1
|
Bhattacharya S, Deka J, Avallone T, Todd L. The neuroimmune interface in retinal regeneration. Prog Retin Eye Res 2025; 106:101361. [PMID: 40287050 DOI: 10.1016/j.preteyeres.2025.101361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 04/29/2025]
Abstract
Retinal neurodegeneration leads to irreversible blindness due to the mammalian nervous system's inability to regenerate lost neurons. Efforts to regenerate retina involve two main strategies: stimulating endogenous cells to reprogram into neurons or transplanting stem-cell derived neurons into the degenerated retina. However, both approaches must overcome a major barrier in getting new neurons to grow back down the optic nerve and connect to appropriate visual targets in environments that differ significantly from developmental conditions. While immune privilege has historically been associated with the central nervous system, an emerging literature highlights the active role of immune cells in shaping neurodegeneration and regeneration. This review explores the neuroimmune interface in retinal repair, dissecting how immune interactions influence glial reprogramming, transplantation outcomes, and axonal regeneration. By integrating insights from regenerative species with mammalian models, we highlight novel immunomodulatory strategies to optimize retinal regeneration.
Collapse
Affiliation(s)
- Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jugasmita Deka
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Thomas Avallone
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Levi Todd
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
2
|
Venanzi AW, McGee LD, Hackam AS. Evaluating the Evidence for Neuroprotective and Axonal Regenerative Activities of Different Inflammatory Cell Types After Optic Nerve Injury. Mol Neurobiol 2025; 62:6212-6227. [PMID: 39738875 PMCID: PMC11953096 DOI: 10.1007/s12035-024-04679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/19/2024] [Indexed: 01/02/2025]
Abstract
The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery. However, recent evidence indicates that certain inflammatory cell types and signaling pathways are protective after optic nerve injury and promote RGC survival and axonal regeneration. The objective of this review is to examine the evidence for diverse effects of inflammatory cell types on the retina and optic nerve after injury. Additionally, we highlight promising avenues for further research.
Collapse
Affiliation(s)
- Alexander W Venanzi
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Laura D McGee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA
| | - Abigail S Hackam
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10Th Ave, Rm 404, Miami, FL, 33136, USA.
| |
Collapse
|
3
|
Hamadmad S, Heisler‐Taylor T, Goswami S, Hawthorn E, Chaurasia S, Martini D, Summitt D, Zatari A, Shalash R, Sohail M, Urbanski EG, Bernstein K, Racine J, Satoskar A, El‐Hodiri HM, Fischer AJ, Cebulla CM. Ibudilast Protects Retinal Bipolar Cells From Excitotoxic Retinal Damage and Activates the mTOR Pathway. Glia 2025; 73:905-927. [PMID: 39916387 PMCID: PMC11920683 DOI: 10.1002/glia.24657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/09/2024] [Accepted: 11/24/2024] [Indexed: 02/12/2025]
Abstract
Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography (SD-OCT), and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.
Collapse
Affiliation(s)
- Sumaya Hamadmad
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Tyler Heisler‐Taylor
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Sandeep Goswami
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Evan Hawthorn
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Sameer Chaurasia
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Dena Martini
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Diana Summitt
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Ali Zatari
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Rahaf Shalash
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Misha Sohail
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Elizabeth G. Urbanski
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Kayla Bernstein
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | | | - Abhay Satoskar
- Department of PathologyThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of Neuroscience, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Andy J. Fischer
- Department of Neuroscience, College of MedicineThe Ohio State UniversityColumbusOhioUSA
| | - Colleen M. Cebulla
- Department of Ophthalmology and Visual Sciences, Havener Eye InstituteThe Ohio State University, Wexner Medical CenterColumbusOhioUSA
| |
Collapse
|
4
|
Taylor OB, DeGroff N, El-Hodiri HM, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. eLife 2025; 13:RP102151. [PMID: 40047533 PMCID: PMC11884796 DOI: 10.7554/elife.102151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia B Taylor
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
- Neuroscience Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Nicholas DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Heithem M El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State UniversityColumbusUnited States
| | - Andy J Fischer
- Department of Neuroscience, College of Medicine, The Ohio State UniversityColumbusUnited States
| |
Collapse
|
5
|
Taylor O, DeGroff N, El-Hodiri H, Gao C, Fischer AJ. Sphingosine-1-phosphate signaling regulates the ability of Müller glia to become neurogenic, proliferating progenitor-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.06.606815. [PMID: 39149287 PMCID: PMC11326190 DOI: 10.1101/2024.08.06.606815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs in the chick retina. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. Drug treatments that activate S1P receptor 1 (S1PR1) or increase levels of S1P suppressed the formation of MGPCs. Conversely, treatments that inhibit S1PR1 or decrease levels of S1P stimulated the formation of MGPCs. Inhibition of S1P receptors or S1P synthesis significantly enhanced the neuronal differentiation of the progeny of MGPCs. We report that S1P-related gene expression in MG is modulated by microglia and inhibition of S1P receptors or S1P synthesis partially rescues the loss of MGPC formation in damaged retinas missing microglia. Finally, we show that TGFβ/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs in the chick retina, and activation of S1P signaling depends, in part, on signals produced by reactive microglia.
Collapse
Affiliation(s)
- Olivia Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nick DeGroff
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Heithem El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Chengyu Gao
- Campus Chemical Instrument Center, Mass Spectrometry & Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Taylor OB, El‐Hodiri HM, Palazzo I, Todd L, Fischer AJ. Regulating the formation of Müller glia-derived progenitor cells in the retina. Glia 2025; 73:4-24. [PMID: 39448874 PMCID: PMC11660542 DOI: 10.1002/glia.24635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/26/2024]
Abstract
We summarize recent findings in different animal models regarding the different cell-signaling pathways and gene networks that influence the reprogramming of Müller glia into proliferating, neurogenic progenitor cells in the retina. Not surprisingly, most of the cell-signaling pathways that guide the proliferation and differentiation of embryonic retinal progenitors also influence the ability of Müller glia to become proliferating Müller glia-derived progenitor cells (MGPCs). Further, the neuronal differentiation of MGPC progeny is potently inhibited by networks of neurogenesis-suppressing genes in chick and mouse models but occurs freely in zebrafish. There are important differences between the model systems, particularly pro-inflammatory signals that are active in mature Müller glia in damaged rodent and chick retinas, but less so in fish retinas. These pro-inflammatory signals are required to initiate the process of reprogramming, but if sustained suppress the potential of Müller glia to become neurogenic MGPCs. Further, there are important differences in how activated Müller glia up- or downregulate pro-glial transcription factors in the different model systems. We review recent findings regarding regulatory cell signaling and gene networks that influence the activation of Müller glia and the transition of these glia into proliferating progenitor cells with neurogenic potential in fish, chick, and mouse model systems.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
- Neuroscience Graduate ProgramThe Ohio State UniversityColumbusOhioUSA
| | - Heithem M. El‐Hodiri
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| | - Isabella Palazzo
- The Solomon H. Snyder Department of NeuroscienceJohns Hopkins University School of MedicineBaltimoreMassachusettsUSA
| | - Levi Todd
- Department of Ophthalmology and Visual SciencesSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andy J. Fischer
- Department of NeuroscienceCollege of Medicine, The Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
7
|
Blasdel N, Bhattacharya S, Donaldson PC, Reh TA, Todd L. Monocyte Invasion into the Retina Restricts the Regeneration of Neurons from Müller Glia. J Neurosci 2024; 44:e0938242024. [PMID: 39353729 PMCID: PMC11561870 DOI: 10.1523/jneurosci.0938-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Endogenous reprogramming of glia into neurogenic progenitors holds great promise for neuron restoration therapies. Using lessons from regenerative species, we have developed strategies to stimulate mammalian Müller glia to regenerate neurons in vivo in the adult retina. We have demonstrated that the transcription factor Ascl1 can stimulate Müller glia neurogenesis. However, Ascl1 is only able to reprogram a subset of Müller glia into neurons. We have reported that neuroinflammation from microglia inhibits neurogenesis from Müller glia. Here we found that the peripheral immune response is a barrier to CNS regeneration. We show that monocytes from the peripheral immune system infiltrate the injured retina and negatively influence neurogenesis from Müller glia. Using CCR2 knock-out mice of both sexes, we found that preventing monocyte infiltration improves the neurogenic and proliferative capacity of Müller glia stimulated by Ascl1. Using scRNA-seq analysis, we identified a signaling axis wherein Osteopontin, a cytokine highly expressed by infiltrating immune cells is sufficient to suppress mammalian neurogenesis. This work implicates the response of the peripheral immune system as a barrier to regenerative strategies of the retina.
Collapse
Affiliation(s)
- Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Sucheta Bhattacharya
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| | - Phoebe C Donaldson
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
| | - Levi Todd
- Department of Biological Structure, University of Washington, Seattle, Washington 98195
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York 13210
| |
Collapse
|
8
|
García-García D, Vidal-Gil L, Parain K, Lun J, Audic Y, Chesneau A, Siron L, Van Westendorp D, Lourdel S, Sánchez-Sáez X, Kazani D, Ricard J, Pottin S, Donval A, Bronchain O, Locker M, Roger JE, Borday C, Pla P, Bitard J, Perron M. Neuroinflammation as a cause of differential Müller cell regenerative responses to retinal injury. SCIENCE ADVANCES 2024; 10:eadp7916. [PMID: 39356769 PMCID: PMC11446274 DOI: 10.1126/sciadv.adp7916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Unlike mammals, some nonmammalian species recruit Müller glia for retinal regeneration after injury. Identifying the underlying mechanisms may help to foresee regenerative medicine strategies. Using a Xenopus model of retinitis pigmentosa, we found that Müller cells actively proliferate upon photoreceptor degeneration in old tadpoles but not in younger ones. Differences in the inflammatory microenvironment emerged as an explanation for such stage dependency. Functional analyses revealed that enhancing neuroinflammation is sufficient to trigger Müller cell proliferation, not only in young tadpoles but also in mice. In addition, we showed that microglia are absolutely required for the response of mouse Müller cells to mitogenic factors while negatively affecting their neurogenic potential. However, both cell cycle reentry and neurogenic gene expression are allowed when applying sequential pro- and anti-inflammatory treatments. This reveals that inflammation benefits Müller glia proliferation in both regenerative and nonregenerative vertebrates and highlights the importance of sequential inflammatory modulation to create a regenerative permissive microenvironment.
Collapse
Affiliation(s)
- Diana García-García
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Lorena Vidal-Gil
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karine Parain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jingxian Lun
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Yann Audic
- Univ Rennes, CNRS, IGDR (Institut de Genetique et Developpement de Rennes), Rennes, France
| | - Albert Chesneau
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Léa Siron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Demi Van Westendorp
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Sophie Lourdel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Xavier Sánchez-Sáez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Despoina Kazani
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Julien Ricard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Solène Pottin
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Alicia Donval
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Odile Bronchain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jérôme E. Roger
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Caroline Borday
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Patrick Pla
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Juliette Bitard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| |
Collapse
|
9
|
Li S, Dan X, Chen H, Li T, Liu B, Ju Y, Li Y, Lei L, Fan X. Developing fibrin-based biomaterials/scaffolds in tissue engineering. Bioact Mater 2024; 40:597-623. [PMID: 39239261 PMCID: PMC11375146 DOI: 10.1016/j.bioactmat.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024] Open
Abstract
Tissue engineering technology has advanced rapidly in recent years, offering opportunities to construct biologically active tissues or organ substitutes to repair or even enhance the functions of diseased tissues and organs. Tissue-engineered scaffolds rebuild the extracellular microenvironment by mimicking the extracellular matrix. Fibrin-based scaffolds possess numerous advantages, including hemostasis, high biocompatibility, and good degradability. Fibrin scaffolds provide an initial matrix that facilitates cell migration, differentiation, proliferation, and adhesion, and also play a critical role in cell-matrix interactions. Fibrin scaffolds are now widely recognized as a key component in tissue engineering, where they can facilitate tissue and organ defect repair. This review introduces the properties of fibrin, including its composition, structure, and biology. In addition, the modification and cross-linking modes of fibrin are discussed, along with various forms commonly used in tissue engineering. We also describe the biofunctionalization of fibrin. This review provides a detailed overview of the use and applications of fibrin in skin, bone, and nervous tissues, and provides novel insights into future research directions for clinical treatment.
Collapse
Affiliation(s)
- Songjie Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Dan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Han Chen
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Tong Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Bo Liu
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yikun Ju
- Department of Plastic and Aesthetic (Burn) Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yang Li
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xing Fan
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
10
|
Taylor OB, Patel SP, Hawthorn EC, El-Hodiri HM, Fischer AJ. ID factors regulate the ability of Müller glia to become proliferating neurogenic progenitor-like cells. Glia 2024; 72:1236-1258. [PMID: 38515287 PMCID: PMC11334223 DOI: 10.1002/glia.24523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/23/2024]
Abstract
The purpose of this study was to investigate how ID factors regulate the ability of Müller glia (MG) to reprogram into proliferating MG-derived progenitor cells (MGPCs) in the chick retina. We found that ID1 is transiently expressed by maturing MG (mMG), whereas ID4 is maintained in mMG in embryonic retinas. In mature retinas, ID4 was prominently expressed by resting MG, but following retinal damage ID4 was rapidly upregulated and then downregulated in MGPCs. By contrast, ID1, ID2, and ID3 were low in resting MG and then upregulated in MGPCs. Inhibition of ID factors following retinal damage decreased numbers of proliferating MGPCs. Inhibition of IDs, after MGPC proliferation, significantly increased numbers of progeny that differentiated as neurons. In damaged or undamaged retinas inhibition of IDs increased levels of p21Cip1 in MG. In response to damage or insulin+FGF2 levels of CDKN1A message and p21Cip1 protein were decreased, absent in proliferating MGPCs, and elevated in MG returning to a resting phenotype. Inhibition of notch- or gp130/Jak/Stat-signaling in damaged retinas increased levels of ID4 but not p21Cip1 in MG. Although ID4 is the predominant isoform expressed by MG in the chick retina, id1 and id2a are predominantly expressed by resting MG and downregulated in activated MG and MGPCs in zebrafish retinas. We conclude that ID factors have a significant impact on regulating the responses of MG to retinal damage, controlling the ability of MG to proliferate by regulating levels of p21Cip1, and suppressing the neurogenic potential of MGPCs.
Collapse
Affiliation(s)
- Olivia B. Taylor
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Snehal P. Patel
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Evan C. Hawthorn
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Heithem M. El-Hodiri
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| | - Andy J. Fischer
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH
| |
Collapse
|
11
|
Hamadmad S, Heisler-Taylor T, Goswami S, Hawthorn E, Chaurasia S, Martini D, Summitt D, Zaatari A, Urbanski EG, Bernstein K, Racine J, Satoskar A, El-Hodiri HM, Fischer AJ, Cebulla CM. Ibudilast Protects Retinal Bipolar Cells from Excitotoxic Retinal Damage and Activates the mTOR Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585556. [PMID: 38562805 PMCID: PMC10983953 DOI: 10.1101/2024.03.18.585556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ibudilast, an inhibitor of macrophage migration inhibitory factor (MIF) and phosphodiesterase (PDE), has been recently shown to have neuroprotective effects in a variety of neurologic diseases. We utilize a chick excitotoxic retinal damage model to investigate ibudilast's potential to protect retinal neurons. Using single cell RNA-sequencing (scRNA-seq), we find that MIF, putative MIF receptors CD74 and CD44, and several PDEs are upregulated in different retinal cells during damage. Intravitreal ibudilast is well tolerated in the eye and causes no evidence of toxicity. Ibudilast effectively protects neurons in the inner nuclear layer from NMDA-induced cell death, restores retinal layer thickness on spectral domain optical coherence tomography, and preserves retinal neuron function, particularly for the ON bipolar cells, as assessed by electroretinography. PDE inhibition seems essential for ibudilast's neuroprotection, as AV1013, the analogue that lacks PDE inhibitor activity, is ineffective. scRNA-seq analysis reveals upregulation of multiple signaling pathways, including mTOR, in damaged Müller glia (MG) with ibudilast treatment compared to AV1013. Components of mTORC1 and mTORC2 are upregulated in both bipolar cells and MG with ibudilast. The mTOR inhibitor rapamycin blocked accumulation of pS6 but did not reduce TUNEL positive dying cells. Additionally, through ligand-receptor interaction analysis, crosstalk between bipolar cells and MG may be important for neuroprotection. We have identified several paracrine signaling pathways that are known to contribute to cell survival and neuroprotection and might play essential roles in ibudilast function. These findings highlight ibudilast's potential to protect inner retinal neurons during damage and show promise for future clinical translation.
Collapse
|