1
|
Klawatsch J, Papachristou D, Koutsouli P, Upadhyay M, Seichter D, Russ I, Mioč B, Simčič M, Bizelis I, Medugorac I. Genetic basis of ear length in sheep breeds sampled across the region from the Middle East to the Alps. Anim Genet 2024; 55:123-133. [PMID: 38069488 DOI: 10.1111/age.13387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/04/2024]
Abstract
Ear length in sheep (Ovis aries) shows a wide range of natural variation, from the absence of an outer ear structure (anotia), to small outer ears (microtia), to regular ear length. Up until now, the underlying genetics of this phenotype has been studied in four sheep breeds from China, Jordan and Italy. These studies revealed a broad range of genes significantly associated with ear length, potentially indicating genetic heterogeneity across breeds or geographic regions. In the current study, we performed genome-wide SNP genotyping and haplotype-based mapping, in a population of 340 individuals, to identify loci influencing ear length variation in additional sheep breeds from Slovenia, Croatia, Cyprus and Greece. Additionally, two previously described candidate variants were also genotyped in our mapping population. The mapping model without candidate variant genotypes revealed only one genome-wide significant signal, which was located next to HMX1 on OAR6. This region was previously described as being associated with ear length variation in the Altay and Awassi sheep breeds. The mapping model including the candidate duplication genotype near HMX1 as a fixed effect explained the phenotypic variance on OAR6 and revealed an additional genome-wide significant locus on OAR13 associated with ear length. Our results, combined with published evidence, suggest that a duplication in the evolutionarily conserved region near HMX1 is the major regulator of ear length in sheep breeds descended from a larger region from Central Asia, to the Middle East, Cyprus, Greece and to the Alps. This distribution suggests an ancient origin of the derived allele.
Collapse
Affiliation(s)
- Jürgen Klawatsch
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
- Tierzuchtforschung e.V. Munich, Grub, Germany
| | | | - Panagiota Koutsouli
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Maulik Upadhyay
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| | | | - Ingolf Russ
- Tierzuchtforschung e.V. Munich, Grub, Germany
| | - Boro Mioč
- Department of Animal Science and Technology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Mojca Simčič
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Iosif Bizelis
- Department of Animal Science, Agricultural University of Athens, Athens, Greece
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig Maximillians University Munich, Munich, Germany
| |
Collapse
|
2
|
Mary L, Leclerc D, Gilot D, Belaud-Rotureau MA, Jaillard S. The TALE never ends: A comprehensive overview of the role of PBX1, a TALE transcription factor, in human developmental defects. Hum Mutat 2022; 43:1125-1148. [PMID: 35451537 DOI: 10.1002/humu.24388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/25/2022] [Accepted: 04/20/2022] [Indexed: 11/07/2022]
Abstract
PBX1 is a highly conserved atypical homeodomain transcription factor (TF) belonging to the TALE (three amino acid loop extension) family. Dimerized with other TALE proteins, it can interact with numerous partners and reach dozens of regulating sequences, suggesting its role as a pioneer factor. PBX1 is expressed throughout the embryonic stages (as early as the blastula stage) in vertebrates. In human, PBX1 germline variations are linked to syndromic renal anomalies (CAKUTHED). In this review, we summarized available data on PBX1 functions, PBX1-deficient animal models, and PBX1 germline variations in humans. Two types of genetic alterations were identified in PBX1 gene. PBX1 missense variations generate a severe phenotype including lung hypoplasia, cardiac malformations, and sexual development defects (DSDs). Conversely, truncating variants generate milder phenotypes (mainly cryptorchidism and deafness). We suggest that defects in PBX1 interactions with various partners, including proteins from the HOX (HOXA7, HOXA10, etc.), WNT (WNT9B, WNT3), and Polycomb (BMI1, EED) families are responsible for abnormal proliferation and differentiation of the embryonic mesenchyme. These alterations could explain most of the defects observed in humans. However, some phenotype variability (especially DSDs) remains poorly understood. Further studies are needed to explore the TALE family in greater depth.
Collapse
Affiliation(s)
- Laura Mary
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Delphine Leclerc
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - David Gilot
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- Inserm U1242, Centre de lutte contre le cancer Eugène Marquis, Université de Rennes, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| | - Sylvie Jaillard
- Service de Cytogénétique et Biologie Cellulaire, CHU Rennes, Rennes, France
- INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail)- UMR_S 1085, Université Rennes 1, Rennes, France
| |
Collapse
|
3
|
Papadogiannis V, Pennati A, Parker HJ, Rothbächer U, Patthey C, Bronner ME, Shimeld SM. Hmx gene conservation identifies the origin of vertebrate cranial ganglia. Nature 2022; 605:701-705. [PMID: 35585239 PMCID: PMC10214386 DOI: 10.1038/s41586-022-04742-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/07/2022] [Indexed: 12/30/2022]
Abstract
The evolutionary origin of vertebrates included innovations in sensory processing associated with the acquisition of a predatory lifestyle1. Vertebrates perceive external stimuli through sensory systems serviced by cranial sensory ganglia, whose neurons arise predominantly from cranial placodes; however, the understanding of the evolutionary origin of placodes and cranial sensory ganglia is hampered by the anatomical differences between living lineages and the difficulty in assigning homology between cell types and structures. Here we show that the homeobox transcription factor Hmx is a constitutive component of vertebrate sensory ganglion development and that in the tunicate Ciona intestinalis, Hmx is necessary and sufficient to drive the differentiation programme of bipolar tail neurons, cells previously thought to be homologues of neural crest2,3. Using Ciona and lamprey transgenesis, we demonstrate that a unique, tandemly duplicated enhancer pair regulated Hmx expression in the stem-vertebrate lineage. We also show notably robust vertebrate Hmx enhancer function in Ciona, demonstrating that deep conservation of the upstream regulatory network spans the evolutionary origin of vertebrates. These experiments demonstrate regulatory and functional conservation between Ciona and vertebrate Hmx, and point to bipolar tail neurons as homologues of cranial sensory ganglia.
Collapse
Affiliation(s)
- Vasileios Papadogiannis
- Department of Zoology, University of Oxford, Oxford, UK
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes, Crete, Greece
| | - Alessandro Pennati
- Department of Zoology, University of Oxford, Oxford, UK
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ute Rothbächer
- Institute of Zoology and Center of Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Cedric Patthey
- Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
4
|
Tingaud-Sequeira A, Trimouille A, Sagardoy T, Lacombe D, Rooryck-Thambo C. Oculo-auriculo-vertebral spectrum: new genes and literature review on a complex disease. J Med Genet 2022; 59:417-427. [PMID: 35110414 DOI: 10.1136/jmedgenet-2021-108219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome is due to an abnormal development of first and second branchial arches derivatives during embryogenesis and is characterised by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical and genetic heterogeneity of this spectrum with incomplete penetrance and variable expressivity, render its molecular diagnosis difficult. Only a few recurrent CNVs and genes have been identified as causatives in this complex disorder so far. Prenatal environmental causal factors have also been hypothesised. However, most of the patients remain without aetiology. In this review, we aim at updating clinical diagnostic criteria and describing genetic and non-genetic aetiologies, animal models as well as novel diagnostic tools and surgical management, in order to help and improve clinical care and genetic counselling of these patients and their families.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France
| | - Aurélien Trimouille
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Thomas Sagardoy
- CHU de Bordeaux, Service d'oto-rhino-laryngologie, de chirurgie cervico-faciale et d'ORL pédiatrique, 33076 Bordeaux, France
| | - Didier Lacombe
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Caroline Rooryck-Thambo
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France .,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| |
Collapse
|
5
|
Si N, Meng X, Lu X, Zhao X, Li C, Yang M, Zhang Y, Wang C, Guo P, Zhang X, Pan B, Jiang H. Identification of loss-of-function HOXA2 mutations in Chinese families with dominant bilateral microtia. Gene 2020; 757:144945. [PMID: 32649979 DOI: 10.1016/j.gene.2020.144945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
HOX genes are important regulatory genes patterning head formation, including development of the ear. Microtia is a congenital ear anomaly characterized by lacking all or part of the structures of the outer ear. To date, only four HOXA2 mutations were reported in families with autosomal-recessive or dominant microtia, with or without hearing impairment. More identified mutations are needed to confirm the correlation between genotype and phenotype. Here, we collect two Chinese families with non-syndromic bilateral microtia. Next generation sequencing identified two heterozygous nonsense HOXA2 mutations, one in each family. One mutation (c.637A > T, p.Lys213*) is newly reported, while the other one (c.703C > T,p.Gln235*) is consistent with a previous report. In mouse, Hoxa2 can bind to a long-range enhancer and regulate expression of the Hmx1 gene, which is a crucial transcription factor in eye and ear development. Using dual luciferase reporter assays, we showed that both HOXA2 mutations have impaired activation of the long-range enhancer of HMX1. In the present study, we report the first two bilateral non-syndromic microtia cases with HOXA2 mutations of Chinese origin and identify a novel mutation. Our results also provide molecular insights about how these nonsense HOXA2 mutations could affect the activation of its downstream target HMX1 by interacting with the long-range enhancer.
Collapse
Affiliation(s)
- Nuo Si
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China; Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Xiaolu Meng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Xiaosheng Lu
- Department of Plastic Surgery, Affiliated Hospital of Weifang Medical University, China
| | - Xuelian Zhao
- Department of Plastic Surgery, The Second Hospital of Hebei Medical University, China
| | - Chuan Li
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Meirong Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Ye Zhang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Changchen Wang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Peipei Guo
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Xue Zhang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, China
| | - Bo Pan
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China.
| |
Collapse
|
6
|
Duplications involving the long range HMX1 enhancer are associated with human isolated bilateral concha-type microtia. J Transl Med 2020; 18:244. [PMID: 32552830 PMCID: PMC7302384 DOI: 10.1186/s12967-020-02409-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
Background Microtia is a congenital anomaly of ear that ranges in severity from mild structural abnormalities to complete absence of the outer ears. Concha-type microtia is considered to be a mild form. The H6 family homeobox 1 transcription factor gene (HMX1) plays an important role in craniofacial structures development. Copy number variations (CNVs) of a downstream evolutionarily conserved enhancer region (ECR) of Hmx1 associated with ear and eye abnormalities have been reported in different animals, but not yet in human. To date, no genetic defects responsible for isolated human microtia has been reported except for mutations in HOXA2. Here we recruited five Chinese families with isolated bilateral concha-type microtia, and attempt to identify the underlying genetic causes. Methods Single Nucleotide polymorphism (SNP) array was performed to map the disease locus and detect CNVs on a genome scale primarily in the largest family (F1). Whole genome sequencing was performed to screen all SNVs and CNVs in the candidate disease locus. Array comparative genomic hybridization (aCGH) was then performed to detect CNVs in the other four families, F2-F5. Quantitative real-time polymerase chain reaction (qPCR) was used to validate and determine the extent of identified CNVs containing HMX1-ECR region. Precise breakpoints in F1 and F2 were identified by gap-PCR and sanger sequencing. Dual-luciferase assays were used to detect the enhancer function. qPCR assays were also used to detect HMX1-ECR CNVs in 61 patients with other types mictrotia. Results Linkage and haplotype analysis in F1 mapped the disease locus to a 1.9 Mb interval on 4p16.1 containing HMX1 and its downstream ECR region. Whole genome sequencing detected no potential pathogenic SNVs in coding regions of HMX1 or other genes within the candidate disease locus, but it detected a 94.6 Kb duplication in an intergenic region between HMX1 and CPZ. aCGH and qPCRs also revealed co-segregated duplications in intergenic region downstream of HMX1 in the other four families. The 21.8 Kb minimal overlapping region encompassing the core sequences consensus with mouse ECR of Hmx1. Luciferase assays confirmed the enhancer function in human sequences, and proved that HOXA2 could increase its enhancer activity. No CNVs were detected in HMX1-ECR regions in 61 patients with other type of microtia. Conclusion Duplications involving long range HMX1 enhancers are associated with human isolated bilateral concha-type microtia. We add to evidences in human that copy number variations in HMX1-ECR associates with ear malformations, as in other species. This study also provides an additional example of functional conserved non-coding elements (CNEs) in humans.
Collapse
|
7
|
He S, Zhang Z, Sun Y, Ren T, Li W, Zhou X, Michal JJ, Jiang Z, Liu M. Genome-wide association study shows that microtia in Altay sheep is caused by a 76 bp duplication of HMX1. Anim Genet 2019; 51:132-136. [PMID: 31691317 DOI: 10.1111/age.12876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2019] [Indexed: 01/29/2023]
Abstract
Microtia is a congenital malformation of the external ear that can be observed in many species including sheep. However, the genetic basis of microtia still remains unclear. Here, a GWAS was conducted to investigate the genetic basis underlying microtia. A total of 55 samples from 26 microtia and 29 normal animals were genotyped with Illumina OvineHD BeadChip. The strongest significant SNP was identified on OAR6, approximating the evolutionarily conserved region of the HMX1 gene, which is related to congenital malformations of the external ear in other species such as cattle and rats. Sequencing an evolutionarily conserved region surrounding HMX1 revealed a duplication of 76 bp, which is concordant with microtia, suggesting a dominant inheritance mode. Identification of this causal mutation in the HMX1 gene indicates the role of this particular gene in the development of the external ear and provides a genetic marker for selection against microtia.
Collapse
Affiliation(s)
- S He
- Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China.,Department of Animal Sciences, Washington State University, Pullman, WA, 99164-7620, USA
| | - Z Zhang
- Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - Y Sun
- Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - T Ren
- Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - W Li
- Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| | - X Zhou
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164-7620, USA.,Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - J J Michal
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164-7620, USA
| | - Z Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, 99164-7620, USA
| | - M Liu
- Key Laboratory of Ruminant Genetics, Breeding and Reproduction, Ministry of Agriculture, Key Laboratory of Animal Biotechnology of Xinjiang, Institute of Biotechnology, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, 830026, China
| |
Collapse
|
8
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Barber JCK. Reassignment of HMX1 indicates copy number variation within 4p16.1 may be an alternative cause of oculoauricular phenotypes. Am J Med Genet A 2018; 176:2034-2036. [PMID: 30055074 DOI: 10.1002/ajmg.a.40385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- John C K Barber
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| |
Collapse
|
10
|
Yoshihara M, Sato T, Saito D, Ohara O, Kuramoto T, Suyama M. A deletion in the intergenic region upstream of Ednrb causes head spot in the rat strain KFRS4/Kyo. BMC Genet 2017; 18:29. [PMID: 28356074 PMCID: PMC5372274 DOI: 10.1186/s12863-017-0497-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/25/2017] [Indexed: 11/17/2022] Open
Abstract
Background Head spot is one of the phenotypes identified in the KFRS4/Kyo rat strain. Although previous linkage analysis suggested that Ednrb, which is frequently involved in coat color variations in various animals, could be the gene responsible for this phenotype, no mutations have been identified in its coding region. Results To identify mutations causative of this phenotype in KFRS4/Kyo, we analyzed target capture sequencing data that we recently generated. Our target capture method has a unique feature, i.e., it covers not only exonic regions but also conserved non-coding sequences (CNSs) among vertebrates; therefore, it has the potential to detect regulatory mutations. We identified a deletion of approximately 50 kb in length approximately 50 kb upstream of Ednrb. A comparative analysis with the epigenomic data in the corresponding region in humans and mice showed that one of the CNSs might be an enhancer. Further comparison with Hi-C data, which provide information about chromosome conformation, indicated that the putative enhancer is spatially close to the promoter of Ednrb, suggesting that it acts as an enhancer of Ednrb. Conclusions These in silico data analyses strongly suggest that the identified deletion in the intergenic region upstream of Ednrb, which might contain a melanocyte-specific enhancer, is the mutation causative of the head spot phenotype in the KFRS4/Kyo rat strain. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0497-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minako Yoshihara
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Daisuke Saito
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan.
| |
Collapse
|
11
|
Yoshihara M, Saito D, Sato T, Ohara O, Kuramoto T, Suyama M. Design and application of a target capture sequencing of exons and conserved non-coding sequences for the rat. BMC Genomics 2016; 17:593. [PMID: 27506932 PMCID: PMC4979189 DOI: 10.1186/s12864-016-2975-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/28/2016] [Indexed: 12/22/2022] Open
Abstract
Background Target capture sequencing is an efficient approach to directly identify the causative mutations of genetic disorders. To apply this strategy to laboratory rats exhibiting various phenotypes, we developed a novel target capture probe set, TargetEC (target capture for exons and conserved non-coding sequences), which can identify mutations not only in exonic regions but also in conserved non-coding sequences and thus can detect regulatory mutations. Results TargetEC covers 1,078,129 regions spanning 146.8 Mb of the genome. We applied TargetEC to four inbred rat strains (WTC/Kyo, WTC-swh/Kyo, PVG/Seac, and KFRS4/Kyo) maintained by the National BioResource Project for the Rat in Japan, and successfully identified mutations associated with these phenotypes, including one mutation detected in a conserved non-coding sequence. Conclusions The method developed in this study can be used to efficiently identify regulatory mutations, which cannot be detected using conventional exome sequencing, and will help to deepen our understanding of the relationships between regulatory mutations and associated phenotypes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2975-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minako Yoshihara
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Daisuke Saito
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Tetsuya Sato
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, 292-0818, Chiba, Japan
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan. .,AMED-CREST, Japan Agency for Medical Research and Development, Fukuoka, 812-8582, Japan.
| |
Collapse
|
12
|
Rosin JM, Li W, Cox LL, Rolfe SM, Latorre V, Akiyama JA, Visel A, Kuramoto T, Bobola N, Turner EE, Cox TC. A distal 594 bp ECR specifies Hmx1 expression in pinna and lateral facial morphogenesis and is regulated by the Hox-Pbx-Meis complex. Development 2016; 143:2582-92. [PMID: 27287804 DOI: 10.1242/dev.133736] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 05/23/2016] [Indexed: 11/20/2022]
Abstract
Hmx1 encodes a homeodomain transcription factor expressed in the developing lateral craniofacial mesenchyme, retina and sensory ganglia. Mutation or mis-regulation of Hmx1 underlies malformations of the eye and external ear in multiple species. Deletion or insertional duplication of an evolutionarily conserved region (ECR) downstream of Hmx1 has recently been described in rat and cow, respectively. Here, we demonstrate that the impact of Hmx1 loss is greater than previously appreciated, with a variety of lateral cranioskeletal defects, auriculofacial nerve deficits, and duplication of the caudal region of the external ear. Using a transgenic approach, we demonstrate that a 594 bp sequence encompassing the ECR recapitulates specific aspects of the endogenous Hmx1 lateral facial expression pattern. Moreover, we show that Hoxa2, Meis and Pbx proteins act cooperatively on the ECR, via a core 32 bp sequence, to regulate Hmx1 expression. These studies highlight the conserved role for Hmx1 in BA2-derived tissues and provide an entry point for improved understanding of the causes of the frequent lateral facial birth defects in humans.
Collapse
Affiliation(s)
- Jessica M Rosin
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Wenjie Li
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA Department of Oral Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Liza L Cox
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA Department of Pediatrics (Craniofacial Medicine), University of Washington, Seattle, WA 98195, USA
| | - Sara M Rolfe
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Victor Latorre
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jennifer A Akiyama
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Axel Visel
- Functional Genomics Department, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA DOE Joint Genome Institute, Walnut Creek, CA 94598, USA School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Nicoletta Bobola
- School of Dentistry, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Timothy C Cox
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA Department of Oral Health Sciences, University of Washington, Seattle, WA 98195, USA Department of Pediatrics (Craniofacial Medicine), University of Washington, Seattle, WA 98195, USA Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
13
|
Atopic dermatitis-like skin lesions with IgE hyperproduction and pruritus in KFRS4/Kyo rats. J Dermatol Sci 2015; 80:116-23. [PMID: 26454563 DOI: 10.1016/j.jdermsci.2015.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/07/2015] [Accepted: 09/16/2015] [Indexed: 01/30/2023]
Abstract
BACKGROUND Rats showing spontaneous atopic dermatitis (AD)-like skin lesions were observed in the Kyoto Fancy Rat Stock 4 (KFRS4) strain breeding colony. OBJECTIVE To establish the KFRS4 rat as a model of AD. METHODS The clinical symptoms of AD-like skin lesions were assessed by scoring the degree of dermatitis and examining scratching behavior. The transepidermal water loss was measured to evaluate skin barrier function. Cells infiltrating the skin lesions were identified using histological and immunohistological analyses. IgE and cytokine levels were measured to examine immune status. An ointment treatment experiment was carried out to characterize dermatitis in the KFRS4 rats. RESULTS Dermatitis initially appeared around 4 months of age and rapidly worsened from 6 to 8 months of age. The skin lesions accompanied scratching behavior and were predominantly observed in females. The increased transepidermal water loss indicated skin barrier dysfunction. Extensive infiltration of eosinophils, mast cells and lymphocytes was observed in the skin lesions. The plasma IgE level increased in accord with increasing severity of dermatitis. The Th2 and Th17 cytokine mRNA levels were significantly higher in the skin-draining lymph nodes than those in the non-skin-draining lymph nodes. It was demonstrated that betamethasone improved the symptoms of dermatitis. These findings demonstrated that dermatitis in the KFRS4 rats closely resembled that seen in human AD. CONCLUSION Female KFRS4 rats have the potential to serve as an animal model of human AD.
Collapse
|
14
|
Grice J, Noyvert B, Doglio L, Elgar G. A Simple Predictive Enhancer Syntax for Hindbrain Patterning Is Conserved in Vertebrate Genomes. PLoS One 2015; 10:e0130413. [PMID: 26131856 PMCID: PMC4489388 DOI: 10.1371/journal.pone.0130413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Determining the function of regulatory elements is fundamental for our understanding of development, disease and evolution. However, the sequence features that mediate these functions are often unclear and the prediction of tissue-specific expression patterns from sequence alone is non-trivial. Previous functional studies have demonstrated a link between PBX-HOX and MEIS/PREP binding interactions and hindbrain enhancer activity, but the defining grammar of these sites, if any exists, has remained elusive. Results Here, we identify a shared sequence signature (syntax) within a heterogeneous set of conserved vertebrate hindbrain enhancers composed of spatially co-occurring PBX-HOX and MEIS/PREP transcription factor binding motifs. We use this syntax to accurately predict hindbrain enhancers in 89% of cases (67/75 predicted elements) from a set of conserved non-coding elements (CNEs). Furthermore, mutagenesis of the sites abolishes activity or generates ectopic expression, demonstrating their requirement for segmentally restricted enhancer activity in the hindbrain. We refine and use our syntax to predict over 3,000 hindbrain enhancers across the human genome. These sequences tend to be located near developmental transcription factors and are enriched in known hindbrain activating elements, demonstrating the predictive power of this simple model. Conclusion Our findings support the theory that hundreds of CNEs, and perhaps thousands of regions across the human genome, function to coordinate gene expression in the developing hindbrain. We speculate that deeply conserved sequences of this kind contributed to the co-option of new genes into the hindbrain gene regulatory network during early vertebrate evolution by linking patterns of hox expression to downstream genes involved in segmentation and patterning, and evolutionarily newer instances may have continued to contribute to lineage-specific elaboration of the hindbrain.
Collapse
Affiliation(s)
- Joseph Grice
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Boris Noyvert
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Laura Doglio
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
| | - Greg Elgar
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, United Kingdom
- * E-mail:
| |
Collapse
|
15
|
Davies KTJ, Tsagkogeorga G, Rossiter SJ. Divergent evolutionary rates in vertebrate and mammalian specific conserved non-coding elements (CNEs) in echolocating mammals. BMC Evol Biol 2014; 14:261. [PMID: 25523630 PMCID: PMC4302572 DOI: 10.1186/s12862-014-0261-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 12/08/2014] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The majority of DNA contained within vertebrate genomes is non-coding, with a certain proportion of this thought to play regulatory roles during development. Conserved Non-coding Elements (CNEs) are an abundant group of putative regulatory sequences that are highly conserved across divergent groups and thus assumed to be under strong selective constraint. Many CNEs may contain regulatory factor binding sites, and their frequent spatial association with key developmental genes - such as those regulating sensory system development - suggests crucial roles in regulating gene expression and cellular patterning. Yet surprisingly little is known about the molecular evolution of CNEs across diverse mammalian taxa or their role in specific phenotypic adaptations. We examined 3,110 vertebrate-specific and ~82,000 mammalian-specific CNEs across 19 and 9 mammalian orders respectively, and tested for changes in the rate of evolution of CNEs located in the proximity of genes underlying the development or functioning of auditory systems. As we focused on CNEs putatively associated with genes underlying the development/functioning of auditory systems, we incorporated echolocating taxa in our dataset because of their highly specialised and derived auditory systems. RESULTS Phylogenetic reconstructions of concatenated CNEs broadly recovered accepted mammal relationships despite high levels of sequence conservation. We found that CNE substitution rates were highest in rodents and lowest in primates, consistent with previous findings. Comparisons of CNE substitution rates from several genomic regions containing genes linked to auditory system development and hearing revealed differences between echolocating and non-echolocating taxa. Wider taxonomic sampling of four CNEs associated with the homeobox genes Hmx2 and Hmx3 - which are required for inner ear development - revealed family-wise variation across diverse bat species. Specifically within one family of echolocating bats that utilise frequency-modulated echolocation calls varying widely in frequency and intensity high levels of sequence divergence were found. CONCLUSIONS Levels of selective constraint acting on CNEs differed both across genomic locations and taxa, with observed variation in substitution rates of CNEs among bat species. More work is needed to determine whether this variation can be linked to echolocation, and wider taxonomic sampling is necessary to fully document levels of conservation in CNEs across diverse taxa.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Georgia Tsagkogeorga
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
16
|
Cox TC, Camci ED, Vora S, Luquetti DV, Turner EE. The genetics of auricular development and malformation: new findings in model systems driving future directions for microtia research. Eur J Med Genet 2014; 57:394-401. [PMID: 24880027 DOI: 10.1016/j.ejmg.2014.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/11/2014] [Indexed: 01/05/2023]
Abstract
Microtia is a term used to describe a wide array of phenotypic presentations of the outer ear. Although the majority of the cases are isolated in nature, much of our understanding of the causes of microtia has been driven by the identification of genes underlying syndromic forms where the anomaly co-presents with various other craniofacial and extra-craniofacial structural defects. In this review we discuss recent findings in mice deficient in Hoxa2, a key regulator of branchial arch patterning, which has necessitated a revision to the canonical model of pinna morphogenesis. The revised model will likely impact current classification schemes for microtia and, as we argue in this review, the interpretation of the developmental basis for various auricular malformations. In addition, we highlight recent studies in other mammalian species that are providing the first clues as to possible causes of at least some isolated anomalies and thus should now accelerate the search for the more elusive genetic contributions to the many isolated and non-syndromic cases of microtia. These findings, together with the application of new genome-level sequencing technologies and more thorough quantitative assessment of available mutant mouse resources, promise an exciting future for genetic studies in microtia.
Collapse
Affiliation(s)
- Timothy C Cox
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics (Craniofacial Medicine), University of Washington, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA; Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, Australia.
| | - Esra D Camci
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Siddharth Vora
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| | - Daniela V Luquetti
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics (Craniofacial Medicine), University of Washington, Seattle, WA, USA
| | - Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Turner EE, Cox TC. Genetic evidence for conserved non-coding element function across species-the ears have it. Front Physiol 2014; 5:7. [PMID: 24478720 PMCID: PMC3896894 DOI: 10.3389/fphys.2014.00007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/05/2014] [Indexed: 01/08/2023] Open
Abstract
Comparison of genomic sequences from diverse vertebrate species has revealed numerous highly conserved regions that do not appear to encode proteins or functional RNAs. Often these “conserved non-coding elements,” or CNEs, can direct gene expression to specific tissues in transgenic models, demonstrating they have regulatory function. CNEs are frequently found near “developmental” genes, particularly transcription factors, implying that these elements have essential regulatory roles in development. However, actual examples demonstrating CNE regulatory functions across species have been few, and recent loss-of-function studies of several CNEs in mice have shown relatively minor effects. In this Perspectives article, we discuss new findings in “fancy” rats and Highland cattle demonstrating that function of a CNE near the Hmx1 gene is crucial for normal external ear development and when disrupted can mimic loss-of function Hmx1 coding mutations in mice and humans. These findings provide important support for conserved developmental roles of CNEs in divergent species, and reinforce the concept that CNEs should be examined systematically in the ongoing search for genetic causes of human developmental disorders in the era of genome-scale sequencing.
Collapse
Affiliation(s)
- Eric E Turner
- Center for Integrative Brain Research, Seattle Children's Research Institute Seattle, WA, USA ; Center on Human Development and Disability, University of Washington Seattle, WA, USA ; Department of Psychiatry and Behavioral Sciences, University of Washington Seattle, WA, USA
| | - Timothy C Cox
- Center on Human Development and Disability, University of Washington Seattle, WA, USA ; Department of Pediatrics (Craniofacial Medicine), University of Washington Seattle, WA, USA ; Department of Anatomy and Developmental Biology, Monash University Clayton, VIC, Australia ; Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute Seattle, WA, USA
| |
Collapse
|
18
|
Koch CT, Bruggmann R, Tetens J, Drögemüller C. A non-coding genomic duplication at the HMX1 locus is associated with crop ears in highland cattle. PLoS One 2013; 8:e77841. [PMID: 24194898 PMCID: PMC3806818 DOI: 10.1371/journal.pone.0077841] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/05/2013] [Indexed: 11/18/2022] Open
Abstract
Highland cattle with congenital crop ears have notches of variable size on the tips of both ears. In some cases, cartilage deformation can be seen and occasionally the external ears are shortened. We collected 40 cases and 80 controls across Switzerland. Pedigree data analysis confirmed a monogenic autosomal dominant mode of inheritance with variable expressivity. All affected animals could be traced back to a single common ancestor. A genome-wide association study was performed and the causative mutation was mapped to a 4 Mb interval on bovine chromosome 6. The H6 family homeobox 1 (HMX1) gene was selected as a positional and functional candidate gene. By whole genome re-sequencing of an affected Highland cattle, we detected 6 non-synonymous coding sequence variants and two variants in an ultra-conserved element at the HMX1 locus with respect to the reference genome. Of these 8 variants, only a non-coding 76 bp genomic duplication (g.106720058_106720133dup) located in the conserved region was perfectly associated with crop ears. The identified copy number variation probably results in HMX1 misregulation and possible gain-of-function. Our findings confirm the role of HMX1 during the development of the external ear. As it is sometimes difficult to phenotypically diagnose Highland cattle with slight ear notches, genetic testing can now be used to improve selection against this undesired trait.
Collapse
Affiliation(s)
- Caroline Tina Koch
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit, University of Bern, Bern, Switzerland
| | - Jens Tetens
- Institute for Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Cord Drögemüller
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
19
|
Boulling A, Wicht L, Schorderet DF. Identification of HMX1 target genes: a predictive promoter model approach. Mol Vis 2013; 19:1779-94. [PMID: 23946633 PMCID: PMC3742133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/02/2013] [Indexed: 11/19/2022] Open
Abstract
PURPOSE A homozygous mutation in the H6 family homeobox 1 (HMX1) gene is responsible for a new oculoauricular defect leading to eye and auricular developmental abnormalities as well as early retinal degeneration (MIM 612109). However, the HMX1 pathway remains poorly understood, and in the first approach to better understand the pathway's function, we sought to identify the target genes. METHODS We developed a predictive promoter model (PPM) approach using a comparative transcriptomic analysis in the retina at P15 of a mouse model lacking functional Hmx1 (dmbo mouse) and its respective wild-type. This PPM was based on the hypothesis that HMX1 binding site (HMX1-BS) clusters should be more represented in promoters of HMX1 target genes. The most differentially expressed genes in the microarray experiment that contained HMX1-BS clusters were used to generate the PPM, which was then statistically validated. Finally, we developed two genome-wide target prediction methods: one that focused on conserving PPM features in human and mouse and one that was based on the co-occurrence of HMX1-BS pairs fitting the PPM, in human or in mouse, independently. RESULTS The PPM construction revealed that sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) (Sgcg), teashirt zinc finger homeobox 2 (Tshz2), and solute carrier family 6 (neurotransmitter transporter, glycine) (Slc6a9) genes represented Hmx1 targets in the mouse retina at P15. Moreover, the genome-wide target prediction revealed that mouse genes belonging to the retinal axon guidance pathway were targeted by Hmx1. Expression of these three genes was experimentally validated using a quantitative reverse transcription PCR approach. The inhibitory activity of Hmx1 on Sgcg, as well as protein tyrosine phosphatase, receptor type, O (Ptpro) and Sema3f, two targets identified by the PPM, were validated with luciferase assay. CONCLUSIONS Gene expression analysis between wild-type and dmbo mice allowed us to develop a PPM that identified the first target genes of Hmx1.
Collapse
Affiliation(s)
| | - Linda Wicht
- Institute for Research in Ophthalmology, Sion, Switzerland,School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Daniel F. Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland,School of Life Sciences, Federal Institute of Technology (EPFL), Lausanne, Switzerland,Department of Ophthalmology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|