1
|
Al Harake SN, Abedin Y, Hatoum F, Nassar NZ, Ali A, Nassar A, Kanaan A, Bazzi S, Azar S, Harb F, Ghadieh HE. Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. Adipocyte 2024; 13:2403380. [PMID: 39329369 PMCID: PMC11445895 DOI: 10.1080/21623945.2024.2403380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.
Collapse
Affiliation(s)
- Sami N. Al Harake
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Yasamin Abedin
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Fatema Hatoum
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Nour Zahraa Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Ali Ali
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Aline Nassar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Amjad Kanaan
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Sami Azar
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Frederic Harb
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| | - Hilda E. Ghadieh
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, Lebanon
| |
Collapse
|
2
|
Engin AB, Engin A. The Checkpoints of Intestinal Fat Absorption in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:73-95. [PMID: 39287849 DOI: 10.1007/978-3-031-63657-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In this chapter, intestinal lipid transport, which plays a central role in fat homeostasis and the development of obesity in addition to the mechanisms of fatty acids and monoacylglycerol absorption in the intestinal lumen and reassembly of these within the enterocyte was described. A part of the resynthesized triglycerides (triacylglycerols; TAG) is repackaged in the intestine to form the hydrophobic core of chylomicrons (CMs). These are delivered as metabolic fuels, essential fatty acids, and other lipid-soluble nutrients, from enterocytes to the peripheral tissues following detachment from the endoplasmic reticulum membrane. Moreover, the attitudes of multiple receptor functions in dietary lipid uptake, synthesis, and transport are highlighted. Additionally, intestinal fatty acid binding proteins (FABPs), which increase the cytosolic flux of fatty acids via intermembrane transfer in enterocytes, and the functions of checkpoints for receptor-mediated fatty acid signaling are debated. The importance of the balance between storage and secretion of dietary fat by enterocytes in determining the physiological fate of dietary fat, including regulation of blood lipid concentrations and energy balance, is mentioned. Consequently, promising checkpoints regarding how intestinal fat processing affects lipid homeostatic mechanisms and lipid stores in the body and the prevention of obesity-lipotoxicity due to excessive intestinal lipid absorption are evaluated. In this context, dietary TAG digestion, pharmacological inhibition of TAG hydrolysis, the regulation of long-chain fatty acid uptake traffic into adipocytes, intracellular TAG resynthesis, the enlargement of cytoplasmic lipid droplets in enterocytes and constitutional alteration of their proteome, CD36-mediated conversion of diet-derived fatty acid into cellular lipid messengers and their functions are discussed.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Faculty of Pharmacy, Department of Toxicology, Gazi University, Hipodrom, Ankara, Turkey.
| | - Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey
| |
Collapse
|
3
|
Shu Y, Jin S. Caveolin-1 in endothelial cells: A potential therapeutic target for atherosclerosis. Heliyon 2023; 9:e18653. [PMID: 37554846 PMCID: PMC10405014 DOI: 10.1016/j.heliyon.2023.e18653] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
Atherosclerosis (AS) is a chronic vascular disease characterized by lipid accumulation and the activation of the inflammatory response; it remains the leading nation-wide cause of death. Early in the progression of AS, stimulation by pro-inflammatory agonists (TNF-α, LPS, and others), oxidized lipoproteins (ox-LDL), and biomechanical stimuli (low shear stress) lead to endothelial cell activation and dysfunction. Consequently, it is crucial to investigate how endothelial cells respond to different stressors and ways to alter endothelial cell activation in AS development, as they are the earliest cells to respond. Caveolin-1 (Cav1) is a 21-24-kDa membrane protein located in caveolae and highly expressed in endothelial cells, which plays a vital role in regulating lipid transport, inflammatory responses, and various cellular signaling pathways and has atherogenic effects. This review summarizes recent studies on the structure and physiological functions of Cav1 and outlines the potential mechanisms it mediates in AS development. Included are the roles of Cav1 in the regulation of endothelial cell autophagy, response to shear stress, modulation of the eNOS/NO axis, and transduction of inflammatory signaling pathways. This review provides a rationale for proposing Cav1 as a novel target for the prevention of AS, as well as new ideas for therapeutic strategies for early AS.
Collapse
Affiliation(s)
- Yan Shu
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, China
| | - Si Jin
- Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, 39 Lake Road, East Lake Ecological Scenic, Wuhan, 430077, China
| |
Collapse
|
4
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
5
|
Ghaffarian-Ensaf R, Shiraseb F, Mirzababaei A, Clark CCT, Mirzaei K. Interaction between caveolin-1 polymorphism and dietary fat quality indexes on visceral adiposity index (VAI) and body adiposity index (BAI) among overweight and obese women: a cross-sectional study. BMC Med Genomics 2022; 15:258. [PMID: 36517810 PMCID: PMC9749225 DOI: 10.1186/s12920-022-01415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND AIMS Caveolin-1 (CAV-1) in adipocyte tissue and other body parts possesses numerous biological functions. In the present study, we sought to investigate the interaction between CAV-1 polymorphism and dietary fat quality indexes on visceral adiposity index (VAI) and body adiposity index (BAI) among overweight and obese women. METHODS This study was conducted on 386 women aged 18-48 years old. Biochemical measurements were assessed by standard protocols. We used a food frequency questionnaire (FFQ) to calculate the dietary intake and the indexes of dietary fat quality intake. Anthropometric values and body composition were measured by standard methods. Finally, the CAV-1 genotype was measured using the PCR-RFLP method. RESULTS We found marginally significant differences between AA and GG genotypes of waist-to-hip ratio (WHR) (P = 0.06) and BAI (P = 0.06) of participants after adjusting for potential confounders. For dietary intakes, after adjusting with the energy intake, mean differences in biotin (P = 0.04) and total fiber (P = 0.06) were significant and marginally significant, respectively. The interaction between two risk alleles (AA) with omega-6 to omega-3 ratio (W6/W3) on BAI, after adjustment for potential confounders (age, physical activity, energy intake, education), was marginally positive (β = 14.08, 95% CI = - 18.65, 46.81, P = 0.07). In comparison to the reference group (GG), there was a positive interaction between the two risk alleles (AA) with W6/W3 ratio on VAI (β = 2.81, 95% CI = 1.20, 8.84, P = 0.06) in the adjusted model. CONCLUSIONS We found that there might be an interaction between CAV-1 genotypes with dietary quality fat indexes on VAI and BAI among overweight and obese women.
Collapse
Affiliation(s)
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box, Tehran, 14155-6117, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box, Tehran, 14155-6117, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box, Tehran, 14155-6117, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Teharn, Iran.
| |
Collapse
|
6
|
Abaj F, Mirzababaei A, Hosseininasab D, Bahrampour N, Clark CCT, Mirzaei K. Interactions between Caveolin-1 polymorphism and Plant-based dietary index on metabolic and inflammatory markers among women with obesity. Sci Rep 2022; 12:9088. [PMID: 35641515 PMCID: PMC9156773 DOI: 10.1038/s41598-022-12913-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023] Open
Abstract
A series of recent studies have indicated that the Caveolin-1 (CAV-1) gene variant may be associated with metabolic and inflammatory markers and anthropometric measures. Furthermore, it has been shown that a plant-based dietary index (PDI) can elicit a positive impact on these metabolic markers. Therefore, we sought to examine whether PDI intakes may affect the relationship between CAV-1 (rs3807992) and metabolic factors, as well as serum inflammatory markers and anthropometric measures, in women with obesity. This current study consisted of 400 women with overweight and obesity, with a mean (SD) age of 36.67 ± 9.10 years. PDI was calculated by a food frequency questionnaire (FFQ). The anthropometric measurements and serum profiles were measured by standard protocols. Genotyping of the CAV-1(rs3807992) was conducted by the PCR–RFLP method. The following genotypic frequencies were found among the participants: GG (47.8%), AG (22.3%), and AA (2.3%). In comparison to GG homozygotes, risk-allele carriers (AA + AG) with higher PDI intake had lower ALT (P: 0.03), hs-CRP (P: 0.008), insulin (P: 0.01) and MCP-1 (P: 0.04). Furthermore, A-allele carriers were characterized by lower serum ALT (P: 0.04), AST (P: 0.02), insulin (P: 0.03), and TGF-β (P: 0.001) when had the higher following a healthful PDI compared to GG homozygote. Besides, risk-allele carriers who consumed higher unhealthful PDI had higher WC (P: 0.04), TC/HDL (P: 0.04), MCP-1 (P: 0.03), and galactin-3 (P: 0.04). Our study revealed that A-allele carriers might be more sensitive to PDI composition compared to GG homozygotes. Following a healthful PDI in A-allele carriers may be associated with improvements in metabolic and inflammatory markers and anthropometric measures.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Dorsa Hosseininasab
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niki Bahrampour
- Department of Nutrition, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
7
|
Abaj F, Saeedy SAG, Mirzaei K. Mediation role of body fat distribution (FD) on the relationship between CAV1 rs3807992 polymorphism and metabolic syndrome in overweight and obese women. BMC Med Genomics 2021; 14:202. [PMID: 34384444 PMCID: PMC8359537 DOI: 10.1186/s12920-021-01050-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/03/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Metabolic syndrome (MetS) is associated with an increased risk of morbidity and mortality in almost all chronic diseases. The most frequent methods for the calculation of a continuous MetS (cMetS) score have used the standardized residuals in linear regression (z-score). Recently, emerging data suggest that one of the main genetic targets is the CAV1, which plays a crucial role in regulating body fat distribution. This study is designed to investigate the relationship between CAV1 rs3807992 genotypes and cMetS, and to determine whether body fat distribution plays a mediating role in this regard. METHODS The current cross-sectional study was conducted on 386 overweight and obese females. The CAV1 rs3807992 and body composition were measured by the PCR-RFLP method and bioelectrical impedance analysis, respectively. Serum profile of HDL-C, TGs, FPG, and Insulin were measured by standard protocols. RESULTS GG allele carriers had significantly lowered Z-MAP (p = 0.02), total cMetS (p = 0.03) and higher Z-HDL (p = 0.001) compared with (A) allele carriers. There was a significant specific indirect effect (standardized coefficient = 0.19; 95% CI 0.01-0.4) of Visceral fat level (VFL). Although, total body fat was significantly associated with CAV1 rs3807992 and cMetS, the specific indirect effect was not significant (standardized coefficient = 0.21; 95% CI - 0.006, 0.44). VFL contributed to significant indirect effects of 35% on the relationship between CAV1 and cMetS. CONCLUSION Higher visceral adipose tissue may affect the relationship between CAV1 and cMetS. Although CAV1 rs3807992 is linked to VFL in our study, the influence of this polymorphism on MetS is not via total fat.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| | | | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box 14155-6117, Tehran, Iran
| |
Collapse
|
8
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Obesity and diabetes have already become the second largest risk factor for cardiovascular disease. During the last decade, remarkable advances have been made in understanding the human genome's contribution to glucose homeostasis disorders and obesity. A few studies on rare mutations of candidate genes provide potential genetic targets for the treatment of diabetes and obesity. In this review, we discussed the detailed findings of these studies and the possible causalities between specific genetic variations and dysfunctions in energy or glucose homeostasis. We are optimistic that novel therapeutic strategies targeting these specific mutants for treating and preventing diabetes and obesity will be developed in the near future. RECENT FINDINGS Studies on rare genetic mutation-caused obesity or diabetes have identified potential genetic targets to decrease body weight or reduce the risk of diabetes. Rare mutations observed in lipodystrophy, obese, or diabetic human patients are promising targets in the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Bing Feng
- Pennington Biomedical Research Center, Brain Glycemic And Metabolism Control Department, Louisiana State University, 6400 Perkins Rd, Basic Science Building L2024, Baton Rouge, LA, 70808, USA
| | - Pingwen Xu
- The Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Brain Glycemic And Metabolism Control Department, Louisiana State University, 6400 Perkins Rd, Basic Science Building L2024, Baton Rouge, LA, 70808, USA.
| |
Collapse
|
10
|
Öztel Z, Gazan S, Balcan E. Tunicamycin induced endoplasmic reticulum stress in the small intestine. Biotech Histochem 2020; 96:507-519. [PMID: 32962446 DOI: 10.1080/10520295.2020.1823481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Because the small intestine is exposed to variety of foreign substances, it participates in host immune response. We investigated whether the expression levels of intestinal MAdCAM-1, PECAM-1 (CD31) and CAV-1 are affected by endoplasmic reticulum (ER) stress following brief treatment with tunicamycin (TN). We administered a single dose of TN intraperitoneally. Twenty-four hours later, MAdCAM-1, PECAM-1 and CAV-1 expression levels in Peyer's patches and villi were examined using immunohistochemistry (IHC), immunofluorescence (IF) and western blotting. Immunostaining of MAdCAM-1 and CAV-1 in control and TN treated Peyer's patches and villi exhibited similar staining patterns. The immunoreactivity of PECAM-1 was similar for the control and TN treated Payer's patches, whereas staining was decreased significantly in TN treated villi. Our findings suggest that short term TN treatment did not affect leukocyte movement to lymphoid compartments of the small intestine, but it altered villus architecture due to decreased PECAM-1 expression.
Collapse
Affiliation(s)
- Zübeyde Öztel
- Department of Biology, Manisa Celal Bayar University, Manisa, Turkey
| | - Sibel Gazan
- Department of Biology, Manisa Celal Bayar University, Manisa, Turkey
| | - Erdal Balcan
- Department of Biology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
11
|
Haas AV, Baudrand R, Easly RM, Murray GR, Touyz RM, Pojoga LH, Jeunemaitre X, Hopkins PN, Rosner B, Williams JS, Williams GH, Adler GK. Interplay Between Statins, Cav1 (Caveolin-1), and Aldosterone. Hypertension 2020; 76:962-967. [PMID: 32755411 PMCID: PMC7418929 DOI: 10.1161/hypertensionaha.120.14777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Statin use is associated with lower aldosterone levels. We hypothesized that caveolin-1 may be important for the uptake of statins into the adrenal gland and would affect statin’s aldosterone-lowering effects. The aim of this study was to test whether the caveolin-1 risk allele (rs926198) would affect aldosterone levels associated with statin use. The Hypertensive Pathotype database includes healthy and hypertensive individuals who have undergone assessment of adrenal hormones. Individuals were studied off antihypertensive medications but were maintained on statins if prescribed by their personal physician. Adrenal hormones were measured at baseline and after 1 hour of angiotensin II stimulation on both high- and low-sodium diets. A mixed-model repeated-measures analysis was employed with a priori selected covariates of age, sex, body mass index, and protocol (low versus high sodium, baseline versus angiotensin II stimulated aldosterone). A total of 250 individuals were included in the study; 31 individuals were taking statins (12.4%) and 219 were not. Among statin users, carrying a caveolin-1 risk allele resulted in a 25% (95% CI, 1–43.2) lower aldosterone level (P=0.04). However, among nonstatin users, carrying a caveolin-1 risk allele resulted in no significant effect on aldosterone levels (P=0.38). Additionally, the interaction between caveolin-1 risk allele and statin use on aldosterone levels was significant (P=0.03). These findings suggest caveolin-1 risk allele carrying individuals are likely to receive the most benefit from statin’s aldosterone-lowering properties; however, due to the observational nature of this study, these findings need further investigation.
Collapse
Affiliation(s)
- Andrea V Haas
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (A.V.H., R.M.E., G.RM., L.H.P., J.S.W., G.H.W., G.K.A.), Harvard Medical School, Boston, MA
| | - Rene Baudrand
- Program for Adrenal Disorders and Endocrine Hypertension, Department of Endocrinology, CETREN, School of Medicine, Pontificia Universidad Catolica De Chile, Santiago, Chile (R.B.)
| | - Rebecca M Easly
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (A.V.H., R.M.E., G.RM., L.H.P., J.S.W., G.H.W., G.K.A.), Harvard Medical School, Boston, MA
| | - Gillian R Murray
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (A.V.H., R.M.E., G.RM., L.H.P., J.S.W., G.H.W., G.K.A.), Harvard Medical School, Boston, MA
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, United Kingdom (R.M.T.)
| | - Luminita H Pojoga
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (A.V.H., R.M.E., G.RM., L.H.P., J.S.W., G.H.W., G.K.A.), Harvard Medical School, Boston, MA
| | - Xavier Jeunemaitre
- University of Paris, Faculty of Health; INSERM, UMRS-970, F-75015 France (X.J.).,APHP, Department of Genetics, Hôpital Européen Georges Pompidou, F-75015 Paris, France (X.J.)
| | - Paul N Hopkins
- Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (P.N.H.)
| | - Bernard Rosner
- Division of Network Medicine, Department of Medicine, Channing (B.R.), Harvard Medical School, Boston, MA
| | - Jonathan S Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (A.V.H., R.M.E., G.RM., L.H.P., J.S.W., G.H.W., G.K.A.), Harvard Medical School, Boston, MA
| | - Gordon H Williams
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (A.V.H., R.M.E., G.RM., L.H.P., J.S.W., G.H.W., G.K.A.), Harvard Medical School, Boston, MA
| | - Gail K Adler
- From the Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital (A.V.H., R.M.E., G.RM., L.H.P., J.S.W., G.H.W., G.K.A.), Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Dietary walnut as food factor to rescue from NSAID-induced gastrointestinal mucosal damages. Arch Biochem Biophys 2020; 689:108466. [PMID: 32590067 DOI: 10.1016/j.abb.2020.108466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/08/2020] [Accepted: 06/07/2020] [Indexed: 01/22/2023]
Abstract
Nuclear factor erythroid-derived 2-like 2 (Nrf-2) is transcription factor implicated in the antioxidant response element-mediated induction of endogenous antioxidant enzyme such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase, and NAD(P)H quinone dehydrogenase 1, among which HO-1 is an enzyme catalyzing the degradation of heme.producing biliverdin, ferrous iron, and carbon monoxide. In the stomach, as much as regulating gastric acid secretions, well-coordinated establishment of defense system stands for maintaining gastric integrity. In previous study, author et al. for the first time discovered HO-1 induction was critical in affording faithful gastric defense against various irritants including Helicobacter pylori infection, stress, alcohol, non-steroidal anti-inflammatory drugs (NSAIDs), aspirin, and toxic bile acids. In this review article, we can add the novel evidence that dietary walnut intake can be reliable way to rescue from NSAIDs-induced gastrointestinal damages via the induction of HO-1 transcribed with Nrf-2 through specific inactivation of Keap-1. From molecular exploration to translational animal model of indomethacin-induced gastrointestinal damages, significant induction of HO-1 contributed to rescuing from damages. In addition to HO-1 induction action relevant to walnut, we added the description the general actions of walnut extracts or dietary intake of walnut regarding cytoprotection and why we have focused on to NSAID damages.
Collapse
|
13
|
Fernandes IPG, Oliveira-Brett AM. Caveolin proteins electrochemical oxidation and interaction with cholesterol. Bioelectrochemistry 2020; 133:107451. [PMID: 32109845 DOI: 10.1016/j.bioelechem.2019.107451] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/19/2019] [Accepted: 12/19/2019] [Indexed: 12/17/2022]
Abstract
Caveolae consist in lipid raft domains composed of caveolin proteins, cholesterol, glycosphingolipids, and GPI-anchored proteins. Caveolin proteins present three different types, caveolin 1 (CAV-1), caveolin 2 (CAV-2) and caveolin 3 (CAV-3), with a very similar structure and amino acid composition. The native caveolin proteins oxidation mechanism was investigated for the first time, at a glassy carbon electrode, using cyclic, square wave and differential pulse voltammetry. The three native caveolin proteins oxidation mechanism presented only one tyrosine and tryptophan amino acid residues oxidation peak. Denatured caveolin proteins presented also the tyrosine, tryptophan and cysteine amino acid residues oxidation peaks. The reverse cholesterol transport is related to caveolae and caveolin proteins, and CAV-1 is directly connected to cholesterol transport. The influence of cholesterol on the three caveolin proteins electrochemical behaviour was evaluated. In the absence and in the presence of cholesterol, significant differences in the CAV-1 oxidation peak current were observed.
Collapse
Affiliation(s)
- Isabel P G Fernandes
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Ana Maria Oliveira-Brett
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
14
|
Hepatocyte caveolin-1 modulates metabolic gene profiles and functions in non-alcoholic fatty liver disease. Cell Death Dis 2020; 11:104. [PMID: 32029710 PMCID: PMC7005160 DOI: 10.1038/s41419-020-2295-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/08/2022]
Abstract
Caveolin-1 (CAV1) is a crucial regulator of lipid accumulation and metabolism. Previous studies have shown that global Cav1 deficiency affects lipid metabolism and hepatic steatosis. We aimed to analyze the consequences of hepatocyte-specific Cav1 knockout under healthy conditions and upon non-alcoholic fatty liver disease (NAFLD) development. Male and female hepatocyte-specific Cav1 knockout (HepCAV1ko) mice were fed a methionine/choline (MCD) deficient diet for 4 weeks. MCD feeding caused severe hepatic steatosis and slight fibrosis. In addition, liver function parameters, i.e., ALT, AST, and GLDH, were elevated, while cholesterol and glucose level were reduced upon MCD feeding. These differences were not affected by hepatocyte-specific Cav1 knockout. Microarray analysis showed strong differences in gene expression profiles of livers from HepCAV1ko mice compared those of global Cav1 knockout animals. Pathway enrichment analysis identified that metabolic alterations were sex-dimorphically regulated by hepatocyte-specific CAV1. In male HepCAV1ko mice, metabolic pathways were suppressed in NAFLD, whereas in female knockout mice induced. Moreover, gender-specific transcription profiles were modulated in healthy animals. In conclusion, our results demonstrate that hepatocyte-specific Cav1 knockout significantly altered gene profiles, did not affect liver steatosis and fibrosis in NAFLD and that gender had severe impact on gene expression patterns in healthy and diseased hepatocyte-specific Cav1 knockout mice.
Collapse
|
15
|
Egger AN, Rajabi‐Estarabadi A, Williams NM, Resnik SR, Fox JD, Wong LL, Jozic I. The importance of caveolins and caveolae to dermatology: Lessons from the caves and beyond. Exp Dermatol 2020; 29:136-148. [PMID: 31845391 PMCID: PMC7028117 DOI: 10.1111/exd.14068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Caveolae are flask-shaped invaginations of the cell membrane rich in cholesterol and sphingomyelin, with caveolin proteins acting as their primary structural components that allow compartmentalization and orchestration of various signalling molecules. In this review, we discuss how pleiotropic functions of caveolin-1 (Cav1) and its intricate roles in numerous cellular functions including lipid trafficking, signalling, cell migration and proliferation, as well as cellular senescence, infection and inflammation, are integral for normal development and functioning of skin and its appendages. We then examine how disruption of the homeostatic levels of Cav1 can lead to development of various cutaneous pathophysiologies including skin cancers, cutaneous fibroses, psoriasis, alopecia, age-related changes in skin and aberrant wound healing and propose how levels of Cav1 may have theragnostic value in skin physiology/pathophysiology.
Collapse
Affiliation(s)
- Andjela N. Egger
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ali Rajabi‐Estarabadi
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Natalie M. Williams
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Sydney R. Resnik
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Joshua D. Fox
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Lulu L. Wong
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Ivan Jozic
- Wound Healing and Regenerative Medicine Research ProgramDr. Phillip Frost Department of Dermatology and Cutaneous SurgeryUniversity of Miami Miller School of MedicineMiamiFLUSA
| |
Collapse
|
16
|
Patton EE, Tobin DM. Spotlight on zebrafish: the next wave of translational research. Dis Model Mech 2019; 12:12/3/dmm039370. [PMID: 30858282 PMCID: PMC6451428 DOI: 10.1242/dmm.039370] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Five years after the launch of the Disease Models & Mechanisms (DMM) Special Issue on zebrafish as a disease model, the field has progressed significantly. Zebrafish have been used to precisely model human genetic variants, to unpick the mechanisms of metabolic and other diseases, to study infection, inflammation and cancer, and to develop and test new therapeutic approaches. In this Editorial, we highlight recent research published in DMM that uses zebrafish to develop new experimental tools and to provide new insight into disease mechanism and therapy. The broad spectrum of subjects and approaches covered in these articles underscores the versatility of zebrafish in translational research. Further, it highlights the zebrafish community's ethos of creativity and collaboration in translating basic biological research into clinically relevant advances affecting how we understand and treat human disease. Summary: Zebrafish are a highly versatile and relevant organism for human disease modelling. This Editorial highlights the recent zebrafish research published in DMM.
Collapse
Affiliation(s)
- E Elizabeth Patton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh EH4 2XU, UK
| | - David M Tobin
- Departments of Molecular Genetics and Microbiology, and Immunology, Box 3020, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
17
|
Quinlivan VH, Farber SA. Lipid Uptake, Metabolism, and Transport in the Larval Zebrafish. Front Endocrinol (Lausanne) 2017; 8:319. [PMID: 29209275 PMCID: PMC5701920 DOI: 10.3389/fendo.2017.00319] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023] Open
Abstract
The developing zebrafish is a well-established model system for studies of energy metabolism, and is amenable to genetic, physiological, and biochemical approaches. For the first 5 days of life, nutrients are absorbed from its endogenous maternally deposited yolk. At 5 days post-fertilization, the yolk is exhausted and the larva has a functional digestive system including intestine, liver, gallbladder, pancreas, and intestinal microbiota. The transparency of the larval zebrafish, and the genetic and physiological similarity of its digestive system to that of mammals make it a promising system in which to address questions of energy homeostasis relevant to human health. For example, apolipoprotein expression and function is similar in zebrafish and mammals, and transgenic animals may be used to examine both the transport of lipid from yolk to body in the embryo, and the trafficking of dietary lipids in the larva. Additionally, despite the identification of many fatty acid and lipid transport proteins expressed by vertebrates, the cell biological processes that mediate the transport of dietary lipids from the intestinal lumen to the interior of enterocytes remain to be elucidated. Genetic tractability and amenability to live imaging and a range of biochemical methods make the larval zebrafish an ideal model in which to address open questions in the field of lipid transport, energy homeostasis, and nutrient metabolism.
Collapse
Affiliation(s)
- Vanessa H. Quinlivan
- Carnegie Institution for Science (CIS), Baltimore, MD, United States
- The Johns Hopkins University, Baltimore, MD, United States
| | - Steven A. Farber
- Carnegie Institution for Science (CIS), Baltimore, MD, United States
- The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|