1
|
Kardeh S, Mazloomrezaei M, Hosseini A. Scaling Autologous Epidermal Cell Therapies: iPSC-Derived Keratinocytes and In Vivo Chimerism for Skin Regeneration. Exp Dermatol 2025; 34:e70107. [PMID: 40289411 DOI: 10.1111/exd.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Severe skin injuries and genetic disorders such as epidermolysis bullosa present significant clinical challenges due to limitations in current epidermal replacement therapies. While promising, cultured epithelial autografts (CEAs) suffer from prolonged culture times, cellular senescence, and low-quality clinical outcomes, limiting their widespread application. Recent advancements in iPSC-derived keratinocytes (iKeratinocytes) and in vivo chimerism offer transformative potential for scalable and personalised skin regeneration. Advances in understanding transcriptional networks, mRNA delivery, CRISPR-based genome editing, and automated biomanufacturing processes can enable improved and efficient protocols for generating iKeratinocytes. Despite these advances, there are still challenges for scaling iKeratinocytes, including optimising xeno-free culture systems and developing reproducible methods for generating multilayered skin with appendages. Interspecies chimerism utilising lineage-specific ablation systems and targeted in utero delivery of organ progenitor cells can enable human epidermal tissue development within animal hosts, offering an alternative novel platform for scaling epidermal cell and skin generation. This method, however, requires further refinements for complete ablation and detachment of target cells in the animal hosts and improved human cell integration in chimeric models. Together, iKeratinocytes and in vivo chimerism hold great promise for advancing autologous epidermal cell therapies and enabling broader clinical adoption and improved outcomes for patients with severe skin injuries and genetic disorders.
Collapse
Affiliation(s)
- Sina Kardeh
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Mohsen Mazloomrezaei
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
| | - Ahmad Hosseini
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
- Vascularized Composite Allotransplantation Laboratory, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Yuri S, Arisawa N, Kitamuro K, Isotani A. Blastocyst complementation-based rat-derived heart generation reveals cardiac anomaly barriers to interspecies chimera development. iScience 2024; 27:111414. [PMID: 39687030 PMCID: PMC11647242 DOI: 10.1016/j.isci.2024.111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/27/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
The use of pluripotent stem cells (PSCs) to generate functional organs via blastocyst complementation is a cutting-edge strategy in regenerative medicine. However, existing models that use this method for heart generation do not meet expectations owing to the complexity of heart development. Here, we investigated a Mesp1/2 deficient mouse model, which is characterized by abnormalities in the cardiac mesodermal cells. The injection of either mouse or rat PSCs into Mesp1/2 deficient mouse blastocysts led to successful heart generation. In chimeras, the resulting hearts were predominantly composed of rat cells; however, their functionality was limited to the embryonic developmental stage on day 12.5. These results present the functional limitation of the xenogeneic heart, which poses a significant challenge to the development in mouse-rat chimeras.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Laboratory of Experimental Animals, Research Institution, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu, Aichi 474-8511, Japan
| | - Norie Arisawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Kohei Kitamuro
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
- Life Science Collaboration Center (LiSCo), Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
3
|
Shimizu D, Miura A, Mori M. The perspective for next-generation lung replacement therapies: functional whole lung generation by blastocyst complementation. Curr Opin Organ Transplant 2024; 29:340-348. [PMID: 39150364 DOI: 10.1097/mot.0000000000001169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW Blastocyst complementation represents a promising frontier in next-generation lung replacement therapies. This review aims to elucidate the future prospects of lung blastocyst complementation within clinical settings, summarizing the latest studies on generating functional lungs through this technique. It also explores and discusses host animal selection relevant to interspecific chimera formation, a challenge integral to creating functional human lungs via blastocyst complementation. RECENT FINDINGS Various gene mutations have been utilized to create vacant lung niches, enhancing the efficacy of donor cell contribution to the complemented lungs in rodent models. By controlling the lineage to induce gene mutations, chimerism in both the lung epithelium and mesenchyme has been improved. Interspecific blastocyst complementation underscores the complexity of developmental programs across species, with several genes identified that enhance chimera formation between humans and other mammals. SUMMARY While functional lungs have been generated via intraspecies blastocyst complementation, the generation of functional interspecific lungs remains unrealized. Addressing the challenges of controlling the host lung niche and selecting host animals relevant to interspecific barriers between donor human and host cells is critical to enabling the generation of functional humanized or entire human lungs in large animals.
Collapse
Affiliation(s)
- Dai Shimizu
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Miura
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
- Department of Thoracic, Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munemasa Mori
- Columbia Center for Human Development and Division of Pulmonary, Allergy, Critical Care, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Wen B, Li E, Wang G, Kalin TR, Gao D, Lu P, Kalin TV, Kalinichenko VV. CRISPR-Cas9 Genome Editing Allows Generation of the Mouse Lung in a Rat. Am J Respir Crit Care Med 2024; 210:167-177. [PMID: 38507610 PMCID: PMC11273307 DOI: 10.1164/rccm.202306-0964oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024] Open
Abstract
Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."
Collapse
Affiliation(s)
- Bingqiang Wen
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | - Enhong Li
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
| | | | - Timothy R. Kalin
- College of Arts and Sciences, University of Cincinnati, Cincinnati, Ohio
| | - Dengfeng Gao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Peixin Lu
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Tanya V. Kalin
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Pulmonary Biology and
| | - Vladimir V. Kalinichenko
- Phoenix Children’s Research Institute, Department of Child Health, College of Medicine Phoenix, University of Arizona, Phoenix, Arizona
- Division of Neonatology, Phoenix Children’s Hospital, Phoenix, Arizona
| |
Collapse
|
5
|
Mori M, Cardoso WV. Can a Rat Breathe through a Mouse's Lung? Am J Respir Crit Care Med 2024; 210:133-134. [PMID: 38701370 PMCID: PMC11273309 DOI: 10.1164/rccm.202404-0706ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 05/02/2024] [Indexed: 05/05/2024] Open
Affiliation(s)
- Munemasa Mori
- Department of Medicine Columbia University Irving Medical Center New York, New York
| | - Wellington V Cardoso
- Department of Medicine
- Department of Genetics and Development Columbia University Irving Medical Center New York, New York
| |
Collapse
|
6
|
Blake MJ, Steer CJ. Chimeric Livers: Interspecies Blastocyst Complementation and Xenotransplantation for End-Stage Liver Disease. Hepat Med 2024; 16:11-29. [PMID: 38379783 PMCID: PMC10878318 DOI: 10.2147/hmer.s440697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/10/2024] [Indexed: 02/22/2024] Open
Abstract
Orthotopic liver transplantation (OLT) currently serves as the sole definitive treatment for thousands of patients suffering from end-stage liver disease; and the existing supply of donor livers for OLT is drastically outpaced by the increasing demand. To alleviate this significant gap in treatment, several experimental approaches have been devised with the aim of either offering interim support to patients waiting on the transplant list or bioengineering complete livers for OLT by infusing them with fresh hepatic cells. Recently, interspecies blastocyst complementation has emerged as a promising method for generating complete organs in utero over a short timeframe. When coupled with gene editing technology, it has brought about a potentially revolutionary transformation in regenerative medicine. Blastocyst complementation harbors notable potential for generating complete human livers in large animals, which could be used for xenotransplantation in humans, addressing the scarcity of livers for OLT. Nevertheless, substantial experimental and ethical challenges still need to be overcome to produce human livers in larger domestic animals like pigs. This review compiles the current understanding of interspecies blastocyst complementation and outlines future possibilities for liver xenotransplantation in humans.
Collapse
Affiliation(s)
- Madelyn J Blake
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Clifford J Steer
- Departments of Medicine, and Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|