1
|
Kucukakcali Z, Akbulut S, Colak C. Prediction of genomic biomarkers for endometriosis using the transcriptomic dataset. World J Clin Cases 2025; 13:104556. [DOI: 10.12998/wjcc.v13.i20.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/03/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Endometriosis is a clinical condition characterized by the presence of endometrial glands outside the uterine cavity. While its incidence remains mostly uncertain, endometriosis impacts around 180 million women worldwide. Despite the presentation of several epidemiological and clinical explanations, the precise mechanism underlying the disease remains ambiguous. In recent years, researchers have examined the hereditary dimension of the disease. Genetic research has aimed to discover the gene or genes responsible for the disease through association or linkage studies involving candidate genes or DNA mapping techniques.
AIM To identify genetic biomarkers linked to endometriosis by the application of machine learning (ML) approaches.
METHODS This case-control study accounted for the open-access transcriptomic data set of endometriosis and the control group. We included data from 22 controls and 16 endometriosis patients for this purpose. We used AdaBoost, XGBoost, Stochasting Gradient Boosting, Bagged Classification and Regression Trees (CART) for classification using five-fold cross validation. We evaluated the performance of the models using the performance measures of accuracy, balanced accuracy, sensitivity, specificity, positive predictive value, negative predictive value and F1 score.
RESULTS Bagged CART gave the best classification metrics. The metrics obtained from this model are 85.7%, 85.7%, 100%, 75%, 75%, 100% and 85.7% for accuracy, balanced accuracy, sensitivity, specificity, positive predictive value, negative predictive value and F1 score, respectively. Based on the variable importance of modeling, we can use the genes CUX2, CLMP, CEP131, EHD4, CDH24, ILRUN, LINC01709, HOTAIR, SLC30A2 and NKG7 and other transcripts with inaccessible gene names as potential biomarkers for endometriosis.
CONCLUSION This study determined possible genomic biomarkers for endometriosis using transcriptomic data from patients with/without endometriosis. The applied ML model successfully classified endometriosis and created a highly accurate diagnostic prediction model. Future genomic studies could explain the underlying pathology of endometriosis, and a non-invasive diagnostic method could replace the invasive ones.
Collapse
Affiliation(s)
- Zeynep Kucukakcali
- Department of Biostatistics and Medical Informatics, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| | - Sami Akbulut
- Department of Biostatistics and Medical Informatics, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
- Surgery and Liver Transplant Institute, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| | - Cemil Colak
- Department of Biostatistics and Medical Informatics, Inonu University Faculty of Medicine, Malatya 44280, Türkiye
| |
Collapse
|
2
|
Chen S, Xu J, Xiao Y, Cai H, Zhou J, Cai W, Wang Y. Loss-of-Function of CLMP Is Associated With Congenital Short Bowel Syndrome and Impaired Intestinal Development. Clin Genet 2025; 107:413-424. [PMID: 39763071 DOI: 10.1111/cge.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
Coxsackie and adenovirus receptor-like membrane protein (CLMP) mutation is identified as a genetic risk factor of congenital short bowel syndrome (CSBS). However, the specific pathogenic mechanism remains unclear. This study aimed to explore the clinical manifestations, genetic characteristics, and molecular mechanisms underlying CSBS caused by CLMP mutations. Whole-exome sequencing was performed to determine the pathogenic gene mutations in children with CSBS and their family members. In addition, a zebrafish model was established by microinjecting morpholinos into zebrafish embryos to investigate the role of clmp in intestinal embryonic development. This was investigated by measuring the length of zebrafish, evaluating gastrointestinal motility, and performing qRT-PCR assays. Two children with CSBS had CLMP mutations, one with a c.244C>T (p.R82*) mutation and exons 3-5 deletion, and the other with a c.23T>A (p.L8*) mutation and exons 3-5 deletion. After knocking down clmp expression in zebrafish embryos, the intestinal length and the gastrointestinal motility decreased. Furthermore, the expression of smooth muscle-associated genes decreased significantly. Additionally, clmp mRNA partially rescued zebrafish defects caused by clmp morpholino knockdown. Clmp knockdown decreased intestinal transport dynamics and expression of smooth muscle-related genes in zebrafish. CLMP is expected to be a potential gene therapeutic target for CSBS.
Collapse
Affiliation(s)
- Shanshan Chen
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Juan Xu
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Hui Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhou
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Department of Pediatric Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
3
|
Wang L, Tian H, Li L, Ye C, Cui J, Lin Z, Yang B, Zhao D, Li N, Feng X, Chen Q. To explore the postoperative nutritional status and factors influencing prognosis in patients with chronic constipation complicated by malnutrition. Front Med (Lausanne) 2024; 11:1335203. [PMID: 39290393 PMCID: PMC11405215 DOI: 10.3389/fmed.2024.1335203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Background Many patients with constipation also suffer from varying degrees of malnutrition, and the relationship between the two conditions is a vicious cycle. Surgery is the final step in the treatment of constipation, with a success rate of up to 95%. This study aims to investigate the effects of surgical treatment on the nutritional status of patients with chronic constipation and malnutrition. Methods A total of 60 patients with chronic constipation and various degrees of malnutrition who underwent surgery in our department from January 2020 to March 2023 were included in this study. Biochemical tests including BMI, albumin, total protein, hemoglobin, cholesterol and lymphocyte count were conducted, as well as measurements of inflammatory markers such as Interleukin-6 (IL-6), Interleukin-8 (IL-8), and C-reactive protein (CRP). Additionally, multiple nutritional risk screening scales (NRS2002, MUST, NRI, and MNA) and the prognostic nutritional index (PNI) were used to assess the nutritional status of patients before surgery, as well as at 1 month, 3 months, and 6 months post-surgery. Finally, we analyzed the factors influencing postoperative recovery outcomes in patients. Results Compared to pre-operation, the BMI of patients significantly increased at 1 month, 3 months, and 6 months after the operation, with statistically significant differences (p < 0.001). Multiple nutritional risk assessment tools (NRS2002, MUST, NRI, and MNA), as well as the prognostic nutritional index (NPI), indicated a reduction in nutritional risk and improvement in nutritional status at 1, 3, and 6 months post-surgery, compared to pre-surgery levels (p < 0.001). The levels of albumin, total protein, and hemoglobin in patients at 1, 3, and 6 months after the surgery were significantly higher than those before the surgery (p < 0.001). However, there was no significant change in the number of lymphocytes. Inflammatory markers such as IL-6, IL-8, and CRP exhibited a significant decrease after the surgery, reaching normal levels at 6 months post-surgery (p < 0.001). Low BMI, low PNI, and low cholesterol levels are independent risk factors for patient prognosis (p < 0.05). Conclusion Surgical treatment can enhance the nutritional status of constipation patients with malnutrition, which in turn promotes the restoration of intestinal motility. The patient's nutritional status will impact the postoperative recovery outcomes.
Collapse
Affiliation(s)
- Le Wang
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Hongliang Tian
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai, China
| | - Long Li
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Chen Ye
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Jiaqu Cui
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Zhiliang Lin
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Bo Yang
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Di Zhao
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Ning Li
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
| | - Xiaobo Feng
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qiyi Chen
- Department of Functional Intestinal Diseases, General Surgery of Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Shanghai Gastrointestinal Microecology Research Center, Shanghai, China
- Shanghai Institution of Gut Microbiota Research and Engineering Development, Shanghai, China
| |
Collapse
|
4
|
Pelz L, Dossou L, Kompier N, Jüttner R, Siemonsmeier G, Meyer N, Lowenstein ED, Lahmann I, Kettenmann H, Birchmeier C, Rathjen FG. The IgCAM BT-IgSF (IgSF11) is essential for connexin43-mediated astrocyte-astrocyte coupling in mice. eNeuro 2024; 11:ENEURO.0283-23.2024. [PMID: 38388443 PMCID: PMC10957231 DOI: 10.1523/eneuro.0283-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
The type I transmembrane protein BT-IgSF is predominantly localized in the brain and testes. It belongs to the CAR subgroup of Ig cell adhesion proteins, that are hypothesized to regulate connexin expression or localization. Here, we studied the putative link between BT-IgSF and connexins in astrocytes, ependymal cells and neurons of the mouse. Global knockout of BT-IgSF caused an increase in the clustering of connexin43 (Gja1), but not of connexin30 (Gjb6), on astrocytes and ependymal cells. Additionally, knockout animals displayed reduced expression levels of connexin43 protein in the cortex and hippocampus. Importantly, analysis of biocytin spread in hippocampal or cortical slices from mature mice of either sex revealed a decrease in astrocytic cell-cell coupling in the absence of BT-IgSF. Blocking either protein biosynthesis or proteolysis showed that the lysosomal pathway increased connexin43 degradation in astrocytes. Localization of connexin43 in subcellular compartments was not impaired in astrocytes of BT-IgSF mutants. In contrast to connexin43 the localization and expression of connexin36 (Gjd2) on neurons was not affected by the absence of BT-IgSF. Overall, our data indicate that the IgCAM BT-IgSF is essential for correct gap junction-mediated astrocyte-to-astrocyte cell communication.Significance Statement Astrocytes regulate a variety of physiological processes in the developing and adult brain that are essential for proper brain function. Astrocytes form extensive networks in the brain and communicate via gap junctions. Disruptions of gap junction coupling are found in several diseases such as neurodegeneration or epilepsy. Here, we demonstrate that the cell adhesion protein BT-IgSF is essential for gap junction mediated coupling between astrocytes in the cortex and hippocampus.
Collapse
Affiliation(s)
- Laura Pelz
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Laura Dossou
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Nine Kompier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Niklas Meyer
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | | | - Ines Lahmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| | - Helmut Kettenmann
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Carmen Birchmeier
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
- NeuroCure Cluster of Excellence, Charité Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Berlin DE-13092, Germany
| |
Collapse
|
5
|
Matthaeus C, Jüttner R, Gotthardt M, Rathjen FG. The IgCAM CAR Regulates Gap Junction-Mediated Coupling on Embryonic Cardiomyocytes and Affects Their Beating Frequency. Life (Basel) 2022; 13:14. [PMID: 36675963 PMCID: PMC9866089 DOI: 10.3390/life13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/29/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The IgCAM coxsackie-adenovirus receptor (CAR) is essential for embryonic heart development and electrical conduction in the mature heart. However, it is not well-understood how CAR exerts these effects at the cellular level. To address this question, we analyzed the spontaneous beating of cultured embryonic hearts and cardiomyocytes from wild type and CAR knockout (KO) embryos. Surprisingly, in the absence of the CAR, cultured cardiomyocytes showed increased frequencies of beating and calcium cycling. Increased beatings of heart organ cultures were also induced by the application of reagents that bind to the extracellular region of the CAR, such as the adenovirus fiber knob. However, the calcium cycling machinery, including calcium extrusion via SERCA2 and NCX, was not disrupted in CAR KO cells. In contrast, CAR KO cardiomyocytes displayed size increases but decreased in the total numbers of membrane-localized Cx43 clusters. This was accompanied by improved cell-cell coupling between CAR KO cells, as demonstrated by increased intercellular dye diffusion. Our data indicate that the CAR may modulate the localization and oligomerization of Cx43 at the plasma membrane, which could in turn influence electrical propagation between cardiomyocytes via gap junctions.
Collapse
Affiliation(s)
- Claudia Matthaeus
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
- Laboratory of Cellular Biophysics, NHLBI, NIH, 50 South Drive, Building 50 RM 3312, Bethesda, MD 20892, USA
| | - René Jüttner
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Michael Gotthardt
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| | - Fritz G. Rathjen
- Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, DE-13092 Berlin, Germany
| |
Collapse
|
6
|
Chevalier NR. Physical organogenesis of the gut. Development 2022; 149:276365. [DOI: 10.1242/dev.200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
ABSTRACT
The gut has been a central subject of organogenesis since Caspar Friedrich Wolff’s seminal 1769 work ‘De Formatione Intestinorum’. Today, we are moving from a purely genetic understanding of cell specification to a model in which genetics codes for layers of physical–mechanical and electrical properties that drive organogenesis such that organ function and morphogenesis are deeply intertwined. This Review provides an up-to-date survey of the extrinsic and intrinsic mechanical forces acting on the embryonic vertebrate gut during development and of their role in all aspects of intestinal morphogenesis: enteric nervous system formation, epithelium structuring, muscle orientation and differentiation, anisotropic growth and the development of myogenic and neurogenic motility. I outline numerous implications of this biomechanical perspective in the etiology and treatment of pathologies, such as short bowel syndrome, dysmotility, interstitial cells of Cajal-related disorders and Hirschsprung disease.
Collapse
Affiliation(s)
- Nicolas R. Chevalier
- Laboratoire Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057 , 10 rue Alice Domon et Léonie Duquet, 75013 Paris , France
| |
Collapse
|
7
|
Meng JH, Chen CX, Ahmadian MR, Zan H, Luo KJ, Jiang JX. Cross-Activation of Hemichannels/Gap Junctions and Immunoglobulin-Like Domains in Innate–Adaptive Immune Responses. Front Immunol 2022; 13:882706. [PMID: 35911693 PMCID: PMC9334851 DOI: 10.3389/fimmu.2022.882706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Hemichannels (HCs)/gap junctions (GJs) and immunoglobulin (Ig)-like domain-containing proteins (IGLDCPs) are involved in the innate–adaptive immune response independently. Despite of available evidence demonstrating the importance of HCs/GJs and IGLDCPs in initiating, implementing, and terminating the entire immune response, our understanding of their mutual interactions in immunological function remains rudimentary. IGLDCPs include immune checkpoint molecules of the immunoglobulin family expressed in T and B lymphocytes, most of which are cluster of differentiation (CD) antigens. They also constitute the principal components of the immunological synapse (IS), which is formed on the cell surface, including the phagocytic synapse, T cell synapse, B cell synapse, and astrocytes–neuronal synapse. During the three stages of the immune response, namely innate immunity, innate–adaptive immunity, and adaptive immunity, HCs/GJs and IGLDCPs are cross-activated during the entire process. The present review summarizes the current understanding of HC-released immune signaling factors that influence IGLDCPs in regulating innate–adaptive immunity. ATP-induced “eat me” signals released by HCs, as well as CD31, CD47, and CD46 “don’t eat me” signaling molecules, trigger initiation of innate immunity, which serves to regulate phagocytosis. Additionally, HC-mediated trogocytosis promotes antigen presentation and amplification. Importantly, HC-mediated CD4+ T lymphocyte activation is critical in the transition of the innate immune response to adaptive immunity. HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes, for instance, IgA transcytosis in ovarian cancer cells, which triggers innate immunity. Further understanding of the interplay between HCs/GJs and IGLDCPs would aid in identifying therapeutic targets that regulate the HC–Ig-like domain immune response, thereby providing a viable treatment strategy for immunological diseases. The present review delineates the clinical immunology-related applications of HC–Ig-like domain cross-activation, which would greatly benefit medical professionals and immunological researchers alike. HCs/GJs and IGLDCPs mediate phagocytosis via ATP; “eat me and don’t eat me” signals trigger innate immunity; HC-mediated trogocytosis promotes antigen presentation and amplification in innate–adaptive immunity; HCs also mediate non-specific transcytosis of antibodies produced by mature B lymphocytes in adaptive immunity.
Collapse
Affiliation(s)
- Jiang-Hui Meng
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Chang-Xu Chen
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
| | - Mohammad R. Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hong Zan
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, United States
| | - Kai-Jun Luo
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory of the University in Yunnan Province for International Cooperation in Intercellular Communications and Regulations, Yunnan University, Kunming, China
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, United States
- *Correspondence: Kai-Jun Luo, ; Jean X. Jiang,
| |
Collapse
|
8
|
Li GS, Zhu F, Zhang F, Yang FX, Hao JP, Hou ZC. Genome-wide association study reveals novel loci associated with feeding behavior in Pekin ducks. BMC Genomics 2021; 22:334. [PMID: 33964893 PMCID: PMC8106866 DOI: 10.1186/s12864-021-07668-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Background Feeding behavior traits are an essential part of livestock production. However, the genetic base of feeding behavior traits remains unclear in Pekin ducks. This study aimed to determine novel loci related to feeding behavior in Pekin ducks. Results In this study, the feeding information of 540 Pekin ducks was recorded, and individual genotype was evaluated using genotyping-by-sequencing methods. Genome-wide association analysis (GWAS) was conducted for feeding behavior traits. Overall, thirty significant (P-value < 4.74E-06) SNPs for feeding behavior traits were discovered, and four of them reached the genome-wide significance level (P-value < 2.37E-07). One genome-wide significance locus associated with daily meal times was located in a 122.25 Mb region on chromosome 2, which was within the intron of gene ubiquitin-conjugating enzyme E2 E2 (UBE2E2), and could explain 2.64% of the phenotypic variation. This locus was also significantly associated with meal feed intake, and explained 2.72% of this phenotypic variation. Conclusions This study is the first GWAS for feeding behavior traits in ducks. Our results provide a list of candidate genes associated with feeding behavior, and also help to better understand the genetic mechanisms of feeding behavior patterns in ducks. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07668-1.
Collapse
Affiliation(s)
- Guang-Sheng Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | | | | | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Jang S, Yang E, Kim D, Kim H, Kim E. Clmp Regulates AMPA and Kainate Receptor Responses in the Neonatal Hippocampal CA3 and Kainate Seizure Susceptibility in Mice. Front Synaptic Neurosci 2021; 12:567075. [PMID: 33408624 PMCID: PMC7779639 DOI: 10.3389/fnsyn.2020.567075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/02/2020] [Indexed: 12/05/2022] Open
Abstract
Synaptic adhesion molecules regulate synapse development through trans-synaptic adhesion and assembly of diverse synaptic proteins. Many synaptic adhesion molecules positively regulate synapse development; some, however, exert negative regulation, although such cases are relatively rare. In addition, synaptic adhesion molecules regulate the amplitude of post-synaptic receptor responses, but whether adhesion molecules can regulate the kinetic properties of post-synaptic receptors remains unclear. Here we report that Clmp, a homophilic adhesion molecule of the Ig domain superfamily that is abundantly expressed in the brain, reaches peak expression at a neonatal stage (week 1) and associates with subunits of AMPA receptors (AMPARs) and kainate receptors (KARs). Clmp deletion in mice increased the frequency and amplitude of AMPAR-mediated miniature excitatory post-synaptic currents (mEPSCs) and the frequency, amplitude, and decay time constant of KAR-mediated mEPSCs in hippocampal CA3 neurons. Clmp deletion had minimal impacts on evoked excitatory synaptic currents at mossy fiber-CA3 synapses but increased extrasynaptic KAR, but not AMPAR, currents, suggesting that Clmp distinctly inhibits AMPAR and KAR responses. Behaviorally, Clmp deletion enhanced novel object recognition and susceptibility to kainate-induced seizures, without affecting contextual or auditory cued fear conditioning or pattern completion-based contextual fear conditioning. These results suggest that Clmp negatively regulates hippocampal excitatory synapse development and AMPAR and KAR responses in the neonatal hippocampal CA3 as well as object recognition and kainate seizure susceptibility in mice.
Collapse
Affiliation(s)
- Seil Jang
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Esther Yang
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Doyoun Kim
- Center for Drug Discovery Platform Research, Korea Research Institute of Chemical Technology (KRICT), Daejeon, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
10
|
Chuang YH, Fan WL, Chu YD, Liang KH, Yeh YM, Chen CC, Chiu CH, Lai MW. Whole-Exome Sequencing Identified Novel CLMP Mutations in a Family With Congenital Short Bowel Syndrome Presenting Differently in Two Probands. Front Genet 2021; 11:574943. [PMID: 33384711 PMCID: PMC7770137 DOI: 10.3389/fgene.2020.574943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Congenital short bowel syndrome (CSBS) is a rare condition characterized by an inborn shortening of bowel length with loss of intestinal functions, which often combines malrotation. CXADR-like membrane protein (CLMP) and filamin A (FLNA) gene mutations are the two major causes of this inherited defect. We presented two siblings with the older brother suffering from a laparotomy for bowel obstruction due to malrotation on the 17th day after birth. The younger sister encountered a laparotomy for lactobezoar at 6 months old. CSBS was diagnosed by measurement of the bowel length during the operations. Compound heterozygous CLMP mutations with the paternal allele harboring a long deletion across exon 3-5 and the maternal allele bearing a non-sense mutation of exon 3 (c.235C > T, p.Q79∗) were identified in both cases. They are the first reported familial CSBS caused by novel CLMP mutations in Taiwan.
Collapse
Affiliation(s)
- Yao-Hung Chuang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Children's Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Wen-Lang Fan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Kung-Hao Liang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Food Safety and Health Risk Assessment, National Yang-Ming University, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Chien-Chang Chen
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Children's Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| | - Cheng-Hsun Chiu
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Division of Pediatric Infectious Disease, Department of Pediatrics, Chang Gung Children's Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Ming-Wei Lai
- Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Children's Medical Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Taoyuan City, Taiwan
| |
Collapse
|
11
|
Ou FF, Li MJ, Mei LB, Lin XZ, Wu YA. Congenital Short-Bowel Syndrome Is Associated With a Novel Deletion Mutation in the CLMP Gene: Mutations in CLMP Caused CSBS. Front Pediatr 2021; 9:778859. [PMID: 35111702 PMCID: PMC8802778 DOI: 10.3389/fped.2021.778859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 11/21/2022] Open
Abstract
Objective: To describe the clinical presentation and novel mutation in the coxsackie and adenovirus receptor-like membrane protein (CLMP) gene in a Chinese family with congenital short bowel syndrome (CSBS). Methods: We collected clinical data from a Chinese family with inherited CSBS, and performed whole exon sequencing of the children and their parents. The pathogenic sites of candidate genes were targeted, and the detected exon deletions were verified by quantitative PCR. Results: Two siblings in this family presented with bilious vomiting, and were diagnosed with CSBS on laparotomy. Two siblings and their parents underwent complete exome sequencing of the peripheral blood. Both children had CLMP gene exons 3-5 homozygous deletion mutation, while the parents had a heterozygous mutation. Conclusion: This study identified a novel mutation of the CLMP gene in a Chinese family with CSBS. Identification of this mutation can help with genetic counseling and prenatal diagnosis of CSBS.
Collapse
Affiliation(s)
- Fen-Fen Ou
- Department of Neonatology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Perinatal-Neonatal Infection, Xiamen, China
| | - Ming-Jie Li
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Bin Mei
- Department of Neonatology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xin-Zhu Lin
- Department of Neonatology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.,Xiamen Key Laboratory of Perinatal-Neonatal Infection, Xiamen, China
| | - Yan-An Wu
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
12
|
Rathjen FG. The CAR group of Ig cell adhesion proteins–Regulators of gap junctions? Bioessays 2020; 42:e2000031. [DOI: 10.1002/bies.202000031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/01/2020] [Indexed: 12/29/2022]
|
13
|
Wilmoth RL, Ferguson VL, Bryant SJ. A 3D, Dynamically Loaded Hydrogel Model of the Osteochondral Unit to Study Osteocyte Mechanobiology. Adv Healthc Mater 2020; 9:e2001226. [PMID: 33073541 PMCID: PMC7677224 DOI: 10.1002/adhm.202001226] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Osteocytes are mechanosensitive cells that orchestrate signaling in bone and cartilage across the osteochondral unit. The mechanisms by which osteocytes regulate osteochondral homeostasis and degeneration in response to mechanical cues remain unclear. This study introduces a novel 3D hydrogel bilayer composite designed to support osteocyte differentiation and bone matrix deposition in a bone-like layer and to recapitulate key aspects of the osteochondral unit's complex loading environment. The bilayer hydrogel is fabricated with a soft cartilage-like layer overlaying a stiff bone-like layer. The bone-like layer contains a stiff 3D-printed hydrogel structure infilled with a soft, degradable, cellular hydrogel. The IDG-SW3 cells embedded within the soft hydrogel mature into osteocytes and produce a mineralized collagen matrix. Under dynamic compressive strains, near-physiological levels of strain are achieved in the bone layer (≤ 0.08%), while the cartilage layer bears the majority of the strains (>99%). Under loading, the model induces an osteocyte response, measured by prostaglandin E2, that is frequency, but not strain, dependent: a finding attributed to altered fluid flow within the composite. Overall, this new hydrogel platform provides a novel approach to study osteocyte mechanobiology in vitro in an osteochondral tissue-mimetic environment.
Collapse
Affiliation(s)
- Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
| | - Virginia L Ferguson
- Department of Mechanical Engineering, University of Colorado Boulder, 1111 Engineering Drive, Boulder, CO, 80309-0427, USA
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
| | - Stephanie J Bryant
- BioFrontiers Institute, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
- Materials Science and Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO, 80309, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, 3415 Colorado Ave, Boulder, CO, 80309-0596, USA
| |
Collapse
|
14
|
Aziz AH, Wilmoth RL, Ferguson VL, Bryant SJ. IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:1666-1680. [PMID: 32719827 DOI: 10.1021/acsabm.9b01227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Osteocytes reside within a heavily mineralized matrix making them difficult to study in vivo and to extract for studies in vitro. IDG-SW3 cells are capable of producing mineralized collagen matrix and transitioning from osteoblasts to mature osteocytes, thus offering an alternative to study osteoblast to late osteocyte differentiation in vitro. The goal for this work was to develop a 3D degradable hydrogel to support IDG-SW3 differentiation and deposition of bone ECM. In 2D, the genes Mmp2 and Mmp13 increased during IDG-SW3 differentiation and were used as targets to create a MMP-sensitive poly(ethylene glycol) hydrogel containing the peptide crosslink GCGPLG-LWARCG and RGD to promote cell attachment. IDG-SW3 differentiation in the MMP-sensitive hydrogels improved over non-degradable hydrogels and standard 2D culture. Alkaline phosphatase activity at day 14 was higher, Dmp1 and Phex were 8.1-fold and 3.8-fold higher, respectively, and DMP1 protein expression was more pronounced in the MMP-sensitive hydrogels compared to non-degradable hydrogels. Cell-encapsulation density (cells/ml precursor) influenced formation of dendrite-like cellular process and mineral and collagen deposition with 80×106 performing better than 2×106 or 20×106, while connexin 43 was not affected by cell density. The cell density effects were more pronounced in the MMP-sensitive hydrogels over non-degradable hydrogels. This study identified that high cell encapsulation density and a hydrogel susceptible to cell-mediated degradation enhanced mineralized collagen matrix and osteocyte differentiation. Overall, a promising hydrogel is presented that supports IDG-SW3 cell maturation from osteoblasts to osteocytes in 3D.
Collapse
Affiliation(s)
- Aaron H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA
| | - Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Virginia L Ferguson
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA.,Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309 USA.,Material Science and Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA.,Material Science and Engineering, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
15
|
Khalipina D, Kaga Y, Dacher N, Chevalier NR. Smooth muscle contractility causes the gut to grow anisotropically. J R Soc Interface 2019; 16:20190484. [PMID: 31594523 DOI: 10.1098/rsif.2019.0484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The intestine is the most anisotropically shaped organ, but, when grown in culture, embryonic intestinal stem cells form star- or sphere-shaped organoids. Here, we present evidence that spontaneous tonic and phasic contractions of the circular smooth muscle of the embryonic gut cause short-timescale elongation of the organ by a purely mechanical, self-squeezing effect. We present an innovative culture set-up to achieve embryonic gut growth in culture and demonstrate by three different methods (embryological, pharmacological and microsurgical) that gut elongational growth is compromised when smooth muscle contractions are inhibited. We conclude that the cumulated short-term mechanical deformations induced by circular smooth muscle lead to long-term anisotropic growth of the gut, thus demonstrating a self-consistent way by which the function of this organ (peristalsis) directs its shape (morphogenesis). Our model correctly predicts that longitudinal smooth muscle differentiation later in embryogenesis slows down elongation, and that several mice models with defective gut smooth muscle contractility also exhibit gut growth defects. We lay out a comprehensive scheme of forces acting on the gut during embryogenesis and of their role in the morphogenesis of this organ. This knowledge will help design efficient in vitro organ growth protocols and handle gut growth pathologies such as short bowel syndrome.
Collapse
Affiliation(s)
- Diana Khalipina
- Laboratoire Matière et Systèmes Complexes CNRS UMR 7057, Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Yusuke Kaga
- Laboratoire Matière et Systèmes Complexes CNRS UMR 7057, Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Nicolas Dacher
- Laboratoire Matière et Systèmes Complexes CNRS UMR 7057, Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| | - Nicolas R Chevalier
- Laboratoire Matière et Systèmes Complexes CNRS UMR 7057, Université de Paris, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
16
|
Gharesouran J, Esfahani BS, Valilou SF, Moradi M, Mousavi MH, Rezazadeh M. First Report of Congenital Short Bowel Syndrome in an Iranian Patient Caused by a Mutation in the CLMP Gene. J Pediatr Genet 2019; 8:73-80. [PMID: 31061750 DOI: 10.1055/s-0038-1675339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/15/2018] [Indexed: 12/29/2022]
Abstract
Congenital short bowel syndrome (CSBS) is a rare congenital neonatal disorder. CSBS results from intestinal impairment during embryogenesis. Mutated CXADR-like membrane protein ( CLMP ) and Filamin A genes are involved in the cause of CSBS. In this study, due to our misdiagnosis, we had to perform whole exome sequencing on the patient, and also we implemented cosegregation analysis on his parents with consanguineous marriage and also parents' mothers. We identified a homozygous loss of function mutation in the CLMP gene in exon 5 (c.664C > T, p.R222X). Also, both parents and grandmothers of the proband were heterozygous for this mutation. Loss of function mutation in CLMP causes CSBS, leading to impaired intestinal development.
Collapse
Affiliation(s)
- Jalal Gharesouran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnaz Salek Esfahani
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Farajzadeh Valilou
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohsen Moradi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Hadi Mousavi
- Department of Pediatric Endocrinology, Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Division of Medical Genetics, Tabriz Children's Hospital, University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Excitation-Contraction Coupling in Ureteric Smooth Muscle: Mechanisms Driving Ureteric Peristalsis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:103-119. [DOI: 10.1007/978-981-13-5895-1_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|