1
|
Goret M, Thomas M, Edelweiss E, Messaddeq N, Laporte J. BIN1 reduction ameliorates DNM2-related Charcot-Marie-Tooth neuropathy. Proc Natl Acad Sci U S A 2025; 122:e2419244122. [PMID: 40042903 PMCID: PMC11912451 DOI: 10.1073/pnas.2419244122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/27/2025] [Indexed: 03/19/2025] Open
Abstract
Charcot-Marie-Tooth (CMT) disease, the most common inherited neuromuscular disorder, manifests as progressive muscle weakness and peripheral nerve defects. Dominant mutations in DNM2, encoding the large GTPase dynamin 2, result in CMT without any suggested therapeutic strategy. Different dominant mutations in DNM2 also cause centronuclear myopathy (CNM), and increasing BIN1 (amphiphysin 2), an endogenous modulator of DNM2, rescued CNM in mice. Here, we found that increasing BIN1 level exacerbated the phenotypes of the Dnm2K562E/+ mouse carrying the most common DNM2-CMT mutation. Conversely, whole-body reduction of Bin1 expression level, through the generation of Dnm2K562E/+ mice with heterozygous loss of BIN1, restored motor performance and ameliorated muscle organization and structural defects of peripheral nerves. The rescue of motor defects was maintained at least up to 1 y of age. BIN1 inhibited the GTPase activity of DNM2, and the rescue was driven by an increased activity of the K562E DNM2-CMT mutant, and a normalization of integrin localization in muscle. Overall, this study highlights BIN1 as a modifier of DNM2-CMT, and its reduction as a potential therapeutic strategy. It also revealed an opposite pathological mechanism and inverse therapeutic concepts for DNM2-CMT peripheral neuropathy versus DNM2-CNM myopathy.
Collapse
Affiliation(s)
- Marie Goret
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Morgane Thomas
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Evelina Edelweiss
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Nadia Messaddeq
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch 67404, France
| | - Jocelyn Laporte
- Institut de génétique, biologie moléculaire et cellulaire, département de Médecine translationnelle et neurogénétique, INSERM U1258, CNRS UMR7104, Université de Strasbourg, Illkirch 67404, France
| |
Collapse
|
2
|
Cerro-Herreros E, Núñez-Manchón J, Naldaiz-Gastesi N, Carrascosa-Sàez M, García-Rey A, Losilla DP, González-Martínez I, Espinosa-Espinosa J, Moreno K, Poyatos-García J, Vilchez JJ, de Munain AL, Suelves M, Nogales-Gadea G, Llamusí B, Artero R. AntimiR treatment corrects myotonic dystrophy primary cell defects across several CTG repeat expansions with a dual mechanism of action. SCIENCE ADVANCES 2024; 10:eadn6525. [PMID: 39383229 PMCID: PMC11463307 DOI: 10.1126/sciadv.adn6525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
This study evaluated therapeutic antimiRs in primary myoblasts from patients with myotonic dystrophy type 1 (DM1). DM1 results from unstable CTG repeat expansions in the DMPK gene, leading to variable clinical manifestations by depleting muscleblind-like splicing regulator protein MBNL1. AntimiRs targeting natural repressors miR-23b and miR-218 boost MBNL1 expression but must be optimized for a better pharmacological profile in humans. In untreated cells, miR-23b and miR-218 were up-regulated, which correlated with CTG repeat size, supporting that active MBNL1 protein repression synergizes with the sequestration by CUG expansions in DMPK. AntimiR treatment improved RNA toxicity readouts and corrected regulated exon inclusions and myoblast defects such as fusion index and myotube area across CTG expansions. Unexpectedly, the treatment also reduced DMPK transcripts and ribonuclear foci. A leading antimiR reversed 68% of dysregulated genes. This study highlights the potential of antimiRs to treat various DM1 forms across a range of repeat sizes and genetic backgrounds by mitigating MBNL1 sequestration and enhancing protein synthesis.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Judit Núñez-Manchón
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain
- CIBERNED, Carlos III Institute, Spanish Ministry of Science and Innovation, Madrid, Spain
| | - Marc Carrascosa-Sàez
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Andrea García-Rey
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Diego Piqueras Losilla
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Irene González-Martínez
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| | - Jorge Espinosa-Espinosa
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
- Experimental and Applied Biomedicine Research Group, Health Sciences Faculty, Universidad Particular Internacional SEK (UISEK), Quito 170302, Ecuador
| | - Kevin Moreno
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Javier Poyatos-García
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain
| | - Juan J. Vilchez
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain
- Neuromuscular Referral Center, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Universitary and Polytechnic La Fe Hospital, Valencia, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain
- CIBERNED, Carlos III Institute, Spanish Ministry of Science and Innovation, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Mònica Suelves
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Beatriz Llamusí
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Rubén Artero
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
3
|
Liao Z, Zhang Q, Ren N, Zhao H, Zheng X. Progress in mitochondrial and omics studies in Alzheimer's disease research: from molecular mechanisms to therapeutic interventions. Front Immunol 2024; 15:1418939. [PMID: 39040111 PMCID: PMC11260616 DOI: 10.3389/fimmu.2024.1418939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/21/2024] [Indexed: 07/24/2024] Open
Abstract
Alzheimer's disease (Alzheimer's disease, AD) is a progressive neurological disorder characterized by memory loss and cognitive impairment. It is characterized by the formation of tau protein neurofibrillary tangles and β-amyloid plaques. Recent studies have found that mitochondria in neuronal cells of AD patients exhibit various dysfunctions, including reduced numbers, ultrastructural changes, reduced enzyme activity, and abnormal kinetics. These abnormal mitochondria not only lead to the loss of normal neuronal cell function, but are also a major driver of AD progression. In this review, we will focus on the advances of mitochondria and their multi-omics in AD research, with particular emphasis on how mitochondrial dysfunction in AD drives disease progression. At the same time, we will focus on summarizing how mitochondrial genomics technologies have revealed specific details of these dysfunctions and how therapeutic strategies targeting mitochondria may provide new directions for future AD treatments. By delving into the key mechanisms of mitochondria in AD related to energy metabolism, altered kinetics, regulation of cell death, and dysregulation of calcium-ion homeostasis, and how mitochondrial multi-omics technologies can be utilized to provide us with a better understanding of these processes. In the future, mitochondria-centered therapeutic strategies will be a key idea in the treatment of AD.
Collapse
Affiliation(s)
- Zuning Liao
- Department of Neurology, Fourth People’s Hospital of Jinan, Jinan, China
| | - Qiying Zhang
- Department of Internal Medicine, Jinan Municipal Government Hospital, Jinan, China
| | - Na Ren
- Pharmacy Department, Jinan Municipal People’s Government Organs Outpatient Department, Jinan, China
| | - Haiyan Zhao
- Department of Pharmacy, Qihe County People’s Hospital, Dezhou, China
| | - Xueyan Zheng
- Department of Pharmacy, Jinan Second People’s Hospital, Jinan, China
| |
Collapse
|
4
|
Picas L, André-Arpin C, Comunale F, Bousquet H, Tsai FC, Rico F, Maiuri P, Pernier J, Bodin S, Nicot AS, Laporte J, Bassereau P, Goud B, Gauthier-Rouvière C, Miserey S. BIN1 regulates actin-membrane interactions during IRSp53-dependent filopodia formation. Commun Biol 2024; 7:549. [PMID: 38724689 PMCID: PMC11082164 DOI: 10.1038/s42003-024-06168-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Amphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation. BIN1 is present at the base of forming filopodia and all along filopodia, where it colocalizes with F-actin. We identify that BIN1-mediated filopodia formation requires IRSp53, which allows its localization at negatively-curved membrane topologies. Our results show that BIN1 bundles actin in vitro. Finally, we identify that BIN1 regulates the membrane-to-cortex architecture and functions as a molecular platform to recruit actin-binding proteins, dynamin and ezrin, to promote filopodia formation.
Collapse
Affiliation(s)
- Laura Picas
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, Montpellier, France.
| | - Charlotte André-Arpin
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, CNRS UMR 9004, Montpellier, France
| | - Franck Comunale
- CRBM, University of Montpellier, CNRS UMR 5237, Montpellier, France
| | - Hugo Bousquet
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| | - Feng-Ching Tsai
- Institut Curie, CNRS UMR 168, PSL Research University, Paris, France
| | - Félix Rico
- Aix-Marseille Université, U1325 INSERM, DyNaMo, Turing center for living systems, Marseille, France
| | - Paolo Maiuri
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Julien Pernier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Bodin
- CRBM, University of Montpellier, CNRS UMR 5237, Montpellier, France
| | - Anne-Sophie Nicot
- Grenoble Alpes University, INSERM U1216, Grenoble Institut Neurosciences, Grenoble, France
| | - Jocelyn Laporte
- Department of Translational Medicine, IGBMC, U1258, UMR7104 Strasbourg University, Collège de France, Illkirch, France
| | | | - Bruno Goud
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France
| | | | - Stéphanie Miserey
- Institut Curie, CNRS UMR 144, PSL Research University, Paris, France.
| |
Collapse
|
5
|
Quinn CJ, Cartwright EJ, Trafford AW, Dibb KM. On the role of dysferlin in striated muscle: membrane repair, t-tubules and Ca 2+ handling. J Physiol 2024; 602:1893-1910. [PMID: 38615232 DOI: 10.1113/jp285103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/05/2024] [Indexed: 04/15/2024] Open
Abstract
Dysferlin is a 237 kDa membrane-associated protein characterised by multiple C2 domains with a diverse role in skeletal and cardiac muscle physiology. Mutations in DYSF are known to cause various types of human muscular dystrophies, known collectively as dysferlinopathies, with some patients developing cardiomyopathy. A myriad of in vitro membrane repair studies suggest that dysferlin plays an integral role in the membrane repair complex in skeletal muscle. In comparison, less is known about dysferlin in the heart, but mounting evidence suggests that dysferlin's role is similar in both muscle types. Recent findings have shown that dysferlin regulates Ca2+ handling in striated muscle via multiple mechanisms and that this becomes more important in conditions of stress. Maintenance of the transverse (t)-tubule network and the tight coordination of excitation-contraction coupling are essential for muscle contractility. Dysferlin regulates the maintenance and repair of t-tubules, and it is suspected that dysferlin regulates t-tubules and sarcolemmal repair through a similar mechanism. This review focuses on the emerging complexity of dysferlin's activity in striated muscle. Such insights will progress our understanding of the proteins and pathways that regulate basic heart and skeletal muscle function and help guide research into striated muscle pathology, especially that which arises due to dysferlin dysfunction.
Collapse
Affiliation(s)
- C J Quinn
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - E J Cartwright
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - A W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| | - K M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, 3.14 Core Technology Facility, Manchester, UK
| |
Collapse
|
6
|
Casas M, Dickson EJ. Channels, Transporters, and Receptors at Membrane Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241305593. [PMID: 39742107 PMCID: PMC11686659 DOI: 10.1177/25152564241305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER). We discuss the molecular composition and functional significance of these proteins in shaping both organelle and cellular functions, highlighting their importance in excitable cells and their influence on intracellular calcium signaling. Key MCSs examined include ER-plasma membrane, ER-mitochondria, and ER-lysosome contacts. This review addresses our current knowledge of the ion channels found within these contacts, the dynamic regulation of MCSs, their importance in various physiological processes, and their potential implications in pathological conditions.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Eamonn James Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Dou Y, Wei Y, Zhang Z, Li C, Song C, Liu Y, Qi K, Li X, Li X, Qiao R, Wang K, Yang F, Han X. Transcriptome-wide analysis of RNA m 6A methylation regulation of muscle development in Queshan Black pigs. BMC Genomics 2023; 24:239. [PMID: 37142996 PMCID: PMC10161540 DOI: 10.1186/s12864-023-09346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) refers to the methylation modification of N6 position of RNA adenine, a dynamic reversible RNA epigenetic modification that plays an important regulatory role in a variety of life processes. In this study, we used MeRIP-Seq and RNA-Seq of the longissimus dorsi (LD) muscle of adult (QA) and newborn (QN) Queshan Black pigs to screen key genes with m6A modification involved in muscle growth by bioinformatics analysis. RESULTS A total of 23,445 and 25,465 m6A peaks were found in the whole genomes of QA and QN, respectively. Among them, 613 methylation peaks were significantly different (DMPs) and 579 genes were defined as differentially methylated genes (DMGs). Compared with the QN group, there were 1,874 significantly differentially expressed genes (DEGs) in QA group, including 620 up-regulated and 1,254 down-regulated genes. In order to investigate the relationship between m6A and mRNA expression in the muscle of Queshan Black pigs at different periods, a combined analysis of MeRIP-Seq and RNA-Seq showed that 88 genes were significantly different at both levels. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes results showed that DEGs and DMGs were mainly involved in skeletal muscle tissue development, FoxO signaling pathway, MAPK signaling pathway, insulin signaling pathway, PI3K-Akt signaling pathway, and Wnt signaling pathway. Four DEGs (IGF1R, CCND2, MYOD1 and FOS) and four DMGs (CCND2, PHKB, BIN1 and FUT2), which are closely related to skeletal muscle development, were selected as candidate genes for verification, and the results were consistent with the sequencing results, which indicated the reliability of the sequencing results. CONCLUSIONS These results lay the foundation for understanding the specific regulatory mechanisms of growth in Queshan Black pigs, and provide theoretical references for further research on the role of m6A in muscle development and breed optimization selection.
Collapse
Affiliation(s)
- Yaqing Dou
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilin Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhe Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenlei Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenglei Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingke Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kunlong Qi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xinjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Kermani F, Mosqueira M, Peters K, Lemma ED, Rapti K, Grimm D, Bastmeyer M, Laugsch M, Hecker M, Ullrich ND. Membrane remodelling triggers maturation of excitation-contraction coupling in 3D-shaped human-induced pluripotent stem cell-derived cardiomyocytes. Basic Res Cardiol 2023; 118:13. [PMID: 36988697 PMCID: PMC10060306 DOI: 10.1007/s00395-023-00984-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023]
Abstract
The prospective use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) for cardiac regenerative medicine strongly depends on the electro-mechanical properties of these cells, especially regarding the Ca2+-dependent excitation-contraction (EC) coupling mechanism. Currently, the immature structural and functional features of hiPSC-CM limit the progression towards clinical applications. Here, we show that a specific microarchitecture is essential for functional maturation of hiPSC-CM. Structural remodelling towards a cuboid cell shape and induction of BIN1, a facilitator of membrane invaginations, lead to transverse (t)-tubule-like structures. This transformation brings two Ca2+ channels critical for EC coupling in close proximity, the L-type Ca2+ channel at the sarcolemma and the ryanodine receptor at the sarcoplasmic reticulum. Consequently, the Ca2+-dependent functional interaction of these channels becomes more efficient, leading to improved spatio-temporal synchronisation of Ca2+ transients and higher EC coupling gain. Thus, functional maturation of hiPSC-cardiomyocytes by optimised cell microarchitecture needs to be considered for future cardiac regenerative approaches.
Collapse
Affiliation(s)
- Fatemeh Kermani
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Matias Mosqueira
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Kyra Peters
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
| | - Enrico D Lemma
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Kleopatra Rapti
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
| | - Dirk Grimm
- Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Martin Bastmeyer
- Zoological Institute, Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Biological information processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany
| | - Magdalena Laugsch
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Nina D Ullrich
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
- Research Bridge (Synthetic Biology), Heidelberg-Karlsruhe Research Partnership (HEiKA), Heidelberg University and Karlsruhe Institute of Technology, Heidelberg, Germany.
| |
Collapse
|
9
|
Fujise K, Noguchi S, Takeda T. Centronuclear Myopathy Caused by Defective Membrane Remodelling of Dynamin 2 and BIN1 Variants. Int J Mol Sci 2022; 23:ijms23116274. [PMID: 35682949 PMCID: PMC9181712 DOI: 10.3390/ijms23116274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis. DNM2 and BIN1 are two causative genes for CNM that encode essential membrane remodelling proteins in endocytosis, dynamin 2 and BIN1, respectively. In this review, we overview the functions of dynamin 2 and BIN1 in T-tubule biogenesis and discuss how their dysfunction in membrane remodelling leads to CNM pathogenesis.
Collapse
Affiliation(s)
- Kenshiro Fujise
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8001, USA;
| | - Satoru Noguchi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan;
| | - Tetsuya Takeda
- Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata-cho 2-5-1, Kita-ku, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7125; Fax: +81-86-235-7126
| |
Collapse
|
10
|
Silva-Rojas R, Nattarayan V, Jaque-Fernandez F, Gomez-Oca R, Menuet A, Reiss D, Goret M, Messaddeq N, Lionello VM, Kretz C, Cowling BS, Jacquemond V, Laporte J. Mice with muscle-specific deletion of Bin1 recapitulate centronuclear myopathy and acute downregulation of dynamin 2 improves their phenotypes. Mol Ther 2022; 30:868-880. [PMID: 34371181 PMCID: PMC8821932 DOI: 10.1016/j.ymthe.2021.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 02/04/2023] Open
Abstract
Mutations in the BIN1 (Bridging Interactor 1) gene, encoding the membrane remodeling protein amphiphysin 2, cause centronuclear myopathy (CNM) associated with severe muscle weakness and myofiber disorganization and hypotrophy. There is no available therapy, and the validation of therapeutic proof of concept is impaired by the lack of a faithful and easy-to-handle mammalian model. Here, we generated and characterized the Bin1mck-/- mouse through Bin1 knockout in skeletal muscle. Bin1mck-/- mice were viable, unlike the constitutive Bin1 knockout, and displayed decreased muscle force and most histological hallmarks of CNM, including myofiber hypotrophy and intracellular disorganization. Notably, Bin1mck-/- myofibers presented strong defects in mitochondria and T-tubule networks associated with deficient calcium homeostasis and excitation-contraction coupling at the triads, potentially representing the main pathomechanisms. Systemic injection of antisense oligonucleotides (ASOs) targeting Dnm2 (Dynamin 2), which codes for dynamin 2, a BIN1 binding partner regulating membrane fission and mutated in other forms of CNM, improved muscle force and normalized the histological Bin1mck-/- phenotypes within 5 weeks. Overall, we generated a faithful mammalian model for CNM linked to BIN1 defects and validated Dnm2 ASOs as a first translatable approach to efficiently treat BIN1-CNM.
Collapse
Affiliation(s)
- Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Vasugi Nattarayan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Francisco Jaque-Fernandez
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, 69373 Lyon, France
| | - Raquel Gomez-Oca
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Dynacure, 67404 Illkirch, France
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Marie Goret
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Valentina M. Lionello
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Belinda S. Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Dynacure, 67404 Illkirch, France
| | - Vincent Jacquemond
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR5310, INSERM U1217, Institut NeuroMyoGène, 69373 Lyon, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France,Corresponding author: Jocelyn Laporte, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
11
|
Franck S, Couvreu De Deckersberg E, Bubenik JL, Markouli C, Barbé L, Allemeersch J, Hilven P, Duqué G, Swanson MS, Gheldof A, Spits C, Sermon KD. Myotonic dystrophy type 1 embryonic stem cells show decreased myogenic potential, increased CpG methylation at the DMPK locus and RNA mis-splicing. Biol Open 2022; 11:273965. [PMID: 35019138 PMCID: PMC8764412 DOI: 10.1242/bio.058978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle tissue is severely affected in myotonic dystrophy type 1 (DM1) patients, characterised by muscle weakness, myotonia and muscle immaturity in the most severe congenital form of the disease. Previously, it was not known at what stage during myogenesis the DM1 phenotype appears. In this study we differentiated healthy and DM1 human embryonic stem cells to myoblasts and myotubes and compared their differentiation potential using a comprehensive multi-omics approach. We found myogenesis in DM1 cells to be abnormal with altered myotube generation compared to healthy cells. We did not find differentially expressed genes between DM1 and non-DM1 cell lines within the same developmental stage. However, during differentiation we observed an aberrant inflammatory response and increased CpG methylation upstream of the CTG repeat at the myoblast level and RNA mis-splicing at the myotube stage. We show that early myogenesis modelled in hESC reiterates the early developmental manifestation of DM1. Summary: Early developmental abnormalities in myotonic dystrophy type 1 are reiterated in vitro in myotubes differentiated from human embryonic stem cells that carry the mutation.
Collapse
Affiliation(s)
- Silvie Franck
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | | | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Christina Markouli
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Lise Barbé
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, 94107 CA, United States
| | | | - Pierre Hilven
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Geoffrey Duqué
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL 32610, USA
| | - Alexander Gheldof
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels 1090, Belgium
| | - Claudia Spits
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| | - Karen D Sermon
- Department Reproduction and Genetics, Vrije Universiteit Brussel, Brussels 1090, Belgium
| |
Collapse
|
12
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
13
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Djeddi S, Reiss D, Menuet A, Freismuth S, de Carvalho Neves J, Djerroud S, Massana-Muñoz X, Sosson AS, Kretz C, Raffelsberger W, Keime C, Dorchies OM, Thompson J, Laporte J. Multi-omics comparisons of different forms of centronuclear myopathies and the effects of several therapeutic strategies. Mol Ther 2021; 29:2514-2534. [PMID: 33940157 DOI: 10.1016/j.ymthe.2021.04.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/09/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
Omics analyses are powerful methods to obtain an integrated view of complex biological processes, disease progression, or therapy efficiency. However, few studies have compared different disease forms and different therapy strategies to define the common molecular signatures representing the most significant implicated pathways. In this study, we used RNA sequencing and mass spectrometry to profile the transcriptomes and proteomes of mouse models for three forms of centronuclear myopathies (CNMs), untreated or treated with either a drug (tamoxifen), antisense oligonucleotides reducing the level of dynamin 2 (DNM2), or following modulation of DNM2 or amphiphysin 2 (BIN1) through genetic crosses. Unsupervised analysis and differential gene and protein expression were performed to retrieve CNM molecular signatures. Longitudinal studies before, at, and after disease onset highlighted potential disease causes and consequences. Main pathways in the common CNM disease signature include muscle contraction, regeneration and inflammation. The common therapy signature revealed novel potential therapeutic targets, including the calcium regulator sarcolipin. We identified several novel biomarkers validated in muscle and/or plasma through RNA quantification, western blotting, and enzyme-linked immunosorbent assay (ELISA) assays, including ANXA2 and IGFBP2. This study validates the concept of using multi-omics approaches to identify molecular signatures common to different disease forms and therapeutic strategies.
Collapse
Affiliation(s)
- Sarah Djeddi
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - David Reiss
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sébastien Freismuth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Juliana de Carvalho Neves
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Sarah Djerroud
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Xènia Massana-Muñoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Anne-Sophie Sosson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Wolfgang Raffelsberger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France
| | - Olivier M Dorchies
- Pharmaceutical Biochemistry, Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, 1211 Geneva, Switzerland
| | - Julie Thompson
- Complex Systems and Translational Bioinformatics (CSTB), ICube Laboratory-CNRS, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, INSERM U1258, Université de Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
15
|
Khan MS, Shaw RM. Huntington's disease skeletal muscle has altered T-tubules. J Gen Physiol 2021; 153:e202012843. [PMID: 33978682 PMCID: PMC8126974 DOI: 10.1085/jgp.202012843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Romer et al. explored T-tubules in skeletal muscle.
Collapse
Affiliation(s)
- Muhammad S. Khan
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Robin M. Shaw
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
16
|
Transcriptomic and proteomic analysis of Hemidactylus frenatus during initial stages of tail regeneration. Sci Rep 2021; 11:3675. [PMID: 33574494 PMCID: PMC7878758 DOI: 10.1038/s41598-021-83283-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/28/2021] [Indexed: 11/08/2022] Open
Abstract
Epimorphic regeneration of appendages is a complex and complete phenomenon found in selected animals. Hemidactylus frenatus, house gecko has the remarkable ability to regenerate the tail tissue upon autotomy involving epimorphic regeneration mechanism. This study has identified and evaluated the molecular changes at gene and protein level during the initial stages, i.e., during the wound healing and repair mechanism initiation stage of tail regeneration. Based on next generation transcriptomics and De novo analysis the transcriptome library of the gecko tail tissue was generated. A total of 254 genes and 128 proteins were found to be associated with the regeneration of gecko tail tissue upon amputation at 1, 2 and 5-day post amputation (dpa) against control, 0-dpa through differential transcriptomic and proteomic analysis. To authenticate the expression analysis, 50 genes were further validated involving RTPCR. 327 genes/proteins identified and mapped from the study showed association for Protein kinase A signaling, Telomerase BAG2 signaling, paxillin signaling, VEGF signaling network pathways based on network pathway analysis. This study empanelled list of transcriptome, proteome and the list of genes/proteins associated with the tail regeneration.
Collapse
|
17
|
Sztretye M, Szabó L, Dobrosi N, Fodor J, Szentesi P, Almássy J, Magyar ZÉ, Dienes B, Csernoch L. From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. Int J Mol Sci 2020; 21:ijms21238935. [PMID: 33255644 PMCID: PMC7728138 DOI: 10.3390/ijms21238935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022] Open
Abstract
Muscular dystrophies are a group of more than 160 different human neuromuscular disorders characterized by a progressive deterioration of muscle mass and strength. The causes, symptoms, age of onset, severity, and progression vary depending on the exact time point of diagnosis and the entity. Congenital myopathies are rare muscle diseases mostly present at birth that result from genetic defects. There are no known cures for congenital myopathies; however, recent advances in gene therapy are promising tools in providing treatment. This review gives an overview of the mouse models used to investigate the most common muscular dystrophies and congenital myopathies with emphasis on their potentials and limitations in respect to human applications.
Collapse
|