1
|
Lee U, Li C, Langer CB, Svetec N, Zhao L. Comparative single-cell analysis of transcriptional bursting reveals the role of genome organization in de novo transcript origination. Proc Natl Acad Sci U S A 2025; 122:e2425618122. [PMID: 40305051 PMCID: PMC12067204 DOI: 10.1073/pnas.2425618122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Spermatogenesis is a key developmental process underlying the origination of newly evolved genes. However, rapid cell type-specific transcriptomic divergence of the Drosophila germline has posed a significant technical barrier for comparative single-cell RNA-sequencing studies. By quantifying a surprisingly strong correlation between species- and cell type-specific divergence in three closely related Drosophila species, we apply a statistical procedure to identify a core set of 198 genes that are highly predictive of cell type identity while remaining robust to species-specific differences that span over 25 to 30 My of evolution. We then utilize cell type classifications based on the 198-gene set to show how transcriptional divergence in cell type increases throughout spermatogenic developmental time. After validating these cross-species cell type classifications using RNA fluorescence in situ hybridization and imaging, we then investigate the influence of genome organization on the molecular evolution of spermatogenesis vis-a-vis transcriptional bursting. We first show altering transcriptional burst size contributes to premeiotic transcription and altering bursting frequency contributes to postmeiotic expression. We then report global differences in autosomal vs. X chromosomal transcription may arise in a developmental stage preceding full testis organogenesis by showing evolutionarily conserved decreases in X-linked transcription bursting kinetics in all examined somatic and germline cell types. Finally, we provide evidence supporting the cultivator model of de novo gene origination by demonstrating how the appearance of newly evolved testis-specific transcripts potentially provides short-range regulation of neighboring genes' transcriptional bursting properties during key stages of spermatogenesis.
Collapse
Affiliation(s)
- UnJin Lee
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Cong Li
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Christopher B. Langer
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY10065
| |
Collapse
|
2
|
Matias NR, Gallicchio L, Lu D, Kim JJ, Perez J, Detweiler AM, Lu C, Bolival B, Fuller MT. A cell-type specific surveillance complex represses cryptic promoters during differentiation in an adult stem cell lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640250. [PMID: 40060570 PMCID: PMC11888433 DOI: 10.1101/2025.02.25.640250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Regulators of chromatin accessibility play key roles in cell fate transitions, triggering onset of novel transcription programs as cells differentiate. In the Drosophila male germ line stem cell lineage, tMAC, a master regulator of spermatocyte differentiation that binds thousands of loci, is required for local opening of chromatin, allowing activation of spermatocyte-specific promoters. Here we show that a cell-type specific surveillance system involving the multiple zinc finger protein Kmg and the pipsqueak domain protein Dany dampens transcriptional output from weak tMAC dependent promoters and blocks tMAC binding at thousands of additional cryptic promoters, thus preventing massive expression of aberrant protein-coding transcripts. ChIP-seq showed Kmg enriched at the tMAC-bound promoters it repressed, consistent with direct action. In contrast, Kmg and Dany did not repress highly expressed tMAC dependent genes, where they colocalized with their binding partner, the chromatin modeler Mi-2 (NuRD), along the transcribed regions rather than at the promoter. Mi-2 has been shown to preferentially bind RNA over chromatin (Ullah et al. 2022). We propose that at highly expressed genes binding of Mi-2 to the abundant nascent RNA pulls the Kmg/Dany complex away from promoters, providing a mechanism to effectively repress ectopic promoters while protecting robust transcription.
Collapse
Affiliation(s)
- Neuza R Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dan Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jongmin J Kim
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Current address: Department of Biomedical Sciences, Cornell University, Ithaca NY, 14853, USA
| | - Julian Perez
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Benjamin Bolival
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
3
|
Gallicchio L, Matias NR, Morales-Polanco F, Nava I, Stern S, Zeng Y, Fuller MT. A developmental mechanism to regulate alternative polyadenylation in an adult stem cell lineage. Genes Dev 2024; 38:655-674. [PMID: 39111825 PMCID: PMC11368245 DOI: 10.1101/gad.351649.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
Alternative cleavage and polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3' UTRs from the same genetic locus, potentially impacting mRNA translation, localization, and stability. Developmentally regulated APA can thus make major contributions to cell type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, ∼500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of cleavage factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knockdown of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell type-specific APA at selected genes.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Neuza R Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Fabián Morales-Polanco
- Department of Biology, Stanford University School of Humanities and Sciences, Stanford, California 94035, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Iliana Nava
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Sarah Stern
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| | - Margaret T Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94035, USA;
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94035, USA
| |
Collapse
|
4
|
Gallicchio L, Matias NR, Morales-Polanco F, Nava I, Stern S, Zeng Y, Fuller MT. A Developmental Mechanism to Regulate Alternative Polyadenylation in an Adult Stem Cell Lineage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585561. [PMID: 38562704 PMCID: PMC10983978 DOI: 10.1101/2024.03.18.585561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alternative Cleavage and Polyadenylation (APA) often results in production of mRNA isoforms with either longer or shorter 3'UTRs from the same genetic locus, potentially impacting mRNA translation, localization and stability. Developmentally regulated APA can thus make major contributions to cell-type-specific gene expression programs as cells differentiate. During Drosophila spermatogenesis, approximately 500 genes undergo APA when proliferating spermatogonia differentiate into spermatocytes, producing transcripts with shortened 3' UTRs, leading to profound stage-specific changes in the proteins expressed. The molecular mechanisms that specify usage of upstream polyadenylation sites in spermatocytes are thus key to understanding the changes in cell state. Here, we show that upregulation of PCF11 and Cbc, the two components of Cleavage Factor II (CFII), orchestrates APA during Drosophila spermatogenesis. Knock down of PCF11 or cbc in spermatocytes caused dysregulation of APA, with many transcripts normally cleaved at a proximal site in spermatocytes now cleaved at their distal site, as in spermatogonia. Forced overexpression of CFII components in spermatogonia switched cleavage of some transcripts to the proximal site normally used in spermatocytes. Our findings reveal a developmental mechanism where changes in expression of specific cleavage factors can direct cell-type-specific APA at selected genes.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Neuza R. Matias
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Fabian Morales-Polanco
- Department of Biology, Stanford University School of Humanities and Sciences, Stanford USA
- Department of Genetics, Stanford University School of Medicine, USA
| | - Iliana Nava
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Sarah Stern
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
| | - Yi Zeng
- Department of Genetics, Stanford University School of Medicine, USA
| | - Margaret T. Fuller
- Department of Developmental Biology, Stanford University School of Medicine, Stanford USA
- Department of Genetics, Stanford University School of Medicine, USA
| |
Collapse
|