucose uptake. RNA-seq analysis identified 2189 differentially expressed genes regulated by circMKNK2 in chicken primary myoblasts, including key targets of the circMKNK2/miR-15a axis such as PIK3R1 (a core node regulating PI3K-Akt signaling), BHLHE41, KANK1, and ARHGAP20. Pathway analysis revealed modulation of myogenesis through Calcium signaling pathway, ECM-receptor interaction, Neuroactive ligand-receptor interaction and immune-related pathways (Toll-like receptor, cytokine-cytokine receptor interactions). Further analysis highlighted the circMKNK2/miR-15a axis's role in suppressing myogenesis through transcriptional regulation of key factors (e.g., SOX7, MAF) and metabolic reprogramming. Unlike pro-myogenic circRNAs, circMKNK2 uniquely inhibited muscle development and glucose metabolism, suggesting its involvement in breed-specific phenotypic differences. This study provides insights into circRNA-mediated regulation of muscle biology and offers potential targets for improving poultry production through genetic and metabolic modulation.
Collapse
Affiliation(s)
- Huihong Li
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Jingya Jiao
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China; Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent 9000, Belgium
| | - Xuemeng Si
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou 450002, Henan, China.
| |
Collapse
|
2
|
Lago Solis B, Koch R, Nagoshi E. Circadian clock-independent ultradian rhythms in lipid metabolism in the Drosophila fat body. J Biol Chem 2025:110245. [PMID: 40383146 DOI: 10.1016/j.jbc.2025.110245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 04/19/2025] [Accepted: 05/10/2025] [Indexed: 05/20/2025] Open
Abstract
The role of circadian clocks in regulating metabolic processes is well known; however, their impact on metabolic states across species and life stages remains largely unexplored. This study investigates the relationship between circadian rhythms and metabolic regulation in the Drosophila larval fat body, a metabolic hub analogous to the mammalian liver and adipose tissue. Surprisingly, the fat body of period null mutants, which lack a functional circadian clock in all tissues, exhibited 12-hour rhythms in gene expression, particularly those involved in peroxisome function, lipid metabolism, and oxidative stress response. These transcriptomic rhythms were aligned with 12-hour oscillations in peroxisome biogenesis and activity, reactive oxygen species levels, and lipid peroxidation. Furthermore, period mutants exhibited 12-hour rhythms in body fat storage, ultimately leading to a net reduction in body fat levels. Collectively, our results identify clock-independent ultradian rhythms in lipid metabolism that are essential for larval survival and development.
Collapse
Affiliation(s)
- Blanca Lago Solis
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1205, Geneva, Switzerland
| | - Rafael Koch
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1205, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, CH-1205, Geneva, Switzerland.
| |
Collapse
|
3
|
Choi E, Duan C, Bai XC. Regulation and function of insulin and insulin-like growth factor receptor signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-025-00826-3. [PMID: 39930003 DOI: 10.1038/s41580-025-00826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2025] [Indexed: 03/24/2025]
Abstract
Receptors of insulin and insulin-like growth factors (IGFs) are receptor tyrosine kinases whose signalling controls multiple aspects of animal physiology throughout life. In addition to regulating metabolism and growth, insulin-IGF receptor signalling has recently been linked to a variety of new, cell type-specific functions. In the last century, key questions have focused on how structural differences of insulin and IGFs affect receptor activation, and how insulin-IGF receptor signalling translates into pleiotropic biological functions. Technological advances such as cryo-electron microscopy have provided a detailed understanding of how native and engineered ligands activate insulin-IGF receptors. In this Review, we highlight recent structural and functional insights into the activation of insulin-IGF receptors, and summarize new agonists and antagonists developed for intervening in the activation of insulin-IGF receptor signalling. Furthermore, we discuss recently identified regulatory mechanisms beyond ligand-receptor interactions and functions of insulin-IGF receptor signalling in diseases.
Collapse
Affiliation(s)
- Eunhee Choi
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Cunming Duan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Xiao-Chen Bai
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Obata F, Miura M. Regulatory Mechanisms of Aging Through the Nutritional and Metabolic Control of Amino Acid Signaling in Model Organisms. Annu Rev Genet 2024; 58:19-41. [PMID: 38857535 DOI: 10.1146/annurev-genet-111523-102042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Life activities are supported by the intricate metabolic network that is fueled by nutrients. Nutritional and genetic studies in model organisms have determined that dietary restriction and certain mutations in the insulin signaling pathway lead to lifespan extension. Subsequently, the detailed mechanisms of aging as well as various nutrient signaling pathways and their relationships have been investigated in a wide range of organisms, from yeast to mammals. This review summarizes the roles of nutritional and metabolic signaling in aging and lifespan with a focus on amino acids, the building blocks of organisms. We discuss how lifespan is affected by the sensing, transduction, and metabolism of specific amino acids and consider the influences of life stage, sex, and genetic background on the nutritional control of aging. Our goal is to enhance our understanding of how nutrients affect aging and thus contribute to the biology of aging and lifespan.
Collapse
Affiliation(s)
- Fumiaki Obata
- Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan;
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan;
| |
Collapse
|
5
|
Stanley CA, Weston PJ, Harris DL, De León DD, Harding JE. Role of beta-hydroxybutyrate measurement in the evaluation of plasma glucose concentrations in newborn infants. Arch Dis Child Fetal Neonatal Ed 2024; 109:580-585. [PMID: 38429075 PMCID: PMC11366039 DOI: 10.1136/archdischild-2024-326865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE The Glucose in Well Babies (GLOW) Study showed that there are two phases of low glucose concentrations in healthy newborn infants: an initial phase in which plasma concentrations of ketones are low; and a second phase in which low glucose concentrations are accompanied by elevated concentrations of ketones. The implications of these two phases for the brain differ depending on whether ketones are available as alternative substrate for brain metabolism. The purpose of this study was to estimate the duration of these two phases of neonatal low glucose concentrations in 66 healthy breastfed newborns from the GLOW Study during the first 5 days of life. METHODS The sum of glucose and beta-hydroxybutyrate (BOHB) was used as a proxy for the total concentrations of insulin-dependent fuels for the brain; a threshold value below 4 mmol/L was taken to indicate the presence of relative hyperinsulinism and a BOHB concentration above 0.5 mmol/L to indicate ketonaemia. RESULTS The first phase of low glucose concentrations lasted a median of 40 hours and in 15% of infants, this persisted beyond 60 hours. Fifty (76%) of the 66 infants subsequently had ketonaemia, which resolved at a median age of 76 hours (range 41->120 hours). CONCLUSIONS These data suggest that monitoring BOHB concentrations may be useful for interpreting glucose concentrations in newborns and screening for persistent hyperinsulinism.
Collapse
Affiliation(s)
- Charles A Stanley
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Philip J Weston
- Newborn Intensive Care Unit, Waikato District Health Board, Hamilton, New Zealand
| | - Deborah L Harris
- School of Nursing, Midwifery and Health Practice, Faculty of Health, Te Herenga Waka, Victoria University of Wellington, Wellington, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Diva D De León
- Congenital Hyperinsulinism Center, Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
7
|
Stanley CA, De Leon DD. Etiology of the Neonatal Hypoglycemias. Adv Pediatr 2024; 71:119-134. [PMID: 38944478 DOI: 10.1016/j.yapd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
To provide a more appropriate foundation for dealing with the problem of hypoglycemia in newborn infants, this article focuses on the mechanisms which underlie the various forms of neonatal hypoglycemia and discusses their implications for newborn care. Evidence indicates that all of the major forms of neonatal hypoglycemia are the result of hyperinsulinism due to dysregulation of pancreatic islet insulin secretion. Based on these observations, the authors propose that routine measurement of B-hydroxybutyrate should be considered an essential part of glucose monitoring in newborn infants.
Collapse
Affiliation(s)
- Charles A Stanley
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diva D De Leon
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Gundogan F, Tong M, de la Monte SM. Association between dietary soy prevention of fetal alcohol spectrum disorder and normalization of placental insulin and insulin-like growth factor signaling networks and downstream effector molecule expression. GENE & PROTEIN IN DISEASE 2024; 3:3113. [PMID: 39925675 PMCID: PMC11807375 DOI: 10.36922/gpd.3113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Chronic prenatal alcohol exposure causes fetal alcohol spectrum disorder (FASD), often associated with impaired placentation and intrauterine growth restriction. Ethanol's inhibition of insulin and insulin-like growth factor Type 1 (IGF-1) signaling compromises trophoblastic cell motility and maternal vascular transformation at the implantation site. Previous studies have demonstrated that dietary soy effectively normalizes placentation and fetal growth in an experimental model of FASD. The studies were extended to better understand the mechanisms underlying soy's beneficial effects. Pregnant Long Evans rats were pair-fed with isocaloric liquid diets containing either 0% or 36% caloric ethanol from gestation day (GD) 6. The protein source in the diets consisted of either casein (standard and control) or soy isolate. On GD19, placentas were harvested to measure mRNA levels corresponding to major components of the insulin/IGF-1 pathway, as well as aspartyl-asparaginyl-β-hydroxylase (ASPH), Notch, and HES, which play critical roles in placentation. Chronic gestational ethanol exposure in rats fed diets containing casein significantly reduced the expression of insulin, insulin receptor, Igf1, IGF-1 receptor (Igf1r), insulin receptor substrate Type 1 (Irs1), Irs2, Asph, and Hes1. In addition, ethanol significantly decreased ASPH protein expression. Dietary soy mitigated most of these effects and further enhanced signaling by upregulating Igf2, Igf2r, Irs1, Irs2, Irs4, Notch, and Hes1 in rats chronically exposed to ethanol relative to corresponding control samples. The protective effects of dietary soy in FASD act at the mRNA level and positively impact pathways imperative for normal placentation and fetal development. Gestational dietary soy may provide an effective means of preventing FASD in vulnerable populations.
Collapse
Affiliation(s)
- Fusun Gundogan
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, United States of America
| | - Ming Tong
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, United States of America
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Women and Infants Hospital of Rhode Island, Providence, Rhode Island, United States of America
- Liver Research Center, Department of Medicine, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Departments of Pathology and Laboratory Medicine, Neurology, and Neurosurgery, Rhode Island Hospital, Providence, Rhode Island, United States of America
| |
Collapse
|
9
|
Zhu R, Chin-Sang ID. C. elegans insulin-like peptides. Mol Cell Endocrinol 2024; 585:112173. [PMID: 38346555 DOI: 10.1016/j.mce.2024.112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/18/2024]
Abstract
Insulin-like peptides are a group of hormones crucial for regulating metabolism, growth, and development in animals. Invertebrates, such as C. elegans, have been instrumental in understanding the molecular mechanisms of insulin-like peptides. Here, we review the 40 insulin-like peptide genes encoded in the C. elegans genome. Despite the large number, there is only one C. elegans insulin-like peptide receptor, called DAF-2. The insulin and insulin-like growth factor signaling (IIS) pathway is evolutionarily conserved from worms to humans. Thus C. elegans provides an excellent model to understand how these insulin-like peptides function. C. elegans is unique in that it possesses insulin-like peptides that have antagonistic properties, unlike all human insulin-like peptides, which are agonists. This review provides an overview of the current literature on C. elegans insulin-like peptide structures, processing, tissue localization, and regulation. We will also provide examples of insulin-like peptide signaling in C. elegans during growth, development, germline development, learning/memory, and longevity.
Collapse
Affiliation(s)
- Rain Zhu
- Department of Biology, Queen's University, Kingston ON Canada
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, Kingston ON Canada.
| |
Collapse
|
10
|
Kloc M, Kubiak JZ. Why Do We Study Aquatic Organisms? Int J Mol Sci 2023; 24:15807. [PMID: 37958790 PMCID: PMC10650817 DOI: 10.3390/ijms242115807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Aquatic organisms comprising various plant and animal taxa represent a wide range of adaptations to a specific environment, but they also share many features with nonaquatic organisms of a given taxonomic group.[...].
Collapse
Affiliation(s)
- Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- The Houston Methodist Hospital, Department of Surgery, Houston, TX 77030, USA
- MD Anderson Cancer Center, Department of Genetics, The University of Texas, Houston, TX 77030, USA
| | - Jacek Z. Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine—National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Institute of Genetics and Development of Rennes, Faculty of Medicine, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| |
Collapse
|
11
|
Finley L, Gendron J, Miguel-Aliaga I, Rutter J. Integrating the dynamic and energetic fields of metabolism and development. Development 2023; 150:dev202424. [PMID: 37883064 PMCID: PMC10765412 DOI: 10.1242/dev.202424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Affiliation(s)
- Lydia Finley
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Joshua Gendron
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
- Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0HS, UK
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine and Howard Hughes Medical Institute, 15 N. Medical Drive East, Salt Lake City, UT 84108, USA
| |
Collapse
|