1
|
Dogra D, Phan VA, Zhang S, Gavrilovici C, DiMarzo N, Narang A, Ibhazehiebo K, Kurrasch DM. Modulation of NMDA receptor signaling and zinc chelation prevent seizure-like events in a zebrafish model of SLC13A5 epilepsy. PLoS Biol 2025; 23:e3002499. [PMID: 40208862 PMCID: PMC12047791 DOI: 10.1371/journal.pbio.3002499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/02/2025] [Accepted: 02/26/2025] [Indexed: 04/12/2025] Open
Abstract
SLC13A5 encodes a citrate transporter highly expressed in the brain and is important for regulating intra- and extracellular citrate levels. Mutations in this gene cause rare infantile epilepsy characterized by lifelong seizures, developmental delays, behavioral deficits, poor motor progression, and language impairments. SLC13A5 individuals respond poorly to treatment options; yet drug discovery programs are limited due to a paucity of animal models that phenocopy human symptoms. Here, we used CRISPR/Cas9 to create loss-of-function mutations in slc13a5a and slc13a5b, the zebrafish paralogs to human SLC13A5. slc13a5 mutant larvae showed cognitive dysfunction and sleep disturbances, consistent with SLC13A5 individuals. These mutants also exhibited fewer neurons and a concomitant increase in apoptosis across the optic tectum, a region important for sensory processing. Further, slc13a5 mutants displayed hallmark features of epilepsy, including an imbalance in glutamatergic and GABAergic excitatory-inhibitory gene expression, increased fosab expression, disrupted neurometabolism, and neuronal hyperexcitation as measured in vivo by extracellular field recordings and live calcium imaging. Mechanistically, we tested the involvement of NMDA signaling and zinc chelation in slc13a5 mutant epilepsy-like phenotypes. Slc13a5 protein co-localizes with excitatory NMDA receptors in wild-type zebrafish and NMDA receptor expression is upregulated in the brain of slc13a5 mutant larvae. Additionally, low levels of zinc are found in the plasma membrane of slc13a5 mutants. NMDA receptor suppression and ZnCl2 treatment in slc13a5 mutant larvae rescued neurometabolic and hyperexcitable calcium events, as well as behavioral defects. These data provide empirical evidence in support of the hypothesis that excess extracellular citrate over-chelates the zinc ions needed to regulate NMDA receptor function, leading to sustained channel opening and an exaggerated excitatory response that manifests as seizures. These data show the utility of slc13a5 mutant zebrafish for studying SLC13A5 epilepsy and open new avenues for drug discovery.
Collapse
Affiliation(s)
- Deepika Dogra
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Van Anh Phan
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sinan Zhang
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cezar Gavrilovici
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Pediatrics, Clinical Neurosciences, Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nadia DiMarzo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ankita Narang
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Kingsley Ibhazehiebo
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deborah M. Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Stern MA, Dingledine R, Gross RE, Berglund K. Epilepsy insights revealed by intravital functional optical imaging. Front Neurol 2024; 15:1465232. [PMID: 39268067 PMCID: PMC11390408 DOI: 10.3389/fneur.2024.1465232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Despite an abundance of pharmacologic and surgical epilepsy treatments, there remain millions of patients suffering from poorly controlled seizures. One approach to closing this treatment gap may be found through a deeper mechanistic understanding of the network alterations that underly this aberrant activity. Functional optical imaging in vertebrate models provides powerful advantages to this end, enabling the spatiotemporal acquisition of individual neuron activity patterns across multiple seizures. This coupled with the advent of genetically encoded indicators, be them for specific ions, neurotransmitters or voltage, grants researchers unparalleled access to the intact nervous system. Here, we will review how in vivo functional optical imaging in various vertebrate seizure models has advanced our knowledge of seizure dynamics, principally seizure initiation, propagation and termination.
Collapse
Affiliation(s)
- Matthew A Stern
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Raymond Dingledine
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurological Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Ken Berglund
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Gutsfeld S, Wehmas L, Omoyeni I, Schweiger N, Leuthold D, Michaelis P, Howey XM, Gaballah S, Herold N, Vogs C, Wood C, Bertotto L, Wu GM, Klüver N, Busch W, Scholz S, Schor J, Tal T. Investigation of Peroxisome Proliferator-Activated Receptor Genes as Requirements for Visual Startle Response Hyperactivity in Larval Zebrafish Exposed to Structurally Similar Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77007. [PMID: 39046251 PMCID: PMC11268134 DOI: 10.1289/ehp13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish. OBJECTIVES The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish. METHODS Swimming behavior was assessed in 5-d postfertilization (dpf) larvae following developmental (1-4 dpf) or acute (5 dpf) exposure to 0.43 - 7.86 μ M PFOS, 7.87 - 120 μ M PFHxS, or 0.4% dimethyl sulfoxide (DMSO). After developmental exposure and chemical washout at 4 dpf, behavior was also assessed at 5-8 dpf. RNA sequencing was used to identify differences in global gene expression to perform transcriptomic benchmark concentration-response (BMC T ) modeling, and predict upstream regulators in PFOS- or PFHxS-exposed larvae. CRISPR/Cas9-based gene editing was used to knockdown peroxisome proliferator-activated receptors (ppars) pparaa/ab, pparda/db, or pparg at day 0. Knockdown crispants were exposed to 7.86 μ M PFOS or 0.4% DMSO from 1-4 dpf and behavior was assessed at 5 dpf. Coexposure with the ppard antagonist GSK3787 and PFOS was also performed. RESULTS Transient dark-phase hyperactivity occurred following developmental or acute exposure to PFOS or PFHxS, relative to the DMSO control. In contrast, visual startle response (VSR) hyperactivity only occurred following developmental exposure and was irreversible up to 8 dpf. Similar global transcriptomic profiles, BMC T estimates, and enriched functions were observed in PFOS- and PFHxS-exposed larvae, and ppars were identified as putative upstream regulators. Knockdown of pparda/db, but not pparaa/ab or pparg, blunted PFOS-dependent VSR hyperactivity to control levels. This finding was confirmed via antagonism of ppard in PFOS-exposed larvae. DISCUSSION This work identifies a novel adverse outcome pathway for VSR hyperactivity in larval zebrafish. We demonstrate that developmental, but not acute, exposure to PFOS triggered persistent VSR hyperactivity that required ppard function. https://doi.org/10.1289/EHP13667.
Collapse
Affiliation(s)
- Sebastian Gutsfeld
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Leah Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ifeoluwa Omoyeni
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Nicole Schweiger
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - David Leuthold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Paul Michaelis
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Xia Meng Howey
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shaza Gaballah
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nadia Herold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Carolina Vogs
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Wood
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Luísa Bertotto
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gi-Mick Wu
- Research and Development Institute for the Agri-Environment, Quebec, Quebec, Canada
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
- Medical Faculty, University Leipzig, Leipzig, Germany
| |
Collapse
|
4
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
5
|
Sourbron J, Proost R, Jansen K, Riva A, Eschermann K, Barnett JR, Lagae L. A novel GABRG2 variant in Sunflower syndrome: A case report and video EEG monitoring. Epileptic Disord 2023; 25:815-822. [PMID: 37632399 DOI: 10.1002/epd2.20154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/28/2023]
Abstract
OBJECTIVE Sunflower syndrome is a unique photosensitive epilepsy, characterized by heliotropism and stereotyped seizures associated with handwaving. These handwaving events (HWE) are thought to be an ictal phenomenon, although current data are contrasting. Photosensitive epilepsy occurs in 2%-5% of the epilepsy forms and several pathogenic gene variants have been associated with photosensitive epilepsy. However, the genetic etiology of Sunflower syndrome remains unknown. Antiseizure medications (ASM) efficacious in treating photosensitive epilepsy are valproic acid (VPA) and levetiracetam (LEV) although some forms, such as Sunflower syndrome, can be drug-resistant. METHODS AND RESULTS Here, we report an 8-year-old boy with an early onset of episodes of HWE that was initially categorized as behavioral problems for which risperidone was started. However, the medical history was suggestive of Sunflower syndrome, and subsequent video EEG showed focal mostly temporal and frontotemporal (right and left) epileptiform activity and confirmed the epileptic nature of the HWE. Thus, VPA was started and initially led to seizure frequency reduction. Molecular analyses showed a pathogenic variant in GABRG2 (c.1287G>A p.(Trp429Ter)), which has been associated with photosensitive and generalized epilepsy. SIGNIFICANCE Overall, clinicians worldwide should be cautious by interpreting HWE and/or other tic-like movements, since an epileptic origin cannot be ruled out. A prompt and correct diagnosis can be made by performing a video EEG early on in the diagnostic process when epileptic seizures are part of the differential diagnosis. Even though the genetic etiology of Sunflower syndrome remains poorly understood, this constellation supports further genetic testing since the detection of a pathogenic variant can help in making correct decisions regarding ASM management.
Collapse
Affiliation(s)
- Jo Sourbron
- Section Pediatric Neurology, Department of Development and Regeneration, University Hospital KU Leuven, Leuven, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Renee Proost
- Section Pediatric Neurology, Department of Development and Regeneration, University Hospital KU Leuven, Leuven, Belgium
| | - Katrien Jansen
- Section Pediatric Neurology, Department of Development and Regeneration, University Hospital KU Leuven, Leuven, Belgium
| | - Antonella Riva
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy
- IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Kirsten Eschermann
- Research Institute for Rehabilitation, Transition and Palliation, Paracelsus Medical University, Salzburg, Austria
- Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Clinic for Neuropediatrics and Neurological Rehabilitation, Epilepsy Center for Children and Adolescents, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - James Richard Barnett
- Pediatric Epilepsy, Program Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Lieven Lagae
- Section Pediatric Neurology, Department of Development and Regeneration, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Knap B, Nieoczym D, Kundap U, Kusio-Targonska K, Kukula-Koch W, Turski WA, Gawel K. Zebrafish as a robust preclinical platform for screening plant-derived drugs with anticonvulsant properties-a review. Front Mol Neurosci 2023; 16:1221665. [PMID: 37701853 PMCID: PMC10493295 DOI: 10.3389/fnmol.2023.1221665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/25/2023] [Indexed: 09/14/2023] Open
Abstract
Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").
Collapse
Affiliation(s)
- Bartosz Knap
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Uday Kundap
- Canada East Spine Center, Saint John Regional Hospital, Horizon Health Center, Saint John, NB, Canada
| | - Kamila Kusio-Targonska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University, Lublin, Poland
| | - Waldemar A. Turski
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
7
|
Jia ZQ, Zhang SG, Wang Y, Pan JH, Liu FF, Zhan EL, Fouad EA, Fu YL, Pan QR, Zhao CQ. Physiological Function of RDL1 and RDL2 Subunits of the Ionotropic GABA Receptor in the Spodoptera litura with the CRISPR/Cas9 System In Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11875-11883. [PMID: 37490029 DOI: 10.1021/acs.jafc.3c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
In insect ionotropic γ-aminobutyric acid receptor (iGABAR) subunits, only resistance to dieldrin (RDL) can be individually and functionally expressed in vitro. In lepidopteran, two to three RDL subtypes are identified; however, their physiological roles have not been distinguished in vivo. In this study, SlRdl1 and SlRdl2 of S. litura were individually knocked out using CRISPR/Cas9, respectively. The mortality and larval and pupal duration of KOSlRdl1 and KOSlRdl2 were increased. The flight time and distance were increased by 43.30%-80.66% and 58.96%-198.22%, respectively, in KOSlRdl1. The GABA-induced current was significantly decreased by 53.57%-74.28% and 46.91%-63.34% in the ventral nerve cord, and the GABA titer was significantly reduced by 17.65%-28.05% and 19.85%-42.46% in KOSlRdl1 and KOSlRdl2, respectively. In conclusion, SlRdl1 and SlRdl2 are necessary for the transmission of GABA-induced neural signals; however, only SlRdl1 could regulate the flight capability of S. litura. Our results provided a new avenue to study lepidopteran iGABARs.
Collapse
Affiliation(s)
- Zhong Qiang Jia
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Su Gui Zhang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Ying Wang
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jun Heng Pan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fei Fan Liu
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - En Ling Zhan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Eman Atef Fouad
- Department of Bioassay, Central Agricultural Pesticides Laboratory, Agricultural Research Center, 12618 Giza, Egypt
| | - Ya Li Fu
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qi Rui Pan
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chun Qing Zhao
- Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
8
|
Turrini L, Roschi L, de Vito G, Pavone FS, Vanzi F. Imaging Approaches to Investigate Pathophysiological Mechanisms of Brain Disease in Zebrafish. Int J Mol Sci 2023; 24:9833. [PMID: 37372981 DOI: 10.3390/ijms24129833] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zebrafish has become an essential model organism in modern biomedical research. Owing to its distinctive features and high grade of genomic homology with humans, it is increasingly employed to model diverse neurological disorders, both through genetic and pharmacological intervention. The use of this vertebrate model has recently enhanced research efforts, both in the optical technology and in the bioengineering fields, aiming at developing novel tools for high spatiotemporal resolution imaging. Indeed, the ever-increasing use of imaging methods, often combined with fluorescent reporters or tags, enable a unique chance for translational neuroscience research at different levels, ranging from behavior (whole-organism) to functional aspects (whole-brain) and down to structural features (cellular and subcellular). In this work, we present a review of the imaging approaches employed to investigate pathophysiological mechanisms underlying functional, structural, and behavioral alterations of human neurological diseases modeled in zebrafish.
Collapse
Affiliation(s)
- Lapo Turrini
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Lorenzo Roschi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Gaetano Pieraccini 6, 50139 Florence, Italy
- Interdepartmental Centre for the Study of Complex Dynamics, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Via Giovanni Sansone 1, 50019 Sesto Fiorentino, Italy
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
9
|
Burrows DRW, Diana G, Pimpel B, Moeller F, Richardson MP, Bassett DS, Meyer MP, Rosch RE. Microscale Neuronal Activity Collectively Drives Chaotic and Inflexible Dynamics at the Macroscale in Seizures. J Neurosci 2023; 43:3259-3283. [PMID: 37019622 PMCID: PMC7614507 DOI: 10.1523/jneurosci.0171-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 04/07/2023] Open
Abstract
Neuronal activity propagates through the network during seizures, engaging brain dynamics at multiple scales. Such propagating events can be described through the avalanches framework, which can relate spatiotemporal activity at the microscale with global network properties. Interestingly, propagating avalanches in healthy networks are indicative of critical dynamics, where the network is organized to a phase transition, which optimizes certain computational properties. Some have hypothesized that the pathologic brain dynamics of epileptic seizures are an emergent property of microscale neuronal networks collectively driving the brain away from criticality. Demonstrating this would provide a unifying mechanism linking microscale spatiotemporal activity with emergent brain dysfunction during seizures. Here, we investigated the effect of drug-induced seizures on critical avalanche dynamics, using in vivo whole-brain two-photon imaging of GCaMP6s larval zebrafish (males and females) at single neuron resolution. We demonstrate that single neuron activity across the whole brain exhibits a loss of critical statistics during seizures, suggesting that microscale activity collectively drives macroscale dynamics away from criticality. We also construct spiking network models at the scale of the larval zebrafish brain, to demonstrate that only densely connected networks can drive brain-wide seizure dynamics away from criticality. Importantly, such dense networks also disrupt the optimal computational capacities of critical networks, leading to chaotic dynamics, impaired network response properties and sticky states, thus helping to explain functional impairments during seizures. This study bridges the gap between microscale neuronal activity and emergent macroscale dynamics and cognitive dysfunction during seizures.SIGNIFICANCE STATEMENT Epileptic seizures are debilitating and impair normal brain function. It is unclear how the coordinated behavior of neurons collectively impairs brain function during seizures. To investigate this we perform fluorescence microscopy in larval zebrafish, which allows for the recording of whole-brain activity at single-neuron resolution. Using techniques from physics, we show that neuronal activity during seizures drives the brain away from criticality, a regime that enables both high and low activity states, into an inflexible regime that drives high activity states. Importantly, this change is caused by more connections in the network, which we show disrupts the ability of the brain to respond appropriately to its environment. Therefore, we identify key neuronal network mechanisms driving seizures and concurrent cognitive dysfunction.
Collapse
Affiliation(s)
- Dominic R W Burrows
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Giovanni Diana
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Birgit Pimpel
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Great Ormond Street-University College London Institute of Child Health, University College London, London WC1N 1EH, United Kingdom
| | - Friederike Moeller
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
| | - Mark P Richardson
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Departments of Electrical and Systems Engineering, Physics and Astronomy, Neurology, and Psychiatry University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
- Santa Fe Institute, Santa Fe NM 87501, New Mexico
| | - Martin P Meyer
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Richard E Rosch
- Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
- Department of Neurophysiology, Great Ormond Street Hospital National Health Service Foundation Trust, London WC1N 3JH, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, Pennsylvania
| |
Collapse
|
10
|
Sun S, Wang H. Clocking Epilepsies: A Chronomodulated Strategy-Based Therapy for Rhythmic Seizures. Int J Mol Sci 2023; 24:4223. [PMID: 36835631 PMCID: PMC9962262 DOI: 10.3390/ijms24044223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by hypersynchronous recurrent neuronal activities and seizures, as well as loss of muscular control and sometimes awareness. Clinically, seizures have been reported to display daily variations. Conversely, circadian misalignment and circadian clock gene variants contribute to epileptic pathogenesis. Elucidation of the genetic bases of epilepsy is of great importance because the genetic variability of the patients affects the efficacies of antiepileptic drugs (AEDs). For this narrative review, we compiled 661 epilepsy-related genes from the PHGKB and OMIM databases and classified them into 3 groups: driver genes, passenger genes, and undetermined genes. We discuss the potential roles of some epilepsy driver genes based on GO and KEGG analyses, the circadian rhythmicity of human and animal epilepsies, and the mutual effects between epilepsy and sleep. We review the advantages and challenges of rodents and zebrafish as animal models for epileptic studies. Finally, we posit chronomodulated strategy-based chronotherapy for rhythmic epilepsies, integrating several lines of investigation for unraveling circadian mechanisms underpinning epileptogenesis, chronopharmacokinetic and chronopharmacodynamic examinations of AEDs, as well as mathematical/computational modeling to help develop time-of-day-specific AED dosing schedules for rhythmic epilepsy patients.
Collapse
Affiliation(s)
- Sha Sun
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou 215123, China
- School of Biology and Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Ochenkowska K, Herold A, Samarut É. Zebrafish Is a Powerful Tool for Precision Medicine Approaches to Neurological Disorders. Front Mol Neurosci 2022; 15:944693. [PMID: 35875659 PMCID: PMC9298522 DOI: 10.3389/fnmol.2022.944693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/17/2022] [Indexed: 12/17/2022] Open
Abstract
Personalized medicine is currently one of the most promising tools which give hope to patients with no suitable or no available treatment. Patient-specific approaches are particularly needed for common diseases with a broad phenotypic spectrum as well as for rare and yet-undiagnosed disorders. In both cases, there is a need to understand the underlying mechanisms and how to counteract them. Even though, during recent years, we have been observing the blossom of novel therapeutic techniques, there is still a gap to fill between bench and bedside in a patient-specific fashion. In particular, the complexity of genotype-to-phenotype correlations in the context of neurological disorders has dampened the development of successful disease-modifying therapeutics. Animal modeling of human diseases is instrumental in the development of therapies. Currently, zebrafish has emerged as a powerful and convenient model organism for modeling and investigating various neurological disorders. This model has been broadly described as a valuable tool for understanding developmental processes and disease mechanisms, behavioral studies, toxicity, and drug screening. The translatability of findings obtained from zebrafish studies and the broad prospect of human disease modeling paves the way for developing tailored therapeutic strategies. In this review, we will discuss the predictive power of zebrafish in the discovery of novel, precise therapeutic approaches in neurosciences. We will shed light on the advantages and abilities of this in vivo model to develop tailored medicinal strategies. We will also investigate the newest accomplishments and current challenges in the field and future perspectives.
Collapse
Affiliation(s)
- Katarzyna Ochenkowska
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Aveeva Herold
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
| | - Éric Samarut
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, QC, Canada.,Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.,Modelis Inc., Montreal, QC, Canada
| |
Collapse
|
12
|
Turrini L, Sorelli M, de Vito G, Credi C, Tiso N, Vanzi F, Pavone FS. Multimodal Characterization of Seizures in Zebrafish Larvae. Biomedicines 2022; 10:951. [PMID: 35625689 PMCID: PMC9139036 DOI: 10.3390/biomedicines10050951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/15/2022] [Indexed: 11/17/2022] Open
Abstract
Epilepsy accounts for a significant proportion of the world's disease burden. Indeed, many research efforts are produced both to investigate the basic mechanism ruling its genesis and to find more effective therapies. In this framework, the use of zebrafish larvae, owing to their peculiar features, offers a great opportunity. Here, we employ transgenic zebrafish larvae expressing GCaMP6s in all neurons to characterize functional alterations occurring during seizures induced by pentylenetetrazole. Using a custom two-photon light-sheet microscope, we perform fast volumetric functional imaging of the entire larval brain, investigating how different brain regions contribute to seizure onset and propagation. Moreover, employing a custom behavioral tracking system, we outline the progressive alteration of larval swim kinematics, resulting from different grades of seizures. Collectively, our results show that the epileptic larval brain undergoes transitions between diverse neuronal activity regimes. Moreover, we observe that different brain regions are progressively recruited into the generation of seizures of diverse severity. We demonstrate that midbrain regions exhibit highest susceptibility to the convulsant effects and that, during periods preceding abrupt hypersynchronous paroxysmal activity, they show a consistent increase in functional connectivity. These aspects, coupled with the hub-like role that these regions exert, represent important cues in their identification as epileptogenic hubs.
Collapse
Affiliation(s)
- Lapo Turrini
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Michele Sorelli
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
| | - Giuseppe de Vito
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131 Padova, Italy;
| | - Francesco Vanzi
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Italy;
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy; (G.d.V.); (C.C.); (F.V.)
- National Institute of Optics, National Research Council, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Barnaby W, Dorman Barclay HE, Nagarkar A, Perkins M, Teicher G, Trapani JG, Downes GB. GABAA α subunit control of hyperactive behavior in developing zebrafish. Genetics 2022; 220:6519832. [PMID: 35106556 PMCID: PMC8982038 DOI: 10.1093/genetics/iyac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 02/04/2023] Open
Abstract
GABAA receptors mediate rapid responses to the neurotransmitter gamma-aminobutyric acid and are robust regulators of the brain and spinal cord neural networks that control locomotor behaviors, such as walking and swimming. In developing zebrafish, gross pharmacological blockade of these receptors causes hyperactive swimming, which is also a feature of many zebrafish epilepsy models. Although GABAA receptors are important to control locomotor behavior, the large number of subunits and homeostatic compensatory mechanisms have challenged efforts to determine subunit-selective roles. To address this issue, we mutated each of the 8 zebrafish GABAA α subunit genes individually and in pairs using a CRISPR-Cas9 somatic inactivation approach and, then, we examined the swimming behavior of the mutants at 2 developmental stages, 48 and 96 h postfertilization. We found that disrupting the expression of specific pairs of subunits resulted in different abnormalities in swimming behavior at 48 h postfertilization. Mutation of α4 and α5 selectively resulted in longer duration swimming episodes, mutations in α3 and α4 selectively caused excess, large-amplitude body flexions (C-bends), and mutation of α3 and α5 resulted in increases in both of these measures of hyperactivity. At 96 h postfertilization, hyperactive phenotypes were nearly absent, suggesting that homeostatic compensation was able to overcome the disruption of even multiple subunits. Taken together, our results identify subunit-selective roles for GABAA α3, α4, and α5 in regulating locomotion. Given that these subunits exhibit spatially restricted expression patterns, these results provide a foundation to identify neurons and GABAergic networks that control discrete aspects of locomotor behavior.
Collapse
Affiliation(s)
- Wayne Barnaby
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | | | - Akanksha Nagarkar
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Matthew Perkins
- Biology Department and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Gregory Teicher
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Josef G Trapani
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department and Neuroscience Program, Amherst College, Amherst, MA 01002, USA
| | - Gerald B Downes
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, USA,Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA,Corresponding author: Biology Department, Neuroscience and Behavior Graduate Program, and Molecular and Cellular Biology Graduate Program, 611 North Pleasant St., Morrill Science Center, Building 4 North, Amherst, MA 01003, USA.
| |
Collapse
|
14
|
Hotz AL, Jamali A, Rieser NN, Niklaus S, Aydin E, Myren‐Svelstad S, Lalla L, Jurisch‐Yaksi N, Yaksi E, Neuhauss SCF. Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 2021; 70:196-214. [PMID: 34716961 PMCID: PMC9297858 DOI: 10.1002/glia.24106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Astroglial excitatory amino acid transporter 2 (EAAT2, GLT‐1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a−/− mutant zebrafish larvae display recurrent spontaneous and light‐induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a−/− mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.
Collapse
Affiliation(s)
- Adriana L. Hotz
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nicolas N. Rieser
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Stephanie Niklaus
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Present address:
EraCal TherapeuticsSchlierenSwitzerland
| | - Ecem Aydin
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Sverre Myren‐Svelstad
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Laetitia Lalla
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nathalie Jurisch‐Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | | |
Collapse
|
15
|
Wang T, Zhou M, Zhang Q, Zhang C, Peng G. ubtor Mutation Causes Motor Hyperactivity by Activating mTOR Signaling in Zebrafish. Neurosci Bull 2021; 37:1658-1670. [PMID: 34309811 PMCID: PMC8643380 DOI: 10.1007/s12264-021-00755-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/08/2021] [Indexed: 01/20/2023] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling governs important physiological and pathological processes key to cellular life. Loss of mTOR negative regulators and subsequent over-activation of mTOR signaling are major causes underlying epileptic encephalopathy. Our previous studies showed that UBTOR/KIAA1024/MINAR1 acts as a negative regulator of mTOR signaling, but whether UBTOR plays a role in neurological diseases remains largely unknown. We therefore examined a zebrafish model and found that ubtor disruption caused increased spontaneous embryonic movement and neuronal activity in spinal interneurons, as well as the expected hyperactivation of mTOR signaling in early zebrafish embryos. In addition, mutant ubtor larvae showed increased sensitivity to the convulsant pentylenetetrazol, and both the motor activity and the neuronal activity were up-regulated. These phenotypic abnormalities in zebrafish embryos and larvae were rescued by treatment with the mTORC1 inhibitor rapamycin. Taken together, our findings show that ubtor regulates motor hyperactivity and epilepsy-like behaviors by elevating neuronal activity and activating mTOR signaling.
Collapse
Affiliation(s)
- Tiantian Wang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Mingshan Zhou
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Quan Zhang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Cuizhen Zhang
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Gang Peng
- State Key Laboratory of Medical Neurobiology, Ministry of Education Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
16
|
Phenotypic analysis of catastrophic childhood epilepsy genes. Commun Biol 2021; 4:680. [PMID: 34083748 PMCID: PMC8175701 DOI: 10.1038/s42003-021-02221-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 01/06/2023] Open
Abstract
Genetic engineering techniques have contributed to the now widespread use of zebrafish to investigate gene function, but zebrafish-based human disease studies, and particularly for neurological disorders, are limited. Here we used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing catastrophic childhood epilepsies. We evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Local field potential recordings (LFP) were used to screen ∼3300 larvae. Phenotypes with unprovoked electrographic seizure activity (i.e., epilepsy) were identified in zebrafish lines for 8 genes; ARX, EEF1A, GABRB3, GRIN1, PNPO, SCN1A, STRADA and STXBP1. We also created an open-source database containing sequencing information, survival curves, behavioral profiles and representative electrophysiology data. We offer all zebrafish lines as a resource to the neuroscience community and envision them as a starting point for further functional analysis and/or identification of new therapies. Griffin et al used CRISPR-Cas9 to generate 40 single-gene mutant zebrafish lines representing childhood epilepsies for which they evaluated larval phenotypes using electrophysiological, behavioral, neuro-anatomical, survival and pharmacological assays. Their study provides a useful resource for the future functional analysis and/or identification of potential anti-epileptic therapies.
Collapse
|
17
|
In vivo calcium imaging reveals disordered interictal network dynamics in epileptic stxbp1b zebrafish. iScience 2021; 24:102558. [PMID: 34142057 PMCID: PMC8184515 DOI: 10.1016/j.isci.2021.102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/29/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
STXBP1 mutations are associated with encephalopathy, developmental delay, intellectual disability, and epilepsy. While neural networks are known to operate at a critical state in the healthy brain, network behavior during pathological epileptic states remains unclear. Examining activity during periods between well-characterized ictal-like events (i.e., interictal period) could provide a valuable step toward understanding epileptic networks. To study these networks in the context of STXBP1 mutations, we combine a larval zebrafish model with in vivo fast confocal calcium imaging and extracellular local field potential recordings. Stxbp1b mutants display transient periods of elevated activity among local clusters of interacting neurons. These network "cascade" events were significantly larger in size and duration in mutants. At mesoscale resolution, cascades exhibit neurodevelopmental abnormalities. At single-cell scale, we describe spontaneous hyper-synchronized neuronal ensembles. That calcium imaging reveals uniquely disordered brain states during periods between pathological ictal-like seizure events is striking and represents a potential interictal biomarker.
Collapse
|
18
|
Yaksi E, Jamali A, Diaz Verdugo C, Jurisch-Yaksi N. Past, present and future of zebrafish in epilepsy research. FEBS J 2021; 288:7243-7255. [PMID: 33394550 DOI: 10.1111/febs.15694] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Animal models contribute greatly to our understanding of brain development and function as well as its dysfunction in neurological diseases. Epilepsy research is a very good example of how animal models can provide us with a mechanistic understanding of the genes, molecules, and pathophysiological processes involved in disease. Over the course of the last two decades, zebrafish came in as a new player in epilepsy research, with an expanding number of laboratories using this animal to understand epilepsy and to discover new strategies for preventing seizures. Yet, zebrafish as a model offers a lot more for epilepsy research. In this viewpoint, we aim to highlight some key contributions of zebrafish to epilepsy research, and we want to emphasize the great untapped potential of this animal model for expanding these contributions. We hope that our suggestions will trigger further discussions between clinicians and researchers with a common goal to understand and cure epilepsy.
Collapse
Affiliation(s)
- Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway
| | - Carmen Diaz Verdugo
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Neurology and Clinical Neurophysiology, St Olav University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Shen D, Chen J, Liu D, Shen M, Wang X, Wu Y, Ke S, Macdonald RL, Zhang Q. The GABRG2 F343L allele causes spontaneous seizures in a novel transgenic zebrafish model that can be treated with suberanilohydroxamic acid (SAHA). ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1560. [PMID: 33437759 PMCID: PMC7791267 DOI: 10.21037/atm-20-3745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Mutations in the γ-aminobutyric acid type A (GABAA) receptor γ2 subunit gene, GABRG2, have been associated frequently with epilepsy syndromes with varying severities. Recently, a de novo GABRG2 mutation, c.T1027C, p.F343L, was identified in a patient with an early onset epileptic encephalopathy (EOEE). In vitro, we demonstrated that GABAA receptors containing the mutant γ2(F343L) subunit have impaired trafficking to the cell surface. Here, we aim to validate an in vivo zebrafish model of EOEE associated with the GABRG2 mutation T1027C. Methods We generated a novel transgenic zebrafish (AB strain) that overexpressed mutant human γ2(F343L) subunits and provided an initial characterization of the transgenic Tg(hGABRG2F343L) zebrafish. Results Real-time quantitative PCR and in situ hybridization identified a significant up-regulation of c-fos in the mutant transgenic zebrafish, which has a well-established role in epileptogenesis. In the larval stage 5 days postfertilization (dpf), freely swimming Tg(hGABRG2F343L) zebrafish displayed spontaneous seizure-like behaviors consisting of whole-body shaking and hyperactivity during automated locomotion video tracking, and seizures can be induced by light stimulation. Using RNA sequencing, we investigated transcriptomic changes due to the presence of mutant γ2L(F343L) subunits and have found 524 genes that are differentially expressed, including up-regulation of 33 genes associated with protein processing. More specifically, protein network analysis indicated histone deacetylases (HDACs) as potential therapeutic targets, and suberanilohydroxamic acid (SAHA), a broad HDACs inhibitor, alleviated seizure-like phenotypes in mutant zebrafish larvae. Conclusions Overall, our Tg(hGABRG2F343L) overexpression zebrafish model provides the first example of a human epilepsy-associated GABRG2 mutation resulting in spontaneous seizures in zebrafish. Moreover, HDAC inhibition may be worth investigating as a therapeutic strategy for genetic epilepsies caused by missense mutations in GABRG2 and possibly in other central nervous system genes that impair surface trafficking.
Collapse
Affiliation(s)
- Dingding Shen
- Department of Neurology & Collaborative Innovation Center for Brain Science, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Shuan Ke
- Xinglin College, Nantong University, Nantong, China
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
20
|
Long XY, Wang S, Luo ZW, Zhang X, Xu H. Comparison of three administration modes for establishing a zebrafish seizure model induced by N-Methyl-D-aspartic acid. World J Psychiatry 2020; 10:150-161. [PMID: 32844092 PMCID: PMC7418578 DOI: 10.5498/wjp.v10.i7.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Epilepsy is a complex neurological disorder characterized by recurrent, unprovoked seizures resulting from the sudden abnormal discharge of brain neurons. It leads to transient brain dysfunction, manifested by abnormal physical movements and consciousness. It can occur at any age, affecting approximately 65 million worldwide, one third of which are still estimated to suffer from refractory seizures. There is an urgent need for further establishment of seizure models in animals, which provides an approach to model epilepsy and could be used to identify novel anti-epileptic therapeutics in the future. AIM To compare three administration modes for establishing a seizure model caused by N-Methyl-D-aspartic acid (NMDA) in zebrafish. METHODS Three administration routes of NMDA, including immersion, intravitreal injection and intraperitoneal injection, were compared with regard to their effects on inducing seizure-like behaviors in adult zebrafish. We evaluated neurotoxicity by observing behavioral changes in zebrafish and graded those behaviors with a seizure score. In addition, the protective effects of MK-801 (Dizocilpine) and natural active constituent resveratrol against NMDA-induced alterations were studied. RESULTS The three NMDA-administration methods triggered different patterns of the epileptic process in adult zebrafish. Seizure scores were increased after increasing NMDA concentration regardless of the mode of administration. However, the curve of immersion continuously rose to a high plateau (after 50 min), while the curves of intravitreal injection and intraperitoneal injection showed a spike in the early stage (10-20 min) followed by a steady decrease in seizure scores. Furthermore, pretreatment with resveratrol and MK-801 significantly delayed seizure onset time and lowered seizure scores. CONCLUSION By comparing the three methods of administration, intravitreal injection of NMDA was the most suitable for establishing an acute epileptic model in zebrafish. Thus, intraperitoneal injection in zebrafish can be applied to simulate diseases such as epilepsy. In addition, NMDA immersion may be an appropriate method to induce persistent seizures. Moreover, MK-801 and resveratrol showed strong anti-epileptic effects; thus, both of them may be clinically valuable treatments for epilepsy.
Collapse
Affiliation(s)
- Xin-Yi Long
- Queen Mary School of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Shuang Wang
- Queen Mary School of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Zhi-Wen Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200433, China
| | - Xu Zhang
- Affiliated Eye Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Hong Xu
- Institute of Life Science, Nanchang University, Nanchang 330031, Jiangxi Province, China
| |
Collapse
|
21
|
Rosch R, Burrows DRW, Jones LB, Peters CH, Ruben P, Samarut É. Functional Genomics of Epilepsy and Associated Neurodevelopmental Disorders Using Simple Animal Models: From Genes, Molecules to Brain Networks. Front Cell Neurosci 2019; 13:556. [PMID: 31920556 PMCID: PMC6923670 DOI: 10.3389/fncel.2019.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 01/06/2023] Open
Abstract
The genetic diagnosis of patients with seizure disorders has been improved significantly by the development of affordable next-generation sequencing technologies. Indeed, in the last 20 years, dozens of causative genes and thousands of associated variants have been described and, for many patients, are now considered responsible for their disease. However, the functional consequences of these mutations are often not studied in vivo, despite such studies being central to understanding pathogenic mechanisms and identifying novel therapeutic avenues. One main roadblock to functionally characterizing pathogenic mutations is generating and characterizing in vivo mammalian models carrying clinically relevant variants in specific genes identified in patients. Although the emergence of new mutagenesis techniques facilitates the production of rodent mutants, the fact that early development occurs internally hampers the investigation of gene function during neurodevelopment. In this context, functional genomics studies using simple animal models such as flies or fish are advantageous since they open a dynamic window of investigation throughout embryonic development. In this review, we will summarize how the use of simple animal models can fill the gap between genetic diagnosis and functional and phenotypic correlates of gene function in vivo. In particular, we will discuss how these simple animals offer the possibility to study gene function at multiple scales, from molecular function (i.e., ion channel activity), to cellular circuit and brain network dynamics. As a result, simple model systems offer alternative avenues of investigation to model aspects of the disease phenotype not currently possible in rodents, which can help to unravel the pathogenic substratum in vivo.
Collapse
Affiliation(s)
- Richard Rosch
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- Department of Paediatric Neurology, Great Ormond Street Hospital, NHS Foundation Trust, London, United Kingdom
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States
| | - Dominic R. W. Burrows
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Laura B. Jones
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Colin H. Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Peter Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Éric Samarut
- Department of Neurosciences, Research Center of the University of Montreal Hospital Center (CRCHUM), Université de Montréal, Montreal, QC, Canada
- Modelis Inc., Montreal, QC, Canada
| |
Collapse
|