1
|
Yang Y, Zhao B, Wang Y, Lan H, Liu X, Hu Y, Cao P. Diabetic neuropathy: cutting-edge research and future directions. Signal Transduct Target Ther 2025; 10:132. [PMID: 40274830 DOI: 10.1038/s41392-025-02175-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/26/2025] Open
Abstract
Diabetic neuropathy (DN) is a prevalent and debilitating complication of diabetes mellitus, significantly impacting patient quality of life and contributing to morbidity and mortality. Affecting approximately 50% of patients with diabetes, DN is predominantly characterized by distal symmetric polyneuropathy, leading to sensory loss, pain, and motor dysfunction, often resulting in diabetic foot ulcers and lower-limb amputations. The pathogenesis of DN is multifaceted, involving hyperglycemia, dyslipidemia, oxidative stress, mitochondrial dysfunction, and inflammation, which collectively damage peripheral nerves. Despite extensive research, disease-modifying treatments remain elusive, with current management primarily focusing on symptom control. This review explores the complex mechanisms underlying DN and highlights recent advances in diagnostic and therapeutic strategies. Emerging insights into the molecular and cellular pathways have unveiled potential targets for intervention, including neuroprotective agents, gene and stem cell therapies, and innovative pharmacological approaches. Additionally, novel diagnostic tools, such as corneal confocal microscopy and biomarker-based tests, have improved early detection and intervention. Lifestyle modifications and multidisciplinary care strategies can enhance patient outcomes. While significant progress has been made, further research is required to develop therapies that can effectively halt or reverse disease progression, ultimately improving the lives of individuals with DN. This review provides a comprehensive overview of current understanding and future directions in DN research and management.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanzhe Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Liu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Hu
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Nanjing University of Chinese Medicine, Nanjing, China.
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Gurung RL, Nangia C, Cai T, FitzGerald LM, McComish BJ, Liu E, Kaidonis G, Ridge B, Hewitt AW, Vote B, Verma N, Craig JE, Palmer CNA, Burdon KP, Meng W. Genome-Wide Association Study to Identify Genetic Variants Associated With Diabetic Maculopathy. Invest Ophthalmol Vis Sci 2025; 66:55. [PMID: 40136285 PMCID: PMC11951052 DOI: 10.1167/iovs.66.3.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose Diabetic maculopathy (including diabetic macular edema [DME]) is the leading cause of vision loss in people with diabetes. We aimed to identify the genetic determinants of diabetic maculopathy. Methods We conducted a genome-wide association study (GWAS) in two cohorts with a meta-analysis. The Australian cohort comprised 551 cases of DME and 599 controls recruited from the states of South Australia and Tasmania. The Scottish cohort comprised 1951 cases of diabetic maculopathy and 6541 controls from the Genetics of Diabetes Audit and Research in Tayside Scotland study (GoDARTS). Genotyping, imputation, and association analysis using logistic regression were conducted in each cohort, before combining summary statistics in a meta-analysis using the GWAMA package. Results A locus on chromosome 7 reached genome-wide significance in GoDARTS but showed the opposite direction of effect in the Australian cohort. The meta-analysis identified two suggestive associations (P < 5 × 10-6) for diabetic maculopathy risk with similar effect direction; one at chromosome 1 close to the RNU5E-1 gene and one at chromosome 13 upstream of the ERICH6B gene. The two loci were evaluated in silico for potential functional links to diabetic maculopathy. Both are located in regulatory regions and have annotations indicating regulatory functions. They are also expression quantitative trait locus (eQTLs) for genes plausibly involved in diabetic maculopathy pathogenesis, with links to folate metabolism and the regulation of VEGF. Conclusions The study suggests several promising SNPs and genes related to diabetic maculopathy risk. Despite being the largest genetic study of diabetic maculopathy to date, larger, homogeneous cohorts will be required to identify robust genetic risk loci for the disease.
Collapse
Affiliation(s)
- Rajya L. Gurung
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Charvi Nangia
- Division of Population Health and Genomics, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Tengda Cai
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham - Ningbo China, Ningbo, China
| | - Liesel M. FitzGerald
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Bennet J. McComish
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Ebony Liu
- Division of Population Health and Genomics, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Georgia Kaidonis
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | - Bronwyn Ridge
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | - Alex W. Hewitt
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Brendan Vote
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nitin Verma
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Jamie E. Craig
- Department of Ophthalmology, Flinders Health and Medical Research Institute, Flinders University, Adelaide, Australia
| | - Colin N. A. Palmer
- Division of Population Health and Genomics, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Kathryn P. Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Weihua Meng
- Division of Population Health and Genomics, Ninewells Hospital, School of Medicine, University of Dundee, Dundee, United Kingdom
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham - Ningbo China, Ningbo, China
| |
Collapse
|
3
|
Musial DC, Ajita ME, Bomfim GHS. Benefits of Cilostazol's Effect on Vascular and Neuropathic Complications Caused by Diabetes. Med Sci (Basel) 2024; 13:1. [PMID: 39846696 PMCID: PMC11755643 DOI: 10.3390/medsci13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Accepted: 12/22/2024] [Indexed: 01/24/2025] Open
Abstract
Diabetes mellitus (DM) is a global health concern with a rising incidence, particularly in aging populations and those with a genetic predisposition. Over time, DM contributes to various complications, including nephropathy, retinopathy, peripheral arterial disease (PAD), and neuropathy. Among these, diabetic neuropathy and PAD stand out due to their high prevalence and significant impact on patients' quality of life. Diabetic distal symmetric polyneuropathy, the most common form of diabetic neuropathy, is driven by neuroinflammation stemming from prolonged hyperglycemia. Simultaneously, hyperglycemia significantly increases the risk of PAD, a condition further exacerbated by factors like smoking, age, and sedentary lifestyles. PAD frequently manifests as claudication, a debilitating symptom marked by pain and cramping during physical activity, which limits mobility and worsens patients' outcomes. Cilostazol, a phosphodiesterase-3 inhibitor, has proven effective in managing intermittent claudication in PAD by improving walking distances and enhancing blood flow. Recent studies have also explored its potential benefits for diabetic neuropathy. Cilostazol's mechanisms include vasodilation, platelet inhibition, and increased cyclic adenosine monophosphate (cAMP) levels, which may contribute to improved neurological outcomes. However, variability in the clinical evidence due to inconsistent treatment protocols highlights the need for further investigation. This review explores cilostazol's mechanisms of action and therapeutic applications for managing neuropathy and PAD in diabetic patients, aiming to provide insights into its potential as a dual-purpose pharmacological agent in this high-risk population.
Collapse
Affiliation(s)
| | - Maria Eduarda Ajita
- Department of Medicine, Pontifícia Universidade Católica do Paraná, Londrina 86067-000, PR, Brazil;
| | | |
Collapse
|
4
|
Hushmandi K, Einollahi B, Aow R, Suhairi SB, Klionsky DJ, Aref AR, Reiter RJ, Makvandi P, Rabiee N, Xu Y, Nabavi N, Saadat SH, Farahani N, Kumar AP. Investigating the interplay between mitophagy and diabetic neuropathy: Uncovering the hidden secrets of the disease pathology. Pharmacol Res 2024; 208:107394. [PMID: 39233055 PMCID: PMC11934918 DOI: 10.1016/j.phrs.2024.107394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
Mitophagy, the cellular process of selectively eliminating damaged mitochondria, plays a crucial role in maintaining metabolic balance and preventing insulin resistance, both key factors in type 2 diabetes mellitus (T2DM) development. When mitophagy malfunctions in diabetic neuropathy, it triggers a cascade of metabolic disruptions, including reduced energy production, increased oxidative stress, and cell death, ultimately leading to various complications. Thus, targeting mitophagy to enhance the process may have emerged as a promising therapeutic strategy for T2DM and its complications. Notably, plant-derived compounds with β-cell protective and mitophagy-stimulating properties offer potential as novel therapeutic agents. This review highlights the intricate mechanisms linking mitophagy dysfunction to T2DM and its complications, particularly neuropathy, elucidating potential therapeutic interventions for this debilitating disease.
Collapse
Affiliation(s)
- Kiavash Hushmandi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Behzad Einollahi
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Rachel Aow
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Suhana Binte Suhairi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniel J Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amir Reza Aref
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, Long School of Medicine, San Antonio, TX, USA
| | - Pooyan Makvandi
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India; University Centre for Research & Development, Chandigarh University, Mohali, Punjab 140413, India
| | - Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Yi Xu
- Department of Science & Technology, Department of Urology, NanoBioMed Group, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Seyed Hassan Saadat
- Nephrology and Urology Research Center, Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Miletić M, Stević Z, Vujović S, Rakočević J, Tomić A, Tančić Gajić M, Stojanović M, Palibrk A, Žarković M. Glucose and Lipid Metabolism Disorders in Adults with Spinal Muscular Atrophy Type 3. Diagnostics (Basel) 2024; 14:2078. [PMID: 39335757 PMCID: PMC11431033 DOI: 10.3390/diagnostics14182078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Spinal muscular atrophy type 3 (juvenile SMA, Kugelberg-Welander disease) is a genetic disease caused by changes in the survival motor neuron 1 (SMN) gene. However, there is increasing evidence of metabolic abnormalities in SMA patients, such as altered fatty acid metabolism, impaired glucose tolerance, and defects in the functioning of muscle mitochondria. Given that data in the literature are scarce regarding this subject, the purpose of this study was to estimate the prevalence of glucose and lipid metabolism disorders in adult patients with SMA type 3. METHODS We conducted a cross-sectional study of 23 adult patients with SMA type 3 who underwent a comprehensive evaluation, including a physical examination, biochemical analysis, and an oral glucose tolerance test during 2020-2023. RESULTS At least one lipid abnormality was observed in 60.8% of patients. All four lipid parameters were atypical in 4.3% of patients, three lipid parameters were abnormal in 21.7% of patients, and two lipid parameters were altered in 8.7% patients. A total of 91.3% of SMA3 patients met the HOMA-IR criteria for insulin resistance, with 30.43% having impaired glucose tolerance. None of the patients met the criteria for a diagnosis of overt DM2. CONCLUSIONS The prevalence of dyslipidemia and altered glucose metabolism in our study sets apart the adult population with SMA3 from the general population, confirming a significant interplay between muscle, liver, and adipose tissue. Ensuring metabolic care for aging patients with SMA 3 is crucial, as they are vulnerable to metabolic derangements and cardiovascular risks.
Collapse
Affiliation(s)
- Marija Miletić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Zorica Stević
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
- Clinic of Neurology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Svetlana Vujović
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Jelena Rakočević
- Institute of Histology and Embryology “Aleksandar Đ. Kostić”, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ana Tomić
- Center for Radiology Imaging-Magnetic Resonance, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Milina Tančić Gajić
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Miloš Stojanović
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| | - Aleksa Palibrk
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
- Clinic of Neurology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Miloš Žarković
- Clinic for Endocrinology, Diabetes and Metabolic Diseases, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (S.V.); (M.T.G.); (M.S.); (M.Ž.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (Z.S.); (A.P.)
| |
Collapse
|
6
|
Yapislar H, Gurler EB. Management of Microcomplications of Diabetes Mellitus: Challenges, Current Trends, and Future Perspectives in Treatment. Biomedicines 2024; 12:1958. [PMID: 39335472 PMCID: PMC11429415 DOI: 10.3390/biomedicines12091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder characterized by high blood sugar levels, which can lead to severe health issues if not managed effectively. Recent statistics indicate a significant global impact, with 463 million adults diagnosed worldwide and this projected to rise to 700 million by 2045. Type 1 diabetes is an autoimmune disorder where the immune system attacks pancreatic beta cells, reducing insulin production. Type 2 diabetes is primarily due to insulin resistance. Both types of diabetes are linked to severe microvascular and macrovascular complications if unmanaged. Microvascular complications, such as diabetic retinopathy, nephropathy, and neuropathy, result from damage to small blood vessels and can lead to organ and tissue dysfunction. Chronic hyperglycemia plays a central role in the onset of these complications, with prolonged high blood sugar levels causing extensive vascular damage. The emerging treatments and current research focus on various aspects, from insulin resistance to the intricate cellular damage induced by glucose toxicity. Understanding and intervening in these pathways are critical for developing effective treatments and managing diabetes long term. Furthermore, ongoing health initiatives, such as increasing awareness, encouraging early detection, and improving treatments, are in place to manage diabetes globally and mitigate its impact on health and society. These initiatives are a testament to the collective effort to combat this global health challenge.
Collapse
Affiliation(s)
- Hande Yapislar
- Department of Physiology, Faculty of Medicine, Acibadem University, 34752 Istanbul, Türkiye
| | - Esra Bihter Gurler
- Department of Basic Sciences, Faculty of Dentistry, Istanbul Galata University, 34430 Istanbul, Türkiye
| |
Collapse
|
7
|
Andreeva-Gateva P, Hristov M, Strokova-Stoilova M, Ivanova N, Sabit Z, Surcheva S, Beliakov M, Karakashev G, Sukhov I, Belinskaya D, Shestakova N. Therapeutic potential of orally applied KB-R7943 in streptozotocin-induced neuropathy in rats. Heliyon 2024; 10:e27367. [PMID: 38524546 PMCID: PMC10958225 DOI: 10.1016/j.heliyon.2024.e27367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024] Open
Abstract
Both peripheral neuropathy and depression can be viewed as neurodegeneration's consequences of diabetes, at least in part coexisting with or resulting from sodium-calcium dysbalance. This study aims to assess the therapeutic potential of the orally applied reverse-mode inhibitor of the sodium-calcium exchanger (NCX) KB-R7943 in the streptozotocin (STZ) diabetes model in rats. A pilot pharmacokinetic (PK) study with high-performance liquid chromatography with high-resolution tandem mass spectrometric detection revealed higher drug exposure (AUC), lower volume of distribution (Vd) and clearance (Cl), and faster decline of the plasma concentration (ƛ) in rats with diabetes vs. controls. Brain and heart accumulation and urinary excretion of the unmetabolized KB-R7943 at least 24 h were also demonstrated in all rats. However, heart and hippocampus KB-R7943 penetration (AUCtissue/AUCplasma) was higher in controls vs. diabetic rats. The development of thermal, mechanical, and chemical-induced allodynia was assessed with the Cold plate test (CPT), Randall-Stiletto (R-S) test, and 0.5% formalin test (FT). Amitriptyline 10 mg/kg, KB-R7943 5 mg/kg, or 10 mg/kg p.o once daily was applied from the 28th to the 49th day. The body weight, coat status, CPT, R-S, and FT were evaluated on days (-5), 0, and 42. On day 41, a forced swim test and 24-h spontaneous physical activities were assessed. The chronic treatment effects were calculated as % of the maximum. A dose-depended amelioration of neuropathic and depression-like effects was demonstrated. The oral application of KB-R7943 for potentially treating neurodegenerative consequences of diabetes merits further studies. The brain, heart, and kidneys are essential contributors to the PKs of this drug, and their safety involvement needs to be further characterized.
Collapse
Affiliation(s)
- Pavlina Andreeva-Gateva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | - Milen Hristov
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | | | - Natasha Ivanova
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
- Institute of Neurobiology, BAS, Bulgaria
| | - Zafer Sabit
- Department of Pathophysiology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | - Slavina Surcheva
- Department of Pharmacology and Toxicology, Faculty of Medicine, Medical University of Sofia, Bulgaria
| | - Mihail Beliakov
- Laboratory of Chemical Analytical Control and Biotesting, Research Institute of Hygiene, Occupational Pathology and Human Ecology, St Petersburg, Russia
| | - Georgi Karakashev
- Laboratory of Chemical Analytical Control and Biotesting, Research Institute of Hygiene, Occupational Pathology and Human Ecology, St Petersburg, Russia
| | - Ivan Sukhov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Daria Belinskaya
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| | - Natalia Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St Petersburg, Russia
| |
Collapse
|
8
|
Song Y, Wang ZY, Luo J, Han WC, Wang XY, Yin C, Zhao WN, Hu SW, Zhang Q, Li YQ, Cao JL. CWC22-Mediated Alternative Splicing of Spp1 Regulates Nociception in Inflammatory Pain. Neuroscience 2023; 535:50-62. [PMID: 37838283 DOI: 10.1016/j.neuroscience.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
Increasing evidence suggests that alternative splicing plays a critical role in pain, but its underlying mechanism remains elusive. Herein, we employed complete Freund's adjuvant (CFA) to induce inflammatory pain in mice. A combination of genomics research techniques, lentivirus-based genetic manipulations, behavioral tests, and molecular biological technologies confirmed that splicing factor Cwc22 mRNA and CWC22 protein were elevated in the spinal dorsal horn at 3 days after CFA injection. Knockdown of spinal CWC22 by lentivirus transfection (lenti-shCwc22) reversed CFA-induced thermal hyperalgesia and mechanical allodynia, whereas upregulation of spinal CWC22 (lenti-Cwc22) in naïve mice precipitated pain. Comprehensive transcriptome and genome analysis identified the secreted phosphoprotein 1 (Spp1) as a potential gene of CWC22-mediated alternative splicing, however, only Spp1 splicing variant 4 (Spp1 V4) was involved in thermal and mechanical nociceptive regulation. In conclusion, our findings demonstrate that spinal CWC22 regulates Spp1 V4 to participate in CFA-induced inflammatory pain. Blocking CWC22 or CWC22-mediated alternative splicing may provide a novel therapeutic target for the treatment of persistent inflammatory pain.
Collapse
Affiliation(s)
- Yu Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Zhi-Yong Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Anesthesiology, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210008, China
| | - Jun Luo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Critical Care Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province 221002, China
| | - Wen-Can Han
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Xiao-Yi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Department of Anesthesiology, Gulou Hospital Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu Province 210008, China
| | - Cui Yin
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Qi Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China
| | - Yan-Qiang Li
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, Jiangsu Province 221004, China.
| |
Collapse
|
9
|
Munawar N, Bitar MS, Masocha W. Activation of 5-HT1A Receptors Normalizes the Overexpression of Presynaptic 5-HT1A Receptors and Alleviates Diabetic Neuropathic Pain. Int J Mol Sci 2023; 24:14334. [PMID: 37762636 PMCID: PMC10532078 DOI: 10.3390/ijms241814334] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropathic pain is a well-documented phenomenon in experimental and clinical diabetes; however, current treatment is unsatisfactory. Serotoninergic-containing neurons are key components of the descending autoinhibitory pathway, and a decrease in their activity may contribute at least in part to diabetic neuropathic pain (DNP). A streptozotocin (STZ)-treated rat was used as a model for type 1 diabetes mellitus (T1DM). Pain transmission was evaluated using well-established nociceptive-based techniques, including the Hargreaves apparatus, cold plate and dynamic plantar aesthesiometer. Using qRT-PCR, Western blotting, immunohistochemistry, and HPLC-based techniques, we also measured in the central nervous system and peripheral nervous system of diabetic animals the expression and localization of 5-HT1A receptors (5-HT1AR), levels of key enzymes involved in the synthesis and degradation of tryptophan and 5-HT, including tryptophan hydroxylase-2 (Tph-2), tryptophan 2,3-dioxygenase (Tdo), indoleamine 2,3-dioxygenase 1 (Ido1) and Ido2. Moreover, spinal concentrations of 5-HT, 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT) and quinolinic acid (QA, a metabolite of tryptophan) were also quantified. Diabetic rats developed thermal hyperalgesia and cold/mechanical allodynia, and these behavioral abnormalities appear to be associated with the upregulation in the levels of expression of critical molecules related to the serotoninergic nervous system, including presynaptic 5-HT1AR and the enzymes Tph-2, Tdo, Ido1 and Ido2. Interestingly, the level of postsynaptic 5-HT1AR remains unaltered in STZ-induced T1DM. Chronic treatment of diabetic animals with 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT), a selective 5-HT1AR agonist, downregulated the upregulation of neuronal presynaptic 5-HT1AR, increased spinal release of 5-HT (↑ 5-HIAA/5-HT) and reduced the concentration of QA, decreased mRNA expression of Tdo, Ido1 and Ido2, arrested neuronal degeneration and ameliorated pain-related behavior as exemplified by thermal hyperalgesia and cold/mechanical allodynia. These data show that 8-OH-DPAT alleviates DNP and other components of the serotoninergic system, including the ratio of 5-HIAA/5-HT and 5-HT1AR, and could be a useful therapeutic agent for managing DNP.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait;
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait;
| |
Collapse
|
10
|
Deng H, Li B, Shen Q, Zhang C, Kuang L, Chen R, Wang S, Ma Z, Li G. Mechanisms of diabetic foot ulceration: A review. J Diabetes 2023; 15:299-312. [PMID: 36891783 PMCID: PMC10101842 DOI: 10.1111/1753-0407.13372] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/10/2023] Open
Abstract
Diabetic foot ulcers (DFUs) are associated with complex pathogenic factors and are considered a serious complication of diabetes. The potential mechanisms underlying DFUs have been increasingly investigated. Previous studies have focused on the three aspects of diabetic peripheral vascular disease, neuropathy, and wound infections. With advances in technology, researchers have been gradually conducting studies using immune cells, endothelial cells, keratinocytes, and fibroblasts, as they are involved in wound healing. It has been reported that the upregulation or downregulation of molecular signaling pathways is essential for the healing of DFUs. With a recent increase in the awareness of epigenetics, its regulatory role in wound healing has become a much sought-after trend in the treatment of DFUs. This review focuses on four aspects involved in the pathogenesis of DFUs: physiological and pathological mechanisms, cellular mechanisms, molecular signaling pathway mechanisms, and epigenetics. Given the challenge in the treatment of DFUs, we are hopeful that our review will provide new ideas for peers.
Collapse
Affiliation(s)
- Haibo Deng
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Binghui Li
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Qian Shen
- School of Foreign StudiesZhongnan University of Economics and LawWuhanHubeiChina
| | - Chenchen Zhang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Liwen Kuang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Ran Chen
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - SiYuan Wang
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - ZhiQiang Ma
- Department of Wound Repair, Liyuan Hospital Affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| | - Gongchi Li
- Department of Hand Surgery, Union Hospital affiliated to Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubeiChina
| |
Collapse
|
11
|
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24065977. [PMID: 36983051 PMCID: PMC10051459 DOI: 10.3390/ijms24065977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common type of diabetic neuropathy, rendering a slowly progressive, symmetrical, and length-dependent dying-back axonopathy with preferential sensory involvement. Although the pathogenesis of DPN is complex, this review emphasizes the concept that hyperglycemia and metabolic stressors directly target sensory neurons in the dorsal root ganglia (DRG), leading to distal axonal degeneration. In this context, we discuss the role for DRG-targeting gene delivery, specifically oligonucleotide therapeutics for DPN. Molecules including insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1 that impact neurotrophic signal transduction (for example, phosphatidylinositol-3 kinase/phosphorylated protein kinase B [PI3/pAkt] signaling) and other cellular networks may promote regeneration. Regenerative strategies may be essential in maintaining axon integrity during ongoing degeneration in diabetes mellitus (DM). We discuss specific new findings that relate to sensory neuron function in DM associated with abnormal dynamics of nuclear bodies such as Cajal bodies and nuclear speckles in which mRNA transcription and post-transcriptional processing occur. Manipulating noncoding RNAs such as microRNA and long-noncoding RNA (specifically MALAT1) that regulate gene expression through post-transcriptional modification are interesting avenues to consider in supporting neurons during DM. Finally, we present therapeutic possibilities around the use of a novel DNA/RNA heteroduplex oligonucleotide that provides more efficient gene knockdown in DRG than the single-stranded antisense oligonucleotide.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo 158-0095, Japan
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Douglas W. Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute and The Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-780-248-1928; Fax: +1-780-248-1807
| |
Collapse
|
12
|
Munawar N, Nader J, Khadadah NH, Al Madhoun A, Al-Ali W, Varghese LA, Masocha W, Al-Mulla F, Bitar MS. Guanfacine Normalizes the Overexpression of Presynaptic α-2A Adrenoceptor Signaling and Ameliorates Neuropathic Pain in a Chronic Animal Model of Type 1 Diabetes. Pharmaceutics 2022; 14:2146. [PMID: 36297581 PMCID: PMC9609777 DOI: 10.3390/pharmaceutics14102146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Diabetes is associated with several complications, including neuropathic pain, which is difficult to manage with currently available drugs. Descending noradrenergic neurons possess antinociceptive activity; however, their involvement in diabetic neuropathic pain remains to be explored. METHODS To infer the regulatory role of this system, we examined as a function of diabetes, the expression and localization of alpha-2A adrenoceptors (α2-AR) in the dorsal root ganglia and key regions of the central nervous system, including pons and lumbar segment of the spinal cord using qRT-PCR, Western blotting, and immunofluorescence-based techniques. RESULTS The data revealed that presynaptic synaptosomal-associated protein-25 labeled α2-AR in the central and peripheral nervous system of streptozotocin diabetic rats was upregulated both at the mRNA and protein levels. Interestingly, the levels of postsynaptic density protein-95 labeled postsynaptic neuronal α2-AR remained unaltered as a function of diabetes. These biochemical abnormalities in the noradrenergic system of diabetic animals were associated with increased pain sensitivity as typified by the presence of thermal hyperalgesia and cold/mechanical allodynia. The pain-related behaviors were assessed using Hargreaves apparatus, cold-plate and dynamic plantar aesthesiometer. Chronically administered guanfacine, a selective α2-AR agonist, to diabetic animals downregulated the upregulation of neuronal presynaptic α2-AR and ameliorated the hyperalgesia and the cold/mechanical allodynia in these animals. CONCLUSION Together, these findings demonstrate that guanfacine may function as a potent analgesic and highlight α2-AR, a key component of the descending neuronal autoinhibitory pathway, as a potential therapeutic target in the treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Neha Munawar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Joelle Nader
- Department of Mathematics and Natural Sciences, American University of Kuwait, Salmiya 20002, Kuwait
| | - Najat H. Khadadah
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Waleed Al-Ali
- Department of Pathology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Linu A. Varghese
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Al-Jabriya 046302, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15400, Kuwait
| | - Milad S. Bitar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Al-Jabriya 046302, Kuwait
| |
Collapse
|
13
|
Poitras T, Singh V, Piragasam RS, Wang X, Mannaa AM, Chandrasekhar A, Martinez J, Fahlman R, Zochodne DW. Repurposed major urinary protein pheromones and adult sensory neurons: roles in neuron plasticity and experimental diabetes. Am J Physiol Endocrinol Metab 2022; 323:E53-E68. [PMID: 35635311 DOI: 10.1152/ajpendo.00001.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Major urinary proteins (MUPs), members of the broader lipocalin protein family, are classified as pheromones that are excreted in male rodent urine to define conspecific territoriality. In screening for differentially regulated mRNA transcripts in a mouse model of type 1 experimental diabetes mellitus (DM), we identified an unexpected upregulation of several closely related MUP transcripts within diabetic sensory dorsal root ganglia (DRG). Both sexes expressed overall MUP protein content as identified by an antibody widely targeting these upregulated family members, and immunohistochemistry identified expression within neurons, satellite glial cells, and Schwann cells. In dissociated adult sensory neurons, knockdown by an siRNA targeting upregulated MUP mRNAs, enhanced neurite outgrowth, indicating a growth-suppressive role, an impact that was synergistic with subnanomolar insulin neuronal signaling. While MUP knockdown did not generate rises in insulin signaling transcripts, the protein did bind to several mitochondrial and glial targets in DRG lysates. Analysis of a protein closely related to MUPs but that is expressed in humans, lipocalin-2, also suppressed growth, but its impact was unrelated to insulin. In a model of chronic type 1 DM, MUP siRNA knockdown improved electrophysiological and behavioral abnormalities of experimental neuropathy. MUPs have actions beyond pheromone signaling in rodents that involve suppression of growth plasticity of sensory neurons. Its hitherto unanticipated actions overlap with those of lipocalin-2 and may identify a common and widely mediated impact on neuron growth properties by members of the lipocalin family. Knockdown of MUP supports the trophic actions of insulin as a strategy that may improve features of type 1 experimental diabetic neuropathy.NEW & NOTEWORTHY New molecular mechanisms are important to unravel and understand diabetic polyneuropathy, a disorder prevalent in over half of persons with diabetes mellitus (DM). MUPs, members of the lipocalin family of molecules, have an unexpected impact on the plasticity of sensory neurons that are targeted in type 1 experimental diabetic neuropathy. This work explores this potential target in neuropathy in the context of the lipocalin family of molecules.
Collapse
Affiliation(s)
- Trevor Poitras
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Vandana Singh
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Xiuling Wang
- Southern Alberta Microarray Facility, Department Biochemistry and Molecular. Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atef M Mannaa
- INSERM U1192, Laboratoire Protéomique, Réponse Inflammatoire & Spectrométrie de Masse (PRISM), Université de Lille, Lille, France
- Higher Institute of Engineering and Technology, New Borg El-Arab City, Egypt
| | - Ambika Chandrasekhar
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jose Martinez
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Division of Neurology, Department of Clinical Neuroscience and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Miyashita A, Kobayashi M, Ishibashi S, Nagata T, Chandrasekhar A, Zochodne DW, Yokota T. The Role of Long Noncoding RNA MALAT1 in Diabetic Polyneuropathy and the Impact of Its Silencing in the Dorsal Root Ganglion by a DNA/RNA Heteroduplex Oligonucleotide. Diabetes 2022; 71:1299-1312. [PMID: 35276003 DOI: 10.2337/db21-0918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/06/2022] [Indexed: 11/13/2022]
Abstract
Diabetic polyneuropathy (DPN) is the most common complication of diabetes, yet its pathophysiology has not been established. Accumulating evidence suggests that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) plays pivotal roles in the regulation of cell growth and survival during diabetic complications. This study aimed to investigate the impact of MALAT1 silencing in dorsal root ganglion (DRG) sensory neurons, using an α-tocopherol-conjugated DNA/RNA heteroduplex oligonucleotide (Toc-HDO), on the peripheral nervous system of diabetic mice. We identified MALAT1 upregulation in the DRG of chronic diabetic mice that suggested either a pathological change or one that might be protective, and systemic intravenous injection of Toc-HDO effectively inhibited its gene expression. However, we unexpectedly noted that this intervention paradoxically exacerbated disease with increased thermal and mechanical nociceptive thresholds, indicating further sensory loss, greater sciatic-tibial nerve conduction slowing, and additional declines of intraepidermal nerve fiber density in the hind paw footpads. Serine/arginine-rich splicing factors, which are involved in pre-mRNA splicing by interacting with MALAT1, reside in nuclear speckles in wild-type and diabetic DRG neurons; MALAT1 silencing was associated with their disruption. The findings provide evidence for an important role that MALAT1 plays in DPN, suggesting neuroprotection and regulation of pre-mRNA splicing in nuclear speckles. This is also the first example in which a systemically delivered nucleotide therapy had a direct impact on DRG diabetic neurons and their axons.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo, Japan
| | - Satoru Ishibashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ambika Chandrasekhar
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas W Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
15
|
Stofkova A, Zloh M, Andreanska D, Fiserova I, Kubovciak J, Hejda J, Kutilek P, Murakami M. Depletion of Retinal Dopaminergic Activity in a Mouse Model of Rod Dysfunction Exacerbates Experimental Autoimmune Uveoretinitis: A Role for the Gateway Reflex. Int J Mol Sci 2021; 23:ijms23010453. [PMID: 35008877 PMCID: PMC8745287 DOI: 10.3390/ijms23010453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 12/20/2022] Open
Abstract
The gateway reflex is a mechanism by which neural inputs regulate chemokine expression at endothelial cell barriers, thereby establishing gateways for the invasion of autoreactive T cells into barrier-protected tissues. In this study, we hypothesized that rod photoreceptor dysfunction causes remodeling of retinal neural activity, which influences the blood–retinal barrier and the development of retinal inflammation. We evaluated this hypothesis using Gnat1rd17 mice, a model of night blindness with late-onset rod-cone dystrophy, and experimental autoimmune uveoretinitis (EAU). Retinal remodeling and its effect on EAU development were investigated by transcriptome profiling, target identification, and functional validation. We showed that Gnat1rd17 mice primarily underwent alterations in their retinal dopaminergic system, triggering the development of an exacerbated EAU, which was counteracted by dopamine replacement with L-DOPA administered either systemically or locally. Remarkably, dopamine acted on retinal endothelial cells to inhibit NF-κB and STAT3 activity and the expression of downstream target genes such as chemokines involved in T cell recruitment. These results suggest that rod-mediated dopamine release functions in a gateway reflex manner in the homeostatic control of immune cell entry into the retina, and the loss of retinal dopaminergic activity in conditions associated with rod dysfunction increases the susceptibility to autoimmune uveitis.
Collapse
Affiliation(s)
- Andrea Stofkova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Correspondence: ; Tel.: +420-224-902-718
| | - Miloslav Zloh
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Dominika Andreanska
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
| | - Ivana Fiserova
- Department of Physiology, Third Faculty of Medicine, Charles University, Ke Karlovu 4, 120 00 Prague, Czech Republic; (M.Z.); (D.A.); (I.F.)
- Department of Pathophysiology, Third Faculty of Medicine, Charles University, Ruska 87, 100 00 Prague, Czech Republic
| | - Jan Kubovciak
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Jan Hejda
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Patrik Kutilek
- Department of Health Care and Population Protection, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna Sq. 3105, 272 01 Kladno, Czech Republic; (J.H.); (P.K.)
| | - Masaaki Murakami
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan;
| |
Collapse
|
16
|
Kobayashi M, Zochodne DW. Diabetic polyneuropathy: Bridging the translational gap. J Peripher Nerv Syst 2021; 25:66-75. [PMID: 32573914 DOI: 10.1111/jns.12392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
Clinical trials for diabetic polyneuropathy (DPN) have failed to identify therapeutic impacts that have arrested or reversed the disorder, despite a long history. This review considers DPN in the context of a unique neurodegenerative disorder that targets peripheral neurons and their companion glial cells. The approach is to examine what cells, cell substructures, and pathways are implicated in causing DPN and how they might be addressed therapeutically. These include axonopathy, neuronopathy, hyperglycemia, polyol flux, advanced glycation endproduct (AGE)-receptor AGE signaling, growth factor disruption, abnormal insulin signaling, and abnormalities of other intrinsic neuron pathways. Mitochondrial dysfunction and lipid toxicity are largely delegated to the companion review in this issue by Stino and Feldman. Finally, the linkage between axon plasticity of cutaneous nerves, peripheral neuroregenerative pathways, and diabetes are discussed.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo, Japan.,Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Douglas W Zochodne
- Division of Neurology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Metabolic Dysfunction in Spinal Muscular Atrophy. Int J Mol Sci 2021; 22:ijms22115913. [PMID: 34072857 PMCID: PMC8198411 DOI: 10.3390/ijms22115913] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/29/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive genetic disorder leading to paralysis, muscle atrophy, and death. Significant advances in antisense oligonucleotide treatment and gene therapy have made it possible for SMA patients to benefit from improvements in many aspects of the once devastating natural history of the disease. How the depletion of survival motor neuron (SMN) protein, the product of the gene implicated in the disease, leads to the consequent pathogenic changes remains unresolved. Over the past few years, evidence toward a potential contribution of gastrointestinal, metabolic, and endocrine defects to disease phenotype has surfaced. These findings ranged from disrupted body composition, gastrointestinal tract, fatty acid, glucose, amino acid, and hormonal regulation. Together, these changes could have a meaningful clinical impact on disease traits. However, it is currently unclear whether these findings are secondary to widespread denervation or unique to the SMA phenotype. This review provides an in-depth account of metabolism-related research available to date, with a discussion of unique features compared to other motor neuron and related disorders.
Collapse
|
18
|
Komirishetty P, Zubkow K, Areti A, Ong H, Zochodne DW. Delayed manipulation of regeneration within injured peripheral axons. Neurobiol Dis 2021; 155:105383. [PMID: 33945876 DOI: 10.1016/j.nbd.2021.105383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
While several new translational strategies to enhance regrowth of peripheral axons have been identified, combined approaches with different targets are rare. Moreover, few have been studied after a significant delay when growth programs are already well established and regeneration-related protein expression has waned. Here we study two approaches, Rb1 (Retinoblastoma 1) knockdown that targets overall neuron plasticity, and near nerve insulin acting as a growth factor. Both are validated to boost regrowth only at the outset of regeneration. We show that local delivery of Rb1 siRNA alone, with electroporation to an area of prior sciatic nerve injury generated knockdown of Rb1 mRNA in ipsilateral lumbar dorsal root ganglia. While mice treated with Rb1-targeted siRNA, compared with scrambled control siRNA, starting 2 weeks after the onset of regeneration, had only limited behavioural or electrophysiological benefits, they had enhanced reinnervation of epidermal axons. We next confirmed that intrinsic Rb1 knockdown combined with exogenous insulin had dramatic synergistic impacts on the growth patterns of adult sensory neurons studied in vitro, prompting analysis of a combined approach in vivo. Using an identical delayed post-injury protocol, we noted that added insulin not only augmented epidermal reinnervation rendered by Rb1 knockdown alone but also improved indices of mechanical sensation and motor axon recovery. The findings illustrate that peripheral neurons that are well into attempted regrowth retain their responsiveness to both intrinsic and exogenous approaches that improve their recovery. We also identify a novel local approach to manipulate gene expression and outcome in regrowing axons.
Collapse
Affiliation(s)
- P Komirishetty
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - K Zubkow
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - A Areti
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - H Ong
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada
| | - D W Zochodne
- Peripheral Nerve Research Laboratory, Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Canada.
| |
Collapse
|
19
|
Integrative genomics analysis identifies five promising genes implicated in insomnia risk based on multiple omics datasets. Biosci Rep 2021; 40:226183. [PMID: 32830860 PMCID: PMC7468094 DOI: 10.1042/bsr20201084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022] Open
Abstract
In recent decades, many genome-wide association studies on insomnia have reported numerous genes harboring multiple risk variants. Nevertheless, the molecular functions of these risk variants conveying risk to insomnia are still ill-studied. In the present study, we integrated GWAS summary statistics (N=386,533) with two independent brain expression quantitative trait loci (eQTL) datasets (N=329) to determine whether expression-associated SNPs convey risk to insomnia. Furthermore, we applied numerous bioinformatics analyses to highlight promising genes associated with insomnia risk. By using Sherlock integrative analysis, we detected 449 significant insomnia-associated genes in the discovery stage. These identified genes were significantly overrepresented in six biological pathways including Huntington’s disease (P=5.58 × 10−5), Alzheimer’s disease (P=5.58 × 10−5), Parkinson’s disease (P=6.34 × 10−5), spliceosome (P=1.17 × 10−4), oxidative phosphorylation (P=1.09 × 10−4), and wnt signaling pathways (P=2.07 × 10−4). Further, five of these identified genes were replicated in an independent brain eQTL dataset. Through a PPI network analysis, we found that there existed highly functional interactions among these five identified genes. Three genes of LDHA (P=0.044), DALRD3 (P=5.0 × 10−5), and HEBP2 (P=0.032) showed significantly lower expression level in brain tissues of insomnic patients than that in controls. In addition, the expression levels of these five genes showed prominently dynamic changes across different time points between behavioral states of sleep and sleep deprivation in mice brain cortex. Together, the evidence of the present study strongly suggested that these five identified genes may represent candidate genes and contributed risk to the etiology of insomnia.
Collapse
|
20
|
Wong ML, Arcos-Burgos M, Liu S, Licinio AW, Yu C, Chin EWM, Yao WD, Lu XY, Bornstein SR, Licinio J. Rare Functional Variants Associated with Antidepressant Remission in Mexican-Americans: Short title: Antidepressant remission and pharmacogenetics in Mexican-Americans. J Affect Disord 2021; 279:491-500. [PMID: 33128939 PMCID: PMC7953425 DOI: 10.1016/j.jad.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/24/2020] [Accepted: 10/11/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Rare genetic functional variants can contribute to 30-40% of functional variability in genes relevant to drug action. Therefore, we investigated the role of rare functional variants in antidepressant response. METHOD Mexican-American individuals meeting the Diagnostic and Statistical Manual-IV criteria for major depressive disorder (MDD) participated in a prospective randomized, double-blind study with desipramine or fluoxetine. The rare variant analysis was performed using whole-exome genotyping data. Network and pathway analyses were carried out with the list of significant genes. RESULTS The Kernel-Based Adaptive Cluster method identified functional rare variants in 35 genes significantly associated with treatment remission (False discovery rate, FDR <0.01). Pathway analysis of these genes supports the involvement of the following gene ontology processes: olfactory/sensory transduction, regulation of response to cytokine stimulus, and meiotic cell cycleprocess. LIMITATIONS Our study did not have a placebo arm. We were not able to use antidepressant blood level as a covariate. Our study is based on a small sample size of only 65 Mexican-American individuals. Further studies using larger cohorts are warranted. CONCLUSION Our data identified several rare functional variants in antidepressant drug response in MDD patients. These have the potential to serve as genetic markers for predicting drug response. TRIAL REGISTRATION ClinicalTrials.gov NCT00265291.
Collapse
Affiliation(s)
- Ma-Li Wong
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría, Departamento de Psiquiatría, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellin, Antioquia, Colombia
| | - Sha Liu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Alice W Licinio
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia
| | - Chenglong Yu
- Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia
| | - Eunice W M Chin
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Wei-Dong Yao
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Stefan R Bornstein
- Medical Clinic III, Carl Gustav Carus University Hospital, Dresden University of Technology, Dresden, Germany
| | - Julio Licinio
- Department of Psychiatry and Behavioral Sciences, State University of New York, Upstate Medical University, Syracuse, NY, USA; Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY, USA; Mind & Brain Theme, South Australian Health and Medical Research Institute Adelaide, South Australia, Australia; Department of Psychiatry, Flinders University College of Medicine and Public Health, Bedford Park, South Australia, Australia.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The current review addresses one of the most common neurological disorders, diabetic polyneuropathy (DPN). DPN is debilitating, irreversible and dwarfs the prevalence of most other chronic disorders of the nervous system. Its complications include foot ulceration, amputation, falling and intractable neuropathic pain. Moreover, tight control of hyperglycemia reduces the incidence of DPN in type 1 diabetes mellitus but its role in type 2 diabetes mellitus is less clear. RECENT FINDINGS New therapeutic options to reverse the development of DPN or its associated pain have been proposed but none have significantly changed the clinical approach. The cause of DPN remains controversial traditionally focused on the impact of metabolic abnormalities, polyol flux, microvascular changes, mitochondria, oxidative stress, lipid biology and others. In particular, there has been less attention toward how this chronic disorder alters peripheral neurobiology. It is now clear that in chronic models of diabetes mellitus there exists a unique form of neurodegeneration with a range of protein, mRNA and microRNA alterations to consider. How to reconcile these molecular and structural alterations with metabolic mechanisms is a challenge. In sensory neurons alone, a primary target of DPN, both central perikaryal cytoplasmic and nuclear changes and altered distal sensory axon terminal plasticity may be involved. SUMMARY In this review, the current therapeutic status of DPN is described with greater emphasis on some new but selected thoughts on its neurobiology. New mechanistic understanding will be essential to developing precision therapeutics for DPN.
Collapse
|
22
|
Hwang M, Han MH, Park HH, Choi H, Lee KY, Lee YJ, Kim JM, Cheong JH, Ryu JI, Min KW, Oh YH, Ko Y, Koh SH. LGR5 and Downstream Intracellular Signaling Proteins Play Critical Roles in the Cell Proliferation of Neuroblastoma, Meningioma and Pituitary Adenoma. Exp Neurobiol 2019; 28:628-641. [PMID: 31698554 PMCID: PMC6844835 DOI: 10.5607/en.2019.28.5.628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/09/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022] Open
Abstract
Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) has been reported to play critical roles in the proliferation of various cancer cells. However, the roles of LGR5 in brain tumors and the specific intracellular signaling proteins directly associated with it remain unknown. Expression of LGR5 was first measured in normal brain tissue, meningioma, and pituitary adenoma of humans. To identify the downstream signaling pathways of LGR5, siRNA-mediated knockdown of LGR5 was performed in SH-SY5Y neuroblastoma cells followed by proteomics analysis with 2-dimensional polyacrylamide gel electrophoresis (2D-PAGE). In addition, the expression of LGR5-associated proteins was evaluated in LGR5-inhibited neuroblastoma cells and in human normal brain, meningioma, and pituitary adenoma tissue. Proteomics analysis showed 12 protein spots were significantly different in expression level (more than two-fold change) and subsequently identified by peptide mass fingerprinting. A protein association network was constructed from the 12 identified proteins altered by LGR5 knockdown. Direct and indirect interactions were identified among the 12 proteins. HSP 90-beta was one of the proteins whose expression was altered by LGR5 knockdown. Likewise, we observed decreased expression of proteins in the hnRNP subfamily following LGR5 knockdown. In addition, we have for the first time identified significantly higher hnRNP family expression in meningioma and pituitary adenoma compared to normal brain tissue. Taken together, LGR5 and its downstream signaling play critical roles in neuroblastoma and brain tumors such as meningioma and pituitary adenoma.
Collapse
Affiliation(s)
- Mina Hwang
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Hyun-Hee Park
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Hojin Choi
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Kyu-Yong Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Young Joo Lee
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Jae Min Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Jin Hwan Cheong
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Je Il Ryu
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Kyueng-Whan Min
- Department of Pathology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Young-Ha Oh
- Department of Pathology, Hanyang University Guri Hospital, Guri 11923, Korea
| | - Yong Ko
- Department of Neurosurgery, Hanyang University Medical Center, Seoul 04763, Korea
| | - Seong-Ho Koh
- Department of Neurology, Hanyang University Guri Hospital, Guri 11923, Korea.,Department of Translational Medicine, Hanyang University Graduate School of Biomedical Science & Engineering, Seoul 04763, Korea
| |
Collapse
|
23
|
Abstract
The global epidemic of prediabetes and diabetes has led to a corresponding epidemic of complications of these disorders. The most prevalent complication is neuropathy, of which distal symmetric polyneuropathy (for the purpose of this Primer, referred to as diabetic neuropathy) is very common. Diabetic neuropathy is a loss of sensory function beginning distally in the lower extremities that is also characterized by pain and substantial morbidity. Over time, at least 50% of individuals with diabetes develop diabetic neuropathy. Glucose control effectively halts the progression of diabetic neuropathy in patients with type 1 diabetes mellitus, but the effects are more modest in those with type 2 diabetes mellitus. These findings have led to new efforts to understand the aetiology of diabetic neuropathy, along with new 2017 recommendations on approaches to prevent and treat this disorder that are specific for each type of diabetes. In parallel, new guidelines for the treatment of painful diabetic neuropathy using distinct classes of drugs, with an emphasis on avoiding opioid use, have been issued. Although our understanding of the complexities of diabetic neuropathy has substantially evolved over the past decade, the distinct mechanisms underlying neuropathy in type 1 and type 2 diabetes remains unknown. Future discoveries on disease pathogenesis will be crucial to successfully address all aspects of diabetic neuropathy, from prevention to treatment.
Collapse
|
24
|
Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL, Bril V, Russell JW, Viswanathan V. Diabetic neuropathy. Nat Rev Dis Primers 2019; 5:42. [PMID: 31197183 PMCID: PMC7096070 DOI: 10.1038/s41572-019-0097-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global epidemic of prediabetes and diabetes has led to a corresponding epidemic of complications of these disorders. The most prevalent complication is neuropathy, of which distal symmetric polyneuropathy (for the purpose of this Primer, referred to as diabetic neuropathy) is very common. Diabetic neuropathy is a loss of sensory function beginning distally in the lower extremities that is also characterized by pain and substantial morbidity. Over time, at least 50% of individuals with diabetes develop diabetic neuropathy. Glucose control effectively halts the progression of diabetic neuropathy in patients with type 1 diabetes mellitus, but the effects are more modest in those with type 2 diabetes mellitus. These findings have led to new efforts to understand the aetiology of diabetic neuropathy, along with new 2017 recommendations on approaches to prevent and treat this disorder that are specific for each type of diabetes. In parallel, new guidelines for the treatment of painful diabetic neuropathy using distinct classes of drugs, with an emphasis on avoiding opioid use, have been issued. Although our understanding of the complexities of diabetic neuropathy has substantially evolved over the past decade, the distinct mechanisms underlying neuropathy in type 1 and type 2 diabetes remains unknown. Future discoveries on disease pathogenesis will be crucial to successfully address all aspects of diabetic neuropathy, from prevention to treatment.
Collapse
Affiliation(s)
- Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,
| | | | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes (MEND), University of Michigan, Ann Arbor, MI, USA
| | - Douglas W. Zochodne
- Division of Neurology, Department of Medicine and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Douglas E. Wright
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - David L. Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Vera Bril
- Division of Neurology, Department of Medicine, University of Toronto and University Health Network, Toronto, Ontario, Canada.,Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - James W. Russell
- Department of Neurology, University of Maryland and VA Maryland Health Care System, Baltimore, MD, USA
| | | |
Collapse
|
25
|
Kim SE, Park KM, Park J, Ha SY, Kim SE, Lee BI, Shin KJ. Vascular factors and neuropathy in lower limb of diabetic patients. J Clin Neurosci 2018; 59:130-135. [PMID: 30420207 DOI: 10.1016/j.jocn.2018.10.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/27/2018] [Indexed: 01/30/2023]
Abstract
Asymmetric clinical presentation in some patients with diabetic polyneuropathy may result from the different vascular environments in both lower limbs. The aim of the study is to determine the association of neuropathy with vascular factors in each lower limb of diabetic patients. A total of 102 patients (204 lower limbs) given a diagnosis of diabetic polyneuropathy were enrolled. The primary end points are sensory nerve action potential (SNAP) amplitude and conduction velocity (CV) of the sural nerve and independent variables are vascular and nonvascular factors. Vascular factors include mean arterial pressure and pulse pressure at the ankle, ankle-brachial index, and arterial stiffness assessed by pulse wave velocity. Nonvascular factors include age, gender, height, body weight, body mass index, total cholesterol, and hemoglobin A1C. Age, hemoglobin A1C, and ankle pulse pressure were inversely correlated with SNAP amplitude of the sural nerve, while no factors were correlated with CV of the sural nerve. Increased arterial stiffness was significant in the limbs group with abnormal SNAP amplitude of the sural nerve, while increased height was significant in the limbs group with abnormal CV of the sural nerve. Vascular factors were more significantly associated with decreased SNAP amplitude rather than decreased CV of the sural nerve in the nerve conduction study of diabetic patients.
Collapse
Affiliation(s)
- Si Eun Kim
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, South Korea
| | - Kang Min Park
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, South Korea
| | - Jinse Park
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, South Korea
| | - Sam Yeol Ha
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, South Korea
| | - Sung Eun Kim
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, South Korea
| | - Byung In Lee
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, South Korea
| | - Kyong Jin Shin
- Department of Neurology, Haeundae-Paik Hospital, Inje University, College of Medicine, South Korea.
| |
Collapse
|
26
|
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9:1239-1254. [PMID: 29533535 PMCID: PMC6215951 DOI: 10.1111/jdi.12833] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/20/2018] [Accepted: 03/03/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetic polyneuropathy (DPN) continues to be generally considered as a "microvascular" complication of diabetes mellitus alongside nephropathy and retinopathy. The microvascular hypothesis, however, might be tempered by the concept that diabetes directly targets dorsal root ganglion sensory neurons. This neuron-specific concept, supported by accumulating evidence, might account for important features of DPN, such as its early sensory neuron degeneration. Diabetic sensory neurons develop neuronal atrophy alongside a series of messenger ribonucleic acid (RNA) changes related to declines in structural proteins, increases in heat shock protein, increases in the receptor for advanced glycation end-products, declines in growth factor signaling and other changes. Insulin is recognized as a potent neurotrophic factor, and insulin ligation enhances neurite outgrowth through activation of the phosphoinositide 3-kinase-protein kinase B pathway within sensory neurons and attenuates phenotypic features of experimental DPN. Several interventions, including glucagon-like peptide-1 agonism, and phosphatase and tensin homolog inhibition to activate growth signals in sensory neurons, or heat shock protein overexpression, prevent or reverse neuropathic abnormalities in experimental DPN. Diabetic sensory neurons show a unique pattern of microRNA alterations, a key element of messenger RNA silencing. For example, let-7i is widely expressed in sensory neurons, supports their growth and is depleted in experimental DPN; its replenishment improves features of DPN models. Finally, impairment of pre-messenger RNA splicing in diabetic sensory neurons including abnormal nuclear RNA metabolism and structure with loss of survival motor neuron protein, a neuron survival molecule, and overexpression of CWC22, a splicing factor, offer further novel insights. The present review addresses these new aspects of DPN sensory neurodegeneration.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Neurology and Neurological ScienceGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of NeurologyYokufukai Geriatric HospitalTokyoJapan
| | - Douglas W Zochodne
- Division of Neurology and Department of MedicineNeuroscience and Mental Health InstituteFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|