1
|
Zhang N, Chai S, Wang J. Assessing and projecting the global impacts of Alzheimer's disease. Front Public Health 2025; 12:1453489. [PMID: 39882109 PMCID: PMC11775756 DOI: 10.3389/fpubh.2024.1453489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/26/2024] [Indexed: 01/31/2025] Open
Abstract
Background This study aims to assess the global burden of Alzheimer's disease (AD) from 1990 to 2030, with a focus on incidence, mortality, and disability-adjusted life years (DALY). Methods Data on the incidence rates, DALY rates, and death rates of AD across various geographic populations from 1990 to 2021 were obtained from the Global Burden of Disease (GBD) 2021 study. Generalized Additive Models (GAMs) were employed to forecast the disease burden from 2022 to 2030. Results The projected global burden of Alzheimer's disease from 2022 to 2030 indicates a decrease in DALYs, with an Estimated Annual Percentage Change (EAPC) of -1.44 (95% CI: -1.45, -1.42). Similarly, death rates and incidence rates also show a decline, with EAPCs of -1.80 (95% CI: -1.83, -1.77) and -1.27 (95% CI: -1.29, -1.26) respectively. Gender-specific analysis reveals that the projected global incidence EAPC from 2022 to 2030 is estimated at -1.73 (95% CI: -1.75, -1.70) for males and -1.03 (95% CI: -1.04, -1.02) for females. Regionally, Andean Latin America and the Caribbean exhibit the highest positive EAPCs for DALYs at 0.94 (95% CI: 0.93, 0.94) and 0.59 (95% CI: 0.59, 0.60) respectively, while Eastern Europe shows the lowest EAPC at -16.31 (95% CI: -18.60, -13.95). Country-specific projections highlight Cyprus and Serbia with the highest positive EAPCs for DALYs at 12.55 (95% CI: 11.21, 13.91) and 9.6416 (95% CI: 8.86, 10.4333) respectively. On the other hand, Bahrain and Armenia exhibit significant negative EAPCs at -87.28 (95% CI: -94.66, -69.70) and -85.41 (95% CI: -92.80, -70.41). An analysis based on the Socio-Demographic Index (SDI) reveals that regions with higher SDI values have greater burdens of AD, with countries having SDI ≥ 0.8 showing significantly higher age-standardized Incidence Rates (ASIR), age-standardized Death Rates (ASDR), and age-standardized DALY rates compared to those with SDI < 0.8. Conclusion From 1990 to 2030, global burden of AD is projected to decrease, with significant gender and regional disparities. Regions with higher SDI show higher disease burdens, underscoring the necessity for targeted interventions and customized public health strategies to effectively address AD in varied socio-economic settings.
Collapse
Affiliation(s)
- Nanlong Zhang
- Department of Emergency, Ningbo Traditional Chinese Medicine Hospital, Ningbo, China
| | - Shuren Chai
- Department of Emergency, Ningbo Traditional Chinese Medicine Hospital, Ningbo, China
| | - Jixing Wang
- Department of Internal Medicine-Neurology, Ningbo Traditional Chinese Medicine Hospital, Ningbo, China
| |
Collapse
|
2
|
Zhang Q, Li T, Xu M, Islam B, Wang J. Application of Optogenetics in Neurodegenerative Diseases. Cell Mol Neurobiol 2024; 44:57. [PMID: 39060759 PMCID: PMC11281982 DOI: 10.1007/s10571-024-01486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/15/2024] [Indexed: 07/28/2024]
Abstract
Optogenetics, a revolutionary technique integrating optical and genetic methodologies, offers unparalleled precision in spatial targeting and temporal resolution for cellular control. This approach enables the selective manipulation of specific neuronal populations, inducing subtle electrical changes that significantly impact complex neural circuitry. As optogenetics precisely targets and modulates neuronal activity, it holds the potential for significant breakthroughs in understanding and potentially altering the course of neurodegenerative diseases, characterized by selective neuronal loss leading to functional deficits within the nervous system. The integration of optogenetics into neurodegenerative disease research has significantly advanced in the field, offering new insights and paving the way for innovative treatment strategies. Its application in clinical settings, although still in the nascent stages, suggests a promising future for addressing some of the most challenging aspects of neurodegenerative disorders. In this review, we provide a comprehensive overview of these research undertakings.
Collapse
Affiliation(s)
- Qian Zhang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Binish Islam
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, 410078, Hunan, People's Republic of China.
| |
Collapse
|
3
|
Iacob R, Palimariciuc M, Florea T, Pricope CV, Uritu CM, Tamba BI, Ionescu TM, Stolniceanu CR, Jalloul W, Dobrin RP, Hritcu L, Cioanca O, Hancianu M, Naum AG, Stefanescu C. Evaluation of the Therapeutical Effect of Matricaria Chamomilla Extract vs. Galantamine on Animal Model Memory and Behavior Using 18F-FDG PET/MRI. Curr Issues Mol Biol 2024; 46:4506-4518. [PMID: 38785541 PMCID: PMC11119716 DOI: 10.3390/cimb46050273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The memory-enhancing activity of Matricaria chamomilla hydroalcoholic extract (MCE) is already being investigated by behavioral and biochemical assays in scopolamine-induced amnesia rat models, while the effects of scopolamine (Sco) on cerebral glucose metabolism are examined as well. Nevertheless, the study of the metabolic profile determined by an enriched MCE has not been performed before. The present experiments compared metabolic quantification in characteristic cerebral regions and behavioral characteristics for normal, only diseased, diseased, and MCE- vs. Galantamine (Gal)-treated Wistar rats. A memory deficit was induced by four weeks of daily intraperitoneal Sco injection. Starting on the eighth day, the treatment was intraperitoneally administered 30 min after Sco injection for a period of three weeks. The memory assessment comprised three maze tests. Glucose metabolism was quantified after the 18F-FDG PET examination. The right amygdala, piriform, and entorhinal cortex showed the highest differential radiopharmaceutical uptake of the 50 regions analyzed. Rats treated with MCE show metabolic similarity with normal rats, while the Gal-treated group shows features closer to the diseased group. Behavioral assessments evidenced a less anxious status and a better locomotor activity manifested by the MCE-treated group compared to the Gal-treated group. These findings prove evident metabolic ameliorative qualities of MCE over Gal classic treatment, suggesting that the extract could be a potent neuropharmacological agent against amnesia.
Collapse
Affiliation(s)
- Roxana Iacob
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Matei Palimariciuc
- Department of Psychiatry, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Tudor Florea
- Department of Psychiatry, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Cosmin Vasilica Pricope
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Cristina Mariana Uritu
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Teodor Marian Ionescu
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Cati Raluca Stolniceanu
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Wael Jalloul
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Romeo Petru Dobrin
- Department of Psychiatry, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Alexandru Gratian Naum
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Cipriana Stefanescu
- Division of Nuclear Medicine, Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
4
|
Zhou L, Yang C, Liu Z, Chen L, Wang P, Zhou Y, Yuan M, Zhou LT, Wang X, Zhu LQ. Neuroprotective effect of the traditional decoction Tian-Si-Yin against Alzheimer's disease via suppression of neuroinflammation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117569. [PMID: 38086513 DOI: 10.1016/j.jep.2023.117569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alzheimer's disease (AD) is the most prevalent neurodegenerative disease among old adults. As a traditional Chinese medicine, the herbal decoction Tian-Si-Yin consists of Morinda officinalis How. and Cuscuta chinensis Lam., which has been widely used to nourish kidney. Interestingly, Tian-Si-Yin has also been used to treat dementia, depression and other neurological conditions. However, its therapeutic potential for neurodegenerative diseases such as AD and the underlying mechanisms remain unclear. AIM OF THE STUDY To evaluate the therapeutic effect of the herbal formula Tian-Si-Yin against AD and to explore the underlying mechanisms. MATERIALS AND METHODS The N2a cells treated with amyloid β (Aβ) peptide or overexpressing amyloid precursor protein (APP) were used to establish cellular models of AD. The in vivo anti-AD effects were evaluated by using Caenorhabditis elegans and 3 × Tg-AD mouse models. Tian-Si-Yin was orally administered to the mice for 8 weeks at a dose of 10, 15 or 20 mg/kg/day, respectively. Its protective role on memory deficits of mice was examined using the Morris water maze and fear conditioning tests. Network pharmacology, proteomic analysis and ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) were used to explore the underlying molecular mechanisms, which were further investigated by Western blotting and immunohistochemistry. RESULTS Tian-Si-Yin was shown to improve cell viability of Aβ-treated N2a cells and APP-expressing N2a-APP cells. Tian-Si-Yin was also found to reduce ROS level and extend lifespan of transgenic AD-like C. elegans model. Oral administration of Tian-Si-Yin at medium dose was able to effectively rescue memory impairment in 3 × Tg mice. Tian-Si-Yin was further shown to suppress neuroinflammation by inhibition of glia cell activation and downregulation of inflammatory cytokines, diminishing tau phosphoralytion and Aβ deposition in the mice. Using UHPLC-MS/MS and network pharmacology technologies, 17 phytochemicals from 68 components of Tian-Si-Yin were identified as potential anti-AD components. MAPK1, BRAF, TTR and Fyn were identified as anti-AD targets of Tian-Si-Yin from network pharmacology and mass spectrum. CONCLUSIONS This study has established the protective effect of Tian-Si-Yin against AD and demonstrates that Tian-Si-Yin is capable of improving Aβ level, tau pathology and synaptic disorder by regulating inflammatory response.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Chunqing Yang
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Zhiqiang Liu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Linlin Chen
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Ping Wang
- School of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, PR China
| | - Yuan Zhou
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Mei Yuan
- The Second Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang, PR China
| | - Lan-Ting Zhou
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, PR China; Neuroscience and Brainscience Institute of Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, PR China.
| | - Xueren Wang
- Department of Anesthesiology, Shanxi Bethune Hospital, Taiyuan, PR China; Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Laboratory of Neurological Disorders of the Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China; The Institute of Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
5
|
Zamanian MY, Soltani A, Khodarahmi Z, Alameri AA, Alwan AMR, Ramírez-Coronel AA, Obaid RF, Abosaooda M, Heidari M, Golmohammadi M, Anoush M. Targeting Nrf2 signaling pathway by quercetin in the prevention and treatment of neurological disorders: An overview and update on new developments. Fundam Clin Pharmacol 2023; 37:1050-1064. [PMID: 37259891 DOI: 10.1111/fcp.12926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/16/2023] [Accepted: 05/26/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Neurological disorders (NLDs) are widely acknowledged as a significant public health concern worldwide. Stroke, Alzheimer's disease (AD), and traumatic brain injury (TBI) are three of these disorders that have sparked major study attention. Neurological dysfunction, protein buildup, oxidation and neuronal injury, and aberrant mitochondria are all prevalent neuropathological hallmarks of these disorders. The signaling cascade of nuclear factor erythroid 2 related factor 2 (Nrf2) shares all of them as a common target. Several studies have found that overexpression of Nrf2 is a promising treatment method in NLDs. Effective treatment of these disorders continues to be a universal concern regardless of various medicines. In order to treat a variety of neurological problems, organic remedies may provide an alternative treatment. It has been demonstrated that polyphenols like quercetin (Que) offer considerable capabilities for treating NLDs. One of Que's greatest key targets, Nrf2, has the capacity to control the production of a number of cytoprotective enzymes that exhibit neuroprotective, detoxifying, and antioxidative effects. Additionally, Que enhanced the expression of Nrf2 and inhibited alterations in the shape and death of neurons in the hippocampus. OBJECTIVE In this review, we have focused on Que's medicinal prospects as a neuroprotective drug. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS The findings of this research demonstrate that (1) Que protected the blood-brain barrier via stimulating Nrf2 in animal stroke, which alleviated ischemic reperfusion and motor dysfunction. (2) By triggering the Nrf2 pathway, Que reduced the neuroinflammation and oxidative damage brought on by TBI in the cortex. (3) In an experimental model of AD, Que enhanced cognitive function by decreasing A1-4, antioxidant activity, and Nrf2 levels in the brain. CONCLUSION We discuss recent research on Que-mediated Nrf2 expression in the management of several NLDs in this paper.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Afsaneh Soltani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Khodarahmi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Athemar M R Alwan
- Department of Radiological Techniques, Al-Mustaqbal University College, Babylon, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Cuenca, Ecuador
- Doctorate in Psychology, University of Palermo, Buenos Aires, Argentina
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | | | - Munther Abosaooda
- Epidemiology and Biostatistics Research Group, CES University, Medellín, Colombia
| | - Mahsa Heidari
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdieh Anoush
- Department of Pharmacology and Toxicology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
6
|
Chear NJY, Ching-Ga TAF, Khaw KY, León F, Tan WN, Yusof SR, McCurdy CR, Murugaiyah V, Ramanathan S. Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies. Metabolites 2023; 13:metabo13030390. [PMID: 36984830 PMCID: PMC10059728 DOI: 10.3390/metabo13030390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
The Uncaria genus is notable for its therapeutic potential in treating age-related dementia, such as Alzheimer’s disease. A phytochemical study of the leaves of Malaysian Uncaria attenuata Korth., afforded an undescribed natural corynanthe-type oxindole alkaloid, isovillocarine D (1) together with two known indole alkaloids, villocarine A (2) and geissoschizine methyl ether (3), and their structural identification was performed with extensive mono- and bidimensional NMR and MS spectroscopic methods. The isolated alkaloids were evaluated for their acetylcholinesterase (AChE)- and butyrylcholinesterase (BChE)-inhibitory activity. The results indicated that compound (2) was the most potent inhibitor against both AChE and BChE, with IC50 values of 14.45 and 13.95 µM, respectively, whereas compounds (1) and (3) were selective BChE inhibitors with IC50 values of 35.28 and 17.65 µM, respectively. In addition, molecular docking studies revealed that compound (2) interacts with the five main regions of AChE via both hydrogen and hydrophobic bonding. In contrast to AChE, the interactions of (2) with the enzymatic site of BChE are established only through hydrophobic bonding. The current finding suggests that U. attenuata could be a good source of bioactive alkaloids for treating age-related dementia.
Collapse
Affiliation(s)
| | - Tan Ai Fein Ching-Ga
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Kooi-Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Francisco León
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC 29201, USA
| | - Wen-Nee Tan
- Chemistry Section, School of Distance Education, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
- Correspondence: (V.M.); (S.R.)
| |
Collapse
|
7
|
Lindhardt TB, Gutiérrez-Jiménez E, Liang Z, Hansen B. Male and Female C57BL/6 Mice Respond Differently to Awake Magnetic Resonance Imaging Habituation. Front Neurosci 2022; 16:853527. [PMID: 35757553 PMCID: PMC9226328 DOI: 10.3389/fnins.2022.853527] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/18/2022] [Indexed: 01/20/2023] Open
Abstract
Traditionally, preclinical magnetic resonance imaging (MRI) has been performed in anesthetized animals. However, anesthesia has been shown to perturb normal brain function and physiology. Such effects limit our ability to detect subtle physiological alterations in disease models and treatment studies, thus hampering discovery and compromising generality of findings. Therefore, methods for awake animal MRI are needed to study the rodent brain in its natural physiological state, free of anesthetics. Current setups for awake animal MRI rely on restraining systems to avoid animal movement during scanning. To reduce restraint stress, animals are habituated to the scanner environment prior to MRI data collection. To date, however, most awake MRI studies employ male rodents only. This is a fundamental limitation as results obtained may be pertinent only to half of the population. We characterized training and habituation responses of male and female mice to provide improved, sex-dependent training procedures for awake mouse MRI. We recorded heart rate, monitored behavioral responses (body weight and fecal boli weight) and fecal corticosterone levels (FCM) as indicators of wellbeing and stress during a 14-day progressive habituation protocol. In addition, we also assessed discomfort levels and anxiety using the mouse grimace scale (MGS) and light/dark test (LDT), respectively. All scores were compared between both groups. We found that heart rate was significantly decreased after 10 and 11 days of training for both males and females, respectively. However, the specific time course for this decrease was significantly different between males and females, and females exhibited higher anxiety levels during habituation and 14 days after habituation than males. Lastly, we also found that mean FCM levels for both groups were decreased after 11 days of MRI habituation. The present work shows that mice can be successfully trained for extended MRI sessions which is necessary for many (particularly non-fMRI) studies. Importantly, we find that males and females differ in their response to awake MRI habituation, which should be considered in future awake MRI studies that aim to include male and female mice.
Collapse
Affiliation(s)
- Thomas Beck Lindhardt
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Eugenio Gutiérrez-Jiménez
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | - Zhifeng Liang
- CAS Center for Excellence in Brain Sciences and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Brian Hansen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Manno FAM, Kumar R, An Z, Khan MS, Su J, Liu J, Wu EX, He J, Feng Y, Lau C. Structural and Functional Hippocampal Correlations in Environmental Enrichment During the Adolescent to Adulthood Transition in Mice. Front Syst Neurosci 2022; 15:807297. [PMID: 35242015 PMCID: PMC8886042 DOI: 10.3389/fnsys.2021.807297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/14/2021] [Indexed: 01/13/2023] Open
Abstract
Environmental enrichment is known to induce neuronal changes; however, the underlying structural and functional factors involved are not fully known and remain an active area of study. To investigate these factors, we assessed enriched environment (EE) and standard environment (SE) control mice over 30 days using structural and functional MRI methods. Naïve adult male mice (n = 30, ≈20 g, C57BL/B6J, postnatal day 60 initial scan) were divided into SE and EE groups and scanned before and after 30 days. Structural analyses included volumetry based on manual segmentation as well as diffusion tensor imaging (DTI). Functional analyses included seed-based analysis (SBA), independent component analysis (ICA), the amplitude of low-frequency fluctuation (ALFF), and fractional ALFF (fALFF). Structural results indicated that environmental enrichment led to an increase in the volumes of cornu ammonis 1 (CA1) and dentate gyrus. Structural results indicated changes in radial diffusivity and mean diffusivity in the visual cortex and secondary somatosensory cortex after EE. Furthermore, SBA and ICA indicated an increase in resting-state functional MRI (rsfMRI) functional connectivity in the hippocampus. Using parallel structural and functional analyses, we have demonstrated coexistent structural and functional changes in the hippocampal subdivision CA1. Future research should map alterations temporally during environmental enrichment to investigate the initiation of these structural and functional changes.
Collapse
Affiliation(s)
- Francis A M Manno
- Center for Imaging Science, Department of Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.,Department of Physics, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Rachit Kumar
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Medical Scientist Training Program, University of Pennsylvania, Philadelphia, PA, United States
| | - Ziqi An
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Muhammad Shehzad Khan
- Department of Physics, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Junfeng Su
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Jiaming Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Ed X Wu
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.,Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yanqiu Feng
- Guangdong Provincial Key Laboratory of Medical Image Processing, School of Biomedical Engineering, Southern Medical University, Guangzhou, China.,Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Condon Lau
- Department of Physics, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
9
|
Zeng P, Su HF, Ye CY, Qiu SW, Tian Q. Therapeutic Mechanism and Key Alkaloids of Uncaria rhynchophylla in Alzheimer’s Disease From the Perspective of Pathophysiological Processes. Front Pharmacol 2021; 12:806984. [PMID: 34975502 PMCID: PMC8715940 DOI: 10.3389/fphar.2021.806984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/01/2021] [Indexed: 01/11/2023] Open
Abstract
Presently, there is a lack of effective disease-modifying drugs for the treatment of Alzheimer’s disease (AD). Uncaria rhynchophylla (UR) and its predominant active phytochemicals alkaloids have been studied to treat AD. This study used a novel network pharmacology strategy to identify UR alkaloids against AD from the perspective of AD pathophysiological processes and identified the key alkaloids for specific pathological process. The analysis identified 10 alkaloids from UR based on high-performance liquid chromatography (HPLC) that corresponded to 127 targets correlated with amyloid-β (Aβ) pathology, tau pathology and Alzheimer disease pathway. Based on the number of targets correlated with AD pathophysiological processes, angustoline, angustidine, corynoxine and isocorynoxeine are highly likely to become key phytochemicals in AD treatment. Among the 127 targets, JUN, STAT3, MAPK3, CCND1, MMP2, MAPK8, GSK3B, JAK3, LCK, CCR5, CDK5 and GRIN2B were identified as core targets. Based on the pathological process of AD, angustoline, angustidine and isocorynoxeine were identified as the key UR alkaloids regulating Aβ production and corynoxine, isocorynoxeine, dihydrocorynatheine, isorhynchophylline and hirsutine were identified as key alkaloids that regulate tau phosphorylation. The findings of this study contribute to a more comprehensive understanding of the key alkaloids and mechanisms of UR in the treatment of AD, as well as provide candidate compounds for drug research and development for specific AD pathological processes.
Collapse
|
10
|
A network pharmacology approach to uncover the key ingredients in Ginkgo Folium and their anti-Alzheimer's disease mechanisms. Aging (Albany NY) 2021; 13:18993-19012. [PMID: 34315132 PMCID: PMC8351672 DOI: 10.18632/aging.203348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to identify potential anti-Alzheimer’s disease (AD) targets and action mechanisms of Ginkgo Folium (GF) through a network pharmacology approach. Eighty-four potential targets of 10 active anti-AD ingredients of GF were identified, among which genkwanin (GK) had the greatest number of AD-related targets. KEGG pathway enrichment analysis showed that the most significantly enriched signaling pathway of GF against AD was Alzheimer disease (hsa05010). More importantly, 29 of the 84 targets were significantly correlated with tau, Aβ or both Aβ and tau pathology. In addition, GO analysis suggested that the main biological processes of GF in AD treatment were the regulation of chemical synaptic transmission (GO:0007268), neuron death (GO:0070997), amyloid-beta metabolic process (GO:0050435), etc. We further investigated the anti-AD effects of GK using N2A-APP cells (a classical cellular model of AD). Treatment N2A-APP cells with 100 μM GK for 48 h affected core targets related to tau pathology (such as CDK5 and GSK3β). In conclusion, these findings indicate that GF exerts its therapeutic effects on AD by acting directly on multiple pathological processes of AD.
Collapse
|
11
|
Ouyang Y, Cui D, Yuan Z, Liu Z, Jiao Q, Yin T, Qiu J. Analysis of Age-Related White Matter Microstructures Based on Diffusion Tensor Imaging. Front Aging Neurosci 2021; 13:664911. [PMID: 34262444 PMCID: PMC8273390 DOI: 10.3389/fnagi.2021.664911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 12/04/2022] Open
Abstract
Population aging has become a serious social problem. Accordingly, many researches are focusing on changes in brains of the elderly. In this study, we used multiple parameters to analyze age-related changes in white matter fibers. A sample cohort of 58 individuals was divided into young and middle-age groups and tract-based spatial statistics (TBSS) were used to analyze the differences in fractional anisotropy (FA), mean diffusion (MD), axial diffusion (AD), and radial diffusion (RD) between the two groups. Deterministic fiber tracking was used to investigate the correlation between fiber number and fiber length with age. The TBSS analysis revealed significant differences in FA, MD, AD, and RD in multiple white matter fibers between the two groups. In the middle-age group FA and AD were lower than in young people, whereas the MD and RD values were higher. Deterministic fiber tracking showed that the fiber length of some fibers correlated positively with age. These fibers were observed in the splenium of corpus callosum (SCC), the posterior limb of internal capsule (PLIC), the right posterior corona radiata (PCR_R), the anterior corona radiata (ACR), the left posterior thalamic radiation (include optic radiation; PTR_L), and the left superior longitudinal fasciculus (SLF_L), among others. The results showed that the SCC, PLIC, PCR_R, ACR, PTR_L, and SLF_L significantly differed between young and middle-age people. Therefore, we believe that these fibers could be used as image markers of age-related white matter changes.
Collapse
Affiliation(s)
- Yahui Ouyang
- Medical Engineering and Technology Research Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| | - Dong Cui
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhipeng Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qing Jiao
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| | - Tao Yin
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
- College of Radiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai’an, China
| |
Collapse
|
12
|
Hu C, Ma Z, Zhu J, Fan Y, Tuo B, Li T, Liu X. Physiological and pathophysiological roles of acidic mammalian chitinase (CHIA) in multiple organs. Biomed Pharmacother 2021; 138:111465. [PMID: 34311522 DOI: 10.1016/j.biopha.2021.111465] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Acidic mammalian chitinase (CHIA) belongs to the 18-glycosidase family and is expressed in epithelial cells and certain immune cells (such as neutrophils and macrophages) in various organs. Under physiological conditions, as a hydrolase, CHIA can degrade chitin-containing pathogens, participate in Type 2 helper T (Th2)-mediated inflammation, and enhance innate and adaptive immunity to pathogen invasion. Under pathological conditions, such as rhinitis, ocular conjunctivitis, asthma, chronic atrophic gastritis, type 2 diabetes, and pulmonary interstitial fibrosis, CHIA expression is significantly changed. In addition, studies have shown that CHIA has an anti-apoptotic effect, promotes epithelial cell proliferation and maintains organ integrity, and these effects are not related to chitinase degradation. CHIA can also be used as a biomolecular marker in diseases such as chronic atrophic gastritis, dry eye, and acute kidney damage caused by sepsis. Analysis of the authoritative TCGA database shows that CHIA expression in gastric adenocarcinoma, liver cancer, renal clear cell carcinoma and other tumors is significantly downregulated compared with that in normal tissues, but the specific mechanism is unclear. This review is based on all surveys conducted to date and summarizes the expression patterns and functional diversity of CHIA in various organs. Understanding the physiological and pathophysiological relevance of CHIA in multiple organs opens new possibilities for disease treatment.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China
| | - Yi Fan
- Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China
| | - Taolang Li
- Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province 563003, China; Endoscopy center, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province 563003, China.
| |
Collapse
|
13
|
The Main Alkaloids in Uncaria rhynchophylla and Their Anti-Alzheimer's Disease Mechanism Determined by a Network Pharmacology Approach. Int J Mol Sci 2021; 22:ijms22073612. [PMID: 33807157 DOI: 10.3390/ijms22073612] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a growing concern in modern society, and effective drugs for its treatment are lacking. Uncaria rhynchophylla (UR) and its main alkaloids have been studied to treat neurodegenerative diseases such as AD. This study aimed to uncover the key components and mechanism of the anti-AD effect of UR alkaloids through a network pharmacology approach. The analysis identified 10 alkaloids from UR based on HPLC that corresponded to 90 anti-AD targets. A potential alkaloid target-AD target network indicated that corynoxine, corynantheine, isorhynchophylline, dihydrocorynatheine, and isocorynoxeine are likely to become key components for AD treatment. KEGG pathway enrichment analysis revealed the Alzheimers disease (hsa05010) was the pathway most significantly enriched in alkaloids against AD. Further analysis revealed that 28 out of 90 targets were significantly correlated with Aβ and tau pathology. These targets were validated using a Gene Expression Omnibus (GEO) dataset. Molecular docking studies were carried out to verify the binding of corynoxine and corynantheine to core targets related to Aβ and tau pathology. In addition, the cholinergic synapse (hsa04725) and dopaminergic synapse (hsa04728) pathways were significantly enriched. Our findings indicate that UR alkaloids directly exert an AD treatment effect by acting on multiple pathological processes in AD.
Collapse
|
14
|
Ruan Z, Li Y, He R, Li X. Inhibition of microRNA-10b-5p up-regulates HOXD10 to attenuate Alzheimer's disease in rats via the Rho/ROCK signalling pathway. J Drug Target 2021; 29:531-540. [PMID: 33307856 DOI: 10.1080/1061186x.2020.1864739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE It is believed that microRNAs (miRNAs) participate in the pathogenesis of Alzheimer's disease (AD), but the specified function of miR-10b-5p in the disease has not been thoroughly understood. Thereafter, this research aimed to assess the function of miR-10b-5p in AD. METHODS Rat AD models were established by injected with amyloid-β1-42 (Aβ1-42), which were mainly treated with lentivirus-miR-10b-5p inhibitor, or lentivirus-overexpressed homeobox D10 (HOXD10). MiR-10b-5p, HOXD10, RhoA, ROCK1 and ROCK2 expression in rat hippocampal tissues were determined. Afterwards, the behaviour of rats was tested, and neuronal apoptosis, pathological injury, and inflammatory factors and oxidative stress-related factors were all assessed. Finally, the target relation between miR-10b-5p and HOXD10 was detected. RESULTS MiR-10b-5p was upregulated while HOXD10 was downregulated, and the Rho/ROCK signalling pathway was activated in hippocampal tissues of rats with AD. Inhibition of miR-10b-5p could attenuate the neuronal apoptosis, pathological injury, inflammation reaction, and oxidative stress by elevating HOXD10 and inhibiting the Rho/ROCK signalling pathway in AD rats. Moreover, HOXD10 was targeted by miR-10b-5p. CONCLUSION Inhibited miR-10b-5p decelerated the development of AD by promoting HOXD10 and inactivating the Rho/ROCK signalling pathway, and our findings may contribute to the exploration of AD treatment.
Collapse
Affiliation(s)
- Zhongfan Ruan
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| | - Yan Li
- Department of Anesthesiology, Affiliated Nanhua Hospital, University of South China, Hengyang, Hunan, China
| | - Rongzhang He
- Translational Medicine Institute, National & Local Joint Engineering Laboratory for High-through Molecular Diagnosis Technology, Collaborative Research Center for Post-doctoral Mobile Stations of Central South University, Affiliated the First People's Hospital of Chenzhou of University of South China, Chenzhou, Hunan, China
| | - Xuewei Li
- Department of Neurology, The First Affiliated Hospital of University of South China, Hengyang, Hunan, China
| |
Collapse
|
15
|
Qi P, Li J, Gao S, Yuan Y, Sun Y, Liu N, Li Y, Wang G, Chen L, Shi J. Network Pharmacology-Based and Experimental Identification of the Effects of Quercetin on Alzheimer's Disease. Front Aging Neurosci 2020; 12:589588. [PMID: 33192484 PMCID: PMC7645061 DOI: 10.3389/fnagi.2020.589588] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 01/31/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the neurodegenerative brain disorders inducing nearly half of dementia cases, and the diagnosis and treatment of AD are the primary issues clinically. However, there is a lack of effective biomarkers and drugs for AD diagnosis and therapeutics so far. In this study, bioinformatics analysis combined with an experimental verification strategy was used to identify the biomarkers and the quercetin targets for AD diagnosis and treatment. First, differentially expressed genes in the AD brain were identified by microarray data analysis. Second, quercetin, a predominant flavonoid, was used to screen the target genes. Third, the drug–disease network was determined, and the target genes of quercetin treatment were obtained in AD-related HT-22 cell-based assay. Six genes, including MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS, were validated by the system pharmacology analysis in the hippocampus samples of AD patients. The results suggested that MAPT, PIK3R1, CASP8, and DAPK1 were significantly increased, but MAPK1 and CYCS were significantly decreased in HT-22 cells after Aβ1-42 treatment. Moreover, MAPK1 and CYCS were markedly increased, but MAPT, PIK3R1, CASP8, and DAPK1 were markedly decreased after quercetin treatment in these HT-22 cells. Altogether, MAPT, PIK3R1, CASP8, DAPK1, MAPK1, and CYCS are all the biomarkers for AD diagnosis and the targets of quercetin treatment, and our findings may provide valuable biomarkers for AD diagnosis and treatment.
Collapse
Affiliation(s)
- Pingfang Qi
- Department of Pharmacy, The People's Hospital of Yichun City, Yichun, China
| | - Jing Li
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shichao Gao
- Department of Clinical Laboratory, The People's Hospital of Yichun City, Yichun, China.,Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, United States
| | - Yirong Yuan
- Department of Neurosurgery, The People's Hospital of Yichun City, Yichun, China
| | - Yindi Sun
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Na Liu
- Department of Traditional Medical Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Gang Wang
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Chen
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Shi
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
16
|
Liu Y, Perez PD, Ma Z, Ma Z, Dopfel D, Cramer S, Tu W, Zhang N. An open database of resting-state fMRI in awake rats. Neuroimage 2020; 220:117094. [PMID: 32610063 PMCID: PMC7605641 DOI: 10.1016/j.neuroimage.2020.117094] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 06/10/2020] [Accepted: 06/18/2020] [Indexed: 12/15/2022] Open
Abstract
Rodent models are essential to translational research in health and disease. Investigation in rodent brain function and organization at the systems level using resting-state functional magnetic resonance imaging (rsfMRI) has become increasingly popular. Due to this rapid progress, publicly shared rodent rsfMRI databases can be of particular interest and importance to the scientific community, as inspired by human neuroscience and psychiatric research that are substantially facilitated by open human neuroimaging datasets. However, such databases in rats are still rare. In this paper, we share an open rsfMRI database acquired in 90 rats with a well-established awake imaging paradigm that avoids anesthesia interference. Both raw and preprocessed data are made publicly available. Procedures in data preprocessing to remove artefacts induced by the scanner, head motion and non-neural physiological noise are described in details. We also showcase inter-regional functional connectivity and functional networks obtained from the database.
Collapse
Affiliation(s)
- Yikang Liu
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Pablo D Perez
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zilu Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zhiwei Ma
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Dopfel
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samuel Cramer
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Wenyu Tu
- Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA; Neuroscience Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
17
|
Sakurai K, Shintani T, Jomura N, Matsuda T, Sumiyoshi A, Hisatsune T. Hyper BOLD Activation in Dorsal Raphe Nucleus of APP/PS1 Alzheimer's Disease Mouse during Reward-Oriented Drinking Test under Thirsty Conditions. Sci Rep 2020; 10:3915. [PMID: 32127559 PMCID: PMC7054396 DOI: 10.1038/s41598-020-60894-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/18/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disease, causes behavioural abnormalities such as disinhibition, impulsivity, and hyperphagia. Preclinical studies using AD model mice have investigated these phenotypes by measuring brain activity in awake, behaving mice. In this study, we monitored the behavioural alterations of impulsivity and hyperphagia in middle-aged AD model mice. As a behavioural readout, we trained the mice to accept a water-reward under thirsty conditions. To analyse brain activity, we developed a measure for licking behaviour combined with visualisation of whole brain activity using awake fMRI. In a water-reward learning task, the AD model mice showed significant hyperactivity of the dorsal raphe nucleus in thirsty conditions. In summary, we successfully visualised altered brain activity in AD model mice during reward-oriented behaviour for the first time using awake fMRI. This may help in understanding the causes of behavioural alterations in AD patients.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Teppei Shintani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Naohiro Jomura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Takeshi Matsuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan
| | - Akira Sumiyoshi
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, 263-8555, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| |
Collapse
|
18
|
Abstract
The past decade has seen an explosion in the field of in vitro disease modelling, in particular the development of organoids. These self-organizing tissues derived from stem cells provide a unique system to examine mechanisms ranging from organ development to homeostasis and disease. Because organoids develop according to intrinsic developmental programmes, the resultant tissue morphology recapitulates organ architecture with remarkable fidelity. Furthermore, the fact that these tissues can be derived from human progenitors allows for the study of uniquely human processes and disorders. This article and accompanying poster highlight the currently available methods, particularly those aimed at modelling human biology, and provide an overview of their capabilities and limitations. We also speculate on possible future technological advances that have the potential for great strides in both disease modelling and future regenerative strategies. Summary: Human organoids are important tools for modelling disease. This At a Glance article summarises the current organoid models of several human diseases, and discusses future prospects for these technologies.
Collapse
Affiliation(s)
- Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Meritxell Huch
- The Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK .,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK.,Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|