1
|
Zhu M, Li Y, Shen Q, Gong Z, Liu D. Sex hormone receptors, calcium-binding protein and Yap1 signaling regulate sex-dependent liver cell proliferation following partial hepatectomy. Dis Model Mech 2024; 17:dmm050900. [PMID: 39397390 PMCID: PMC11556313 DOI: 10.1242/dmm.050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024] Open
Abstract
Partial hepatectomy (PH) is commonly used to treat patients with hepatocellular carcinoma. The recovery of patients from PH depends on the initiation of liver regeneration, a process that mainly relies on liver cell proliferation. As sex affects the human liver regeneration progress, we investigated sex disparity in PH-induced liver regeneration in adult zebrafish. We found that, after PH, males began liver regeneration earlier than females in terms of liver cell proliferation and liver mass recovery, and this was associated with earlier activation of Yap1 signaling in male than female livers. We also found that androgen receptors regulated the sex-biased liver regeneration in a Yap1-dependent manner and that activated estrogen receptors are responsible for the later onset of female hepatocyte proliferation. Furthermore, we identified that S100A1, a calcium-binding protein, regulates the sex disparity in liver regeneration, as heterozygous S100A1 knockout inhibited Yap1 activity in male livers and delayed hepatocyte proliferation in males following PH. Thus, multiple pathways and/or their interplays contribute to the sex disparity in liver regeneration, suggesting that sex-biased therapeutic strategies are required for patients who have received PH-based therapies.
Collapse
Affiliation(s)
- Mingkai Zhu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Qiaosen Shen
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Dong Liu
- School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Pensotti A, Bizzarri M, Bertolaso M. The phenotypic reversion of cancer: Experimental evidences on cancer reversibility through epigenetic mechanisms (Review). Oncol Rep 2024; 51:48. [PMID: 38275101 PMCID: PMC10835663 DOI: 10.3892/or.2024.8707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
Different experimental models reveal that malignant cancer cells can be induced to change their phenotype into a benign one. This phenotypic transformation, confirmed both in vitro and in vivo, currently is known as 'tumor reversion'. This evidence raises a radical question among current cancer models: Is cancer reversible? How do genetic and epigenetic alterations hierarchically relate? Understanding the mechanisms of 'tumor reversion' represents a key point in order to evolve the actual cancer models and develop new heuristic models that can possibly lead to drugs that target epigenetic mechanisms, for example epigenetic drugs. Even though evidence of tumor reversion dates back to the 1950s, this remains a completely new field of research recently re‑discovered thanks to the interest in cell reprogramming research, developmental biology and the increasing understanding of epigenetic mechanisms. In the current review, a comprehensive review of all the main experimental models on tumor reversion was presented.
Collapse
Affiliation(s)
- Andrea Pensotti
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| | - Mariano Bizzarri
- Systems Biology Group Lab, Department of Experimental Medicine, Sapienza University, I‑00185 Rome, Italy
| | - Marta Bertolaso
- Research Unit of Philosophy of Science and Human Development, University Campus Bio‑Medico of Rome, I‑00128 Rome, Italy
| |
Collapse
|
3
|
Lalonde RL, Kemmler CL, Riemslagh FW, Aman AJ, Kresoja-Rakic J, Moran HR, Nieuwenhuize S, Parichy DM, Burger A, Mosimann C. Heterogeneity and genomic loci of ubiquitous transgenic Cre reporter lines in zebrafish. Dev Dyn 2022; 251:1754-1773. [PMID: 35582941 PMCID: PMC10069295 DOI: 10.1002/dvdy.499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The most-common strategy for zebrafish Cre/lox-mediated lineage labeling experiments combines ubiquitously expressed, lox-based Switch reporter transgenes with tissue-specific Cre or 4-OH-Tamoxifen-inducible CreERT2 driver lines. Although numerous Cre driver lines have been produced, only a few broadly expressed Switch reporters exist in zebrafish and their generation by random transgene integration has been challenging due to position-effect sensitivity of the lox-flanked recombination cassettes. Here, we compare commonly used Switch reporter lines for their recombination efficiency and reporter expression pattern during zebrafish development. RESULTS Using different experimental setups, we show that ubi:Switch and hsp70l:Switch outperform current generations of the two additional Switch reporters actb2:BFP-DsRed and actb2:Stop-DsRed. Our comparisons also document preferential Cre-dependent recombination of ubi:Switch and hsp70l:Switch in distinct zebrafish tissues at early developmental stages. To investigate what genomic features may influence Cre accessibility and lox recombination efficiency in highly functional Switch lines, we mapped these transgenes and charted chromatin dynamics at their integration sites. CONCLUSIONS Our data documents the heterogeneity among lox-based Switch transgenes toward informing suitable transgene selection for lineage labeling experiments. Our work further proposes that ubi:Switch and hsp70l:Switch define genomic integration sites suitable for universal transgene or switch reporter knock-in in zebrafish.
Collapse
Affiliation(s)
- Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Cassie L Kemmler
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Fréderike W Riemslagh
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Andrew J Aman
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Jelena Kresoja-Rakic
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah R Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Susan Nieuwenhuize
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - David M Parichy
- Department of Biology, University of Virginia, Charlottesville, Virginia, USA.,Department of Biology and Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Alexa Burger
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Basheer F, Dhar P, Samarasinghe RM. Zebrafish Models of Paediatric Brain Tumours. Int J Mol Sci 2022; 23:9920. [PMID: 36077320 PMCID: PMC9456103 DOI: 10.3390/ijms23179920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Paediatric brain cancer is the second most common childhood cancer and is the leading cause of cancer-related deaths in children. Despite significant advancements in the treatment modalities and improvements in the 5-year survival rate, it leaves long-term therapy-associated side effects in paediatric patients. Addressing these impairments demands further understanding of the molecularity and heterogeneity of these brain tumours, which can be demonstrated using different animal models of paediatric brain cancer. Here we review the use of zebrafish as potential in vivo models for paediatric brain tumour modelling, as well as catalogue the currently available zebrafish models used to study paediatric brain cancer pathophysiology, and discuss key findings, the unique attributes that these models add, current challenges and therapeutic significance.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Poshmaal Dhar
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| | - Rasika M. Samarasinghe
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
- Instiute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
5
|
Li Y, Lee AQ, Lu Z, Sun Y, Lu JW, Ren Z, Zhang N, Liu D, Gong Z. Systematic Characterization of the Disruption of Intestine during Liver Tumor Progression in the xmrk Oncogene Transgenic Zebrafish Model. Cells 2022; 11:cells11111810. [PMID: 35681505 PMCID: PMC9180660 DOI: 10.3390/cells11111810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
The crosstalk between tumors and their local microenvironment has been well studied, whereas the effect of tumors on distant tissues remains understudied. Studying how tumors affect other tissues is important for understanding the systemic effect of tumors and for improving the overall health of cancer patients. In this study, we focused on the changes in the intestine during liver tumor progression, using a previously established liver tumor model through inducible expression of the oncogene xmrk in zebrafish. Progressive disruption of intestinal structure was found in the tumor fish, displaying villus damage, thinning of bowel wall, increase in goblet cell number, decrease in goblet cell size and infiltration of eosinophils, most of which were observed phenotypes of an inflammatory intestine. Intestinal epithelial cell renewal was also disrupted, with decreased cell proliferation and increased cell death. Analysis of intestinal gene expression through RNA-seq suggested deregulation of genes related to intestinal function, epithelial barrier and homeostasis and activation of pathways in inflammation, epithelial mesenchymal transition, extracellular matrix organization, as well as hemostasis. Gene set enrichment analysis showed common gene signatures between the intestine of liver tumor fish and human inflammatory bowel disease, the association of which with cancer has been recently noticed. Overall, this study represented the first systematic characterization of the disruption of intestine under the liver tumor condition and suggested targeting intestinal inflammation as a potential approach for managing cancer cachexia.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| | - Ai Qi Lee
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Zhiyuan Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuxi Sun
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Jeng-Wei Lu
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
| | - Na Zhang
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Dong Liu
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore; (A.Q.L.); (Z.L.); (Y.S.); (J.-W.L.); (Z.R.); (N.Z.)
- Correspondence: (Y.L.); (Z.G.)
| |
Collapse
|
6
|
Yu G, Sun P, Aierken R, Sun C, Zhang Z, Che Q, Zhang G, Zhu T, Gu Q, Li M, Li D. Linear polyketides produced by co-culture of Penicillium crustosum and Penicillium fellutanum. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:237-244. [PMID: 37073220 PMCID: PMC10077197 DOI: 10.1007/s42995-021-00125-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/17/2021] [Indexed: 05/03/2023]
Abstract
Two new polyketides, penifellutins A (1) and B (2), possessing a 22 carbon linear skeleton, were isolated from a co-culture of the deep-sea-derived fungi Penicillium crustosum PRB-2 and Penicillium fellutanum HDN14-323. Meanwhile, two esterification products of 1, penifellutins C (3) and D (4), were obtained because compound 1 could be esterified spontaneously when stored in methanol. Their configurations were difficult to determine because of chiral central crowdedness, structural flexibility and instability. As such, we solved this issue by comprehensively using Mo2(OAc)4-based CD experiments, density functional theory calculation of 13C NMR, DP4 + probability analysis and many chemical reactions, including making acetonide derivative, Mosher's method, PGME method, etc. Compounds 1 and 2 show obvious inhibitory activity on the liver hyperplasia of zebrafish larvae at a concentration of 10 μmol/L, while 3 and 4 show no activity, indicating that two carboxyls in the structure are important active sites. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00125-8.
Collapse
Affiliation(s)
- Guihong Yu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109 China
| | - Peng Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Reyilamu Aierken
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102 China
| | - Chunxiao Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Zhenzhen Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| | - Qianqun Gu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen, 361102 China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Drugs and Bioproducts of Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237 China
| |
Collapse
|
7
|
Kulkarni A, Ibrahim S, Haider I, Basha A, Montgomery E, Ermis E, Mirmira RG, Anderson RM. A Novel 2-Hit Zebrafish Model to Study Early Pathogenesis of Non-Alcoholic Fatty Liver Disease. Biomedicines 2022; 10:479. [PMID: 35203687 PMCID: PMC8962409 DOI: 10.3390/biomedicines10020479] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in adults. NAFLD progresses from benign liver fat accumulation to liver inflammation and cirrhosis, and ultimately leads to liver failure. Although several rodent models have been established for studying NAFLD, they have limitations that include cost, speed of disease development, key dissimilarities, and poor amenability to pharmacological screens. Here, we present a novel 2-hit zebrafish model to replicate aspects of NAFLD pathogenesis. We fed zebrafish larvae a high-fat diet (HFD) to drive liver fat accumulation (first hit). Next, we exacerbated liver-specific inflammation using a transgenic line (fabp10-CETI-PIC3) that induces the expression of proinflammatory cytokines following induction with doxycycline (second hit). These hits promoted fat accumulation and liver inflammation, as demonstrated by the high expression of inflammatory cytokines, macrophage infiltration, stress induction, and hepatic lipid droplet accumulation. Furthermore, zebrafish in this paradigm showed deranged glucose metabolism. To validate a small-molecule screening approach, we treated HFD-fed fish with pioglitazone, a drug shown to be beneficial for NAFLD in humans, and measured a sharp reduction in liver lipid accumulation. These results demonstrate new utility for zebrafish in modeling early NAFLD pathogenesis and demonstrate their feasibility for in vivo screening of new pharmacological interventions.
Collapse
Affiliation(s)
- Abhishek Kulkarni
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (A.K.); (A.B.); (E.M.); (E.E.)
| | - Sara Ibrahim
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.I.); (I.H.)
| | - Isra Haider
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (S.I.); (I.H.)
| | - Amina Basha
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (A.K.); (A.B.); (E.M.); (E.E.)
| | - Emma Montgomery
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (A.K.); (A.B.); (E.M.); (E.E.)
| | - Ebru Ermis
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (A.K.); (A.B.); (E.M.); (E.E.)
| | - Raghavendra G. Mirmira
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (A.K.); (A.B.); (E.M.); (E.E.)
| | - Ryan M. Anderson
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; (A.K.); (A.B.); (E.M.); (E.E.)
| |
Collapse
|
8
|
Lee AQ, Li Y, Gong Z. Inducible Liver Cancer Models in Transgenic Zebrafish to Investigate Cancer Biology. Cancers (Basel) 2021; 13:5148. [PMID: 34680297 PMCID: PMC8533791 DOI: 10.3390/cancers13205148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/20/2022] Open
Abstract
Primary liver cancer is one of the most prevalent and deadly cancers, which incidence continues to increase while treatment response remains poor; thus, in-depth understanding of tumour events is necessary to develop more effective therapies. Animal models for liver cancer are powerful tools to reach this goal. Over the past decade, our laboratory has established multiple oncogene transgenic zebrafish lines that can be robustly induced to develop liver cancer. Histological, transcriptomic and molecular analyses validate the use of these transgenic zebrafish as experimental models for liver cancer. In this review, we provide a comprehensive summary of our findings with these inducible zebrafish liver cancer models in tumour initiation, oncogene addiction, tumour microenvironment, gender disparity, cancer cachexia, drug screening and others. Induced oncogene expression causes a rapid change of the tumour microenvironment such as inflammatory responses, increased vascularisation and rapid hepatic growth. In several models, histologically-proven carcinoma can be induced within one week of chemical inducer administration. Interestingly, the induced liver tumours show the ability to regress when the transgenic oncogene is suppressed by the withdrawal of the chemical inducer. Like human liver cancer, there is a strong bias of liver cancer severity in male zebrafish. After long-term tumour progression, liver cancer-bearing zebrafish also show symptoms of cancer cachexia such as muscle-wasting. In addition, the zebrafish models have been used to screen for anti-metastasis drugs as well as to evaluate environmental toxicants in carcinogenesis. These findings demonstrated that these inducible zebrafish liver cancer models provide rapid and convenient experimental tools for further investigation of fundamental cancer biology, with the potential for the discovery of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 119077, Singapore; (A.Q.L.); (Y.L.)
| |
Collapse
|
9
|
Andreana M, Sturtzel C, Spielvogel CP, Papp L, Leitgeb R, Drexler W, Distel M, Unterhuber A. Toward Quantitative in vivo Label-Free Tracking of Lipid Distribution in a Zebrafish Cancer Model. Front Cell Dev Biol 2021; 9:675636. [PMID: 34277618 PMCID: PMC8280786 DOI: 10.3389/fcell.2021.675636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022] Open
Abstract
Cancer cells often adapt their lipid metabolism to accommodate the increased fatty acid demand for membrane biogenesis and energy production. Upregulation of fatty acid uptake from the environment of cancer cells has also been reported as an alternative mechanism. To investigate the role of lipids in tumor onset and progression and to identify potential diagnostic biomarkers, lipids are ideally imaged directly within the intact tumor tissue in a label-free way. In this study, we investigated lipid accumulation and distribution in living zebrafish larvae developing a tumor by means of coherent anti-Stokes Raman scattering microscopy. Quantitative textural features based on radiomics revealed higher lipid accumulation in oncogene-expressing larvae compared to healthy ones. This high lipid accumulation could reflect an altered lipid metabolism in the hyperproliferating oncogene-expressing cells.
Collapse
Affiliation(s)
- Marco Andreana
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Caterina Sturtzel
- Innovative Cancer Models, St. Anna Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Clemens P Spielvogel
- Division of Nuclear Medicine, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Laszlo Papp
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory OPTRAMED, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Distel
- Innovative Cancer Models, St. Anna Children's Cancer Research Institute, Vienna, Austria.,Zebrafish Platform Austria for Preclinical Drug Screening (ZANDR), Vienna, Austria
| | - Angelika Unterhuber
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Tripathi A, Kashyap A, Tripathi G, Yadav J, Bibban R, Aggarwal N, Thakur K, Chhokar A, Jadli M, Sah AK, Verma Y, Zayed H, Husain A, Bharti AC, Kashyap MK. Tumor reversion: a dream or a reality. Biomark Res 2021; 9:31. [PMID: 33958005 PMCID: PMC8101112 DOI: 10.1186/s40364-021-00280-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023] Open
Abstract
Reversion of tumor to a normal differentiated cell once considered a dream is now at the brink of becoming a reality. Different layers of molecules/events such as microRNAs, transcription factors, alternative RNA splicing, post-transcriptional, post-translational modifications, availability of proteomics, genomics editing tools, and chemical biology approaches gave hope to manipulation of cancer cells reversion to a normal cell phenotype as evidences are subtle but definitive. Regardless of the advancement, there is a long way to go, as customized techniques are required to be fine-tuned with precision to attain more insights into tumor reversion. Tumor regression models using available genome-editing methods, followed by in vitro and in vivo proteomics profiling techniques show early evidence. This review summarizes tumor reversion developments, present issues, and unaddressed challenges that remained in the uncharted territory to modulate cellular machinery for tumor reversion towards therapeutic purposes successfully. Ongoing research reaffirms the potential promises of understanding the mechanism of tumor reversion and required refinement that is warranted in vitro and in vivo models of tumor reversion, and the potential translation of these into cancer therapy. Furthermore, therapeutic compounds were reported to induce phenotypic changes in cancer cells into normal cells, which will contribute in understanding the mechanism of tumor reversion. Altogether, the efforts collectively suggest that tumor reversion will likely reveal a new wave of therapeutic discoveries that will significantly impact clinical practice in cancer therapy.
Collapse
Affiliation(s)
- Avantika Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Anjali Kashyap
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| | - Greesham Tripathi
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India
| | - Joni Yadav
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Rakhi Bibban
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Nikita Aggarwal
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Kulbhushan Thakur
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Arun Chhokar
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Mohit Jadli
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India
| | - Ashok Kumar Sah
- Department of Medical Laboratory Technology, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), India
- Department of Pathology and Laboratory Medicine, Medanta-The Medicity, Haryana, Gurugram, India
| | - Yeshvandra Verma
- Department of Toxicology, C C S University, Meerut, UP, 250004, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Amjad Husain
- Centre for Science & Society, Indian Institute of Science Education and Research (IISER), Bhopal, India
- Innovation and Incubation Centre for Entrepreneurship (IICE), Indian Institute of Science Education and Research (IISER), Bhopal, India
| | - Alok Chandra Bharti
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| | - Manoj Kumar Kashyap
- Amity Stem Cell Institute, Amity Medical School, Amity University Haryana, Panchgaon, Haryana, Manesar (Gurugram), -122413, India.
- Department of Zoology, Molecular Oncology Laboratory, University of Delhi (North Campus), New Delhi, 110007, India.
| |
Collapse
|
11
|
Erenpreisa J, Giuliani A. Resolution of Complex Issues in Genome Regulation and Cancer Requires Non-Linear and Network-Based Thermodynamics. Int J Mol Sci 2019; 21:E240. [PMID: 31905791 PMCID: PMC6981914 DOI: 10.3390/ijms21010240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/22/2019] [Accepted: 12/27/2019] [Indexed: 02/06/2023] Open
Abstract
The apparent lack of success in curing cancer that was evidenced in the last four decades of molecular medicine indicates the need for a global re-thinking both its nature and the biological approaches that we are taking in its solution. The reductionist, one gene/one protein method that has served us well until now, and that still dominates in biomedicine, requires complementation with a more systemic/holistic approach, to address the huge problem of cross-talk between more than 20,000 protein-coding genes, about 100,000 protein types, and the multiple layers of biological organization. In this perspective, the relationship between the chromatin network organization and gene expression regulation plays a fundamental role. The elucidation of such a relationship requires a non-linear thermodynamics approach to these biological systems. This change of perspective is a necessary step for developing successful 'tumour-reversion' therapeutic strategies.
Collapse
Affiliation(s)
- Jekaterina Erenpreisa
- Cancer Research Division, Latvian Biomedicine Research and Study Centre, LV1067 Riga, Latvia
| | - Alessandro Giuliani
- Environmental and Health Department, Istituto Superiore di Sanità, 00161 Rome, Italy;
| |
Collapse
|
12
|
Matyunina EA, Emelyanov AV, Kurbatova TV, Makashov AA, Mizgirev IV, Kozlov AP. Evolutionarily novel genes are expressed in transgenic fish tumors and their orthologs are involved in development of progressive traits in humans. Infect Agent Cancer 2019; 14:46. [PMID: 31827597 PMCID: PMC6896781 DOI: 10.1186/s13027-019-0262-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/20/2019] [Indexed: 01/01/2023] Open
Abstract
Abstract Earlier we suggested a new hypothesis of the possible evolutionary role of hereditary tumors (Kozlov, Evolution by tumor Neofunctionalization, 2014), and described a new class of genes – tumor specifically expressed, evolutionarily novel (TSEEN) genes - that are predicted by this hypothesis (Kozlov, Infect Agents Cancer 11:34, 2016). In this paper we studied evolutionarily novel genes expressed in fish tumors after regression, as a model of evolving organs. As evolutionarily novel genes may not yet have organismal functions, we studied the acquisition of new gene functions by comparing fish evolutionarily novel genes with their human orthologs. We found that many genes involved in development of progressive traits in humans (lung, mammary gland, placenta, ventricular septum, etc.) originated in fish and are expressed in fish tumors and tumors after regression. These findings support a possible evolutionary role of hereditary tumors, and in particular the hypothesis of evolution by tumor neofunctionalization. Research highlights Earlier we described a new class of genes that are tumor-specifically expressed and evolutionarily novel (TSEEN). As the functions of TSEEN genes are often uncertain, we decided to study TSEEN genes of fishes so that we could trace the appearance of their new functions in higher vertebrates. We found that many human genes which are involved in development of progressive traits (placenta development, mammary gland and lung development etc.,) originated in fishes and are expressed in fish tumors.
Collapse
Affiliation(s)
- E A Matyunina
- 1Research Institute of Ultra-Pure Biologicals, Ministry of Public Health of the Russian Federation, St.-Petersburg, Russia.,2Peter the Great Saint-Petersburg Polytechnic University (SPbPU), St.-Petersburg, Russia
| | - A V Emelyanov
- 3The Biomedical Center (BMC), St.-Petersburg, Russia.,4Institute for Research on Cancer and Aging (IRCAN), Nice, France
| | - T V Kurbatova
- 1Research Institute of Ultra-Pure Biologicals, Ministry of Public Health of the Russian Federation, St.-Petersburg, Russia.,2Peter the Great Saint-Petersburg Polytechnic University (SPbPU), St.-Petersburg, Russia.,3The Biomedical Center (BMC), St.-Petersburg, Russia
| | - A A Makashov
- 1Research Institute of Ultra-Pure Biologicals, Ministry of Public Health of the Russian Federation, St.-Petersburg, Russia.,2Peter the Great Saint-Petersburg Polytechnic University (SPbPU), St.-Petersburg, Russia.,3The Biomedical Center (BMC), St.-Petersburg, Russia
| | - I V Mizgirev
- 5Petrov Research Institute of Oncology, St.-Petersburg, Russia
| | - A P Kozlov
- 1Research Institute of Ultra-Pure Biologicals, Ministry of Public Health of the Russian Federation, St.-Petersburg, Russia.,2Peter the Great Saint-Petersburg Polytechnic University (SPbPU), St.-Petersburg, Russia.,3The Biomedical Center (BMC), St.-Petersburg, Russia.,6Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|