1
|
Andrasch Y, Ireri MM, Gander J, Timm AES, Chennappan S, Fidan M, Engler M, Cirstea IC. Impaired MC3T3-E1 osteoblast differentiation triggered by oncogenic HRAS is rescued by the farnesyltransferase inhibitor Tipifarnib. Sci Rep 2025; 15:6832. [PMID: 40000861 PMCID: PMC11861272 DOI: 10.1038/s41598-025-91592-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/21/2025] [Indexed: 02/27/2025] Open
Abstract
HRAS is a ubiquitously expressed protein and functions as a central regulator of cellular homeostasis. In somatic cells, mutations in this gene cause cancer, while germline mutations trigger a developmental disorder known as Costello syndrome (CS). Among numerous pathologies, adult CS patients develop osteoporosis. Previous studies revealed that HRAS is implicated in bone homeostasis by controlling osteoblast differentiation, adaptation to mechanical strain and repression of RANKL expression in mature osteoblasts, and by regulating osteoclast differentiation. However, the impact of HRAS on osteoblast differentiation is still debatable. In this study, we created stable doxycycline inducible cell lines overexpressing HRAS G12 mutants in MC3T3-E1 preosteoblast cell line and analyzed their impact on osteoblast differentiation. We demonstrated an inhibitory role of HRAS G12S and HRAS G12V mutants on osteogenic differentiation and identified an increased expression of Opn in an HRAS-dependent manner, which directly correlated with impaired osteogenesis, and was rescued by the farnesyl transferase inhibitor Tipifarnib. At the molecular level, Tipifarnib was not able to block HRAS activation, but impaired HRAS localization to the plasma membrane, and inhibited MAPK activation and Opn expression. Thus, HRAS abundance/activation and its potential crosstalk with OPN may be more critical for osteogenic differentiation than previously assumed.
Collapse
Affiliation(s)
- Yannik Andrasch
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Moses Munene Ireri
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Jonas Gander
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | | | | | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany.
- Institute of Applied Physiology, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Grange DK, Wegner DJ, Wambach JA, Sisco KA, Stone SI, Sheehan JH, Ramsey KM, Narayanan V, Rauen KA, Cole FS. Recurrent p.H119Y variant in MAP2K1 expands the phenotypic spectrum of MAP2K1 -related RASopathy. Am J Med Genet A 2025; 197:e63854. [PMID: 39166407 DOI: 10.1002/ajmg.a.63854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024]
Abstract
We report three unrelated individuals with atypical clinical findings for cardio-facio-cutaneous (CFC) syndrome, all of whom have the same novel, heterozygous de novo p.H119Y (c.355 C>T) transition variant in MAP2K1, identified by exome sequencing. MAP2K1 encodes MEK1, dual specificity mitogen-activated protein kinase kinase 1, and is one of four genes in the canonical RAS/MAPK signal transduction pathway associated with CFC syndrome. The p.H119Y variant is a non-conservative amino acid substitution that is predicted to impact the tertiary protein structure, and it occurs at a position in the protein kinase domain of MAP2K1 that is highly conserved across species. The clinical findings in these three individuals include facial features that are nonclassical for CFC syndrome, extremely poor weight gain, absence of congenital cardiac defects or cardiomyopathy, normal cognition or only mild intellectual disabilities, normal hair, mild skin abnormalities, and consistent behavioral features of anxiety, photophobia, and sensory hypersensitivities. These individuals expand the phenotypic spectrum of MAP2K1-related RASopathy.
Collapse
Affiliation(s)
- Dorothy K Grange
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Daniel J Wegner
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jennifer A Wambach
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kathleen A Sisco
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stephen I Stone
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jonathan H Sheehan
- John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Keri M Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Katherine A Rauen
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - F Sessions Cole
- Edward Mallinckrodt Department of Pediatrics, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
3
|
Rauen KA, Tidyman WE. RASopathies - what they reveal about RAS/MAPK signaling in skeletal muscle development. Dis Model Mech 2024; 17:dmm050609. [PMID: 38847227 PMCID: PMC11179721 DOI: 10.1242/dmm.050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
RASopathies are rare developmental genetic syndromes caused by germline pathogenic variants in genes that encode components of the RAS/mitogen-activated protein kinase (MAPK) signal transduction pathway. Although the incidence of each RASopathy syndrome is rare, collectively, they represent one of the largest groups of multiple congenital anomaly syndromes and have severe developmental consequences. Here, we review our understanding of how RAS/MAPK dysregulation in RASopathies impacts skeletal muscle development and the importance of RAS/MAPK pathway regulation for embryonic myogenesis. We also discuss the complex interactions of this pathway with other intracellular signaling pathways in the regulation of skeletal muscle development and growth, and the opportunities that RASopathy animal models provide for exploring the use of pathway inhibitors, typically used for cancer treatment, to correct the unique skeletal myopathy caused by the dysregulation of this pathway.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA, 95817, USA
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| | - William E Tidyman
- University of California Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
4
|
Kareff SA, Trabolsi A, Krause HB, Samec T, Elliott A, Rodriguez E, Olazagasti C, Watson DC, Bustos MA, Hoon DSB, Graff SL, Antonarakis ES, Goel S, Sledge G, Lopes G. The Genomic, Transcriptomic, and Immunologic Landscape of HRAS Mutations in Solid Tumors. Cancers (Basel) 2024; 16:1572. [PMID: 38672653 PMCID: PMC11049662 DOI: 10.3390/cancers16081572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Tipifarnib is the only targeted therapy breakthrough for HRAS-mutant (HRASmt) recurrent or metastatic head and neck squamous cell carcinoma (HNSCC). The molecular profiles of HRASmt cancers are difficult to explore given the low frequency of HRASmt. This study aims to understand the molecular co-alterations, immune profiles, and clinical outcomes of 524 HRASmt solid tumors including urothelial carcinoma (UC), breast cancer (BC), non-small-cell lung cancer (NSCLC), melanoma, and HNSCC. HRASmt was most common in UC (3.0%), followed by HNSCC (2.82%), melanoma (1.05%), BC (0.45%), and NSCLC (0.44%). HRASmt was absent in Her2+ BC regardless of hormone receptor status. HRASmt was more frequently associated with squamous compared to non-squamous NSCLC (60% vs. 40% in HRASwt, p = 0.002). The tumor microenvironment (TME) of HRASmt demonstrated increased M1 macrophages in triple-negative BC (TNBC), HNSCC, squamous NSCLC, and UC; increased M2 macrophages in TNBC; and increased CD8+ T-cells in HNSCC (all p < 0.05). Finally, HRASmt was associated with shorter overall survival in HNSCC (HR: 1.564, CI: 1.16-2.11, p = 0.003) but not in the other cancer types examined. In conclusion, this study provides new insights into the unique molecular profiles of HRASmt tumors that may help to identify new targets and guide future clinical trial design.
Collapse
Affiliation(s)
- Samuel A. Kareff
- Department of Graduate Medical Education, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33136, USA (A.T.)
| | - Asaad Trabolsi
- Department of Graduate Medical Education, University of Miami Sylvester Comprehensive Cancer Center/Jackson Memorial Hospital, Miami, FL 33136, USA (A.T.)
| | | | - Timothy Samec
- Caris Life Sciences, Phoenix, AZ 85040, USA; (H.B.K.)
| | | | - Estelamari Rodriguez
- Division of Medical Oncology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; (E.R.)
| | - Coral Olazagasti
- Division of Medical Oncology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; (E.R.)
| | - Dionysios C. Watson
- Division of Medical Oncology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; (E.R.)
| | - Matias A. Bustos
- Division of Translational Molecular Medicine, St. Johns’ Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA; (M.A.B.); (D.S.B.H.)
| | - Dave S. B. Hoon
- Division of Translational Molecular Medicine, St. Johns’ Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA; (M.A.B.); (D.S.B.H.)
| | - Stephanie L. Graff
- Department of Medicine, Lifespan Cancer Institute, Providence, RI 02903, USA
| | - Emmanuel S. Antonarakis
- Division of Hematology, Oncology, and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA;
| | - Sanjay Goel
- Division of Medical Oncology, Rutgers University, New Brunswick, NJ 08901, USA;
| | - George Sledge
- Caris Life Sciences, Phoenix, AZ 85040, USA; (H.B.K.)
| | - Gilberto Lopes
- Division of Medical Oncology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA; (E.R.)
| |
Collapse
|
5
|
Papadopoulou A, Bountouvi E. Skeletal defects and bone metabolism in Noonan, Costello and cardio-facio-cutaneous syndromes. Front Endocrinol (Lausanne) 2023; 14:1231828. [PMID: 37964950 PMCID: PMC10641803 DOI: 10.3389/fendo.2023.1231828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/18/2023] [Indexed: 11/16/2023] Open
Abstract
Noonan, Costello and Cardio-facio-cutaneous syndromes belong to a group of disorders named RASopathies due to their common pathogenetic origin that lies on the Ras/MAPK signaling pathway. Genetics has eased, at least in part, the distinction of these entities as they are presented with overlapping clinical features which, sometimes, become more pronounced with age. Distinctive face, cardiac and skeletal defects are among the primary abnormalities seen in these patients. Skeletal dysmorphisms range from mild to severe and may include anterior chest wall anomalies, scoliosis, kyphosis, short stature, hand anomalies, muscle weakness, osteopenia or/and osteoporosis. Patients usually have increased serum concentrations of bone resorption markers, while markers of bone formation are within normal range. The causative molecular defects encompass the members of the Ras/MAPK/ERK pathway and the adjacent cascades, important for the maintenance of normal bone homeostasis. It has been suggested that modulation of the expression of specific molecules involved in the processes of bone remodeling may affect the osteogenic fate decision, potentially, bringing out new pharmaceutical targets. Currently, the laboratory imprint of bone metabolism on the clinical picture of the affected individuals is not clear, maybe due to the rarity of these syndromes, the small number of the recruited patients and the methods used for the description of their clinical and biochemical profiles.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Laboratory of Clinical Biochemistry, University General Hospital “Attikon”, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
6
|
Stevenson DA, Viscogliosi G, Leoni C. Bone health in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:459-470. [PMID: 36461161 DOI: 10.1002/ajmg.c.32020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022]
Abstract
The RASopathies are a group of disorders due to pathogenic variants in genes involved in the Ras/MAPK pathway, many of which have overlapping clinical features (e.g., neurofibromatosis type 1, Costello syndrome, cardiofaciocutaneous syndrome and Noonan syndrome) including musculoskeletal manifestations. Osteopenia and osteoporosis are reported in many of the RASopathies suggesting a shared pathogenesis. Even though osteopenia and osteoporosis are often detected and fractures have been reported, the clinical impact of bone mineralization defects on the skeleton of the various syndromes is poorly understood. Further knowledge of the role of the Ras/MAPK pathway on the bone cellular function, and more detailed musculoskeletal phenotyping will be critical in helping to develop therapies to improve bone health in the RASopathies.
Collapse
Affiliation(s)
- David A Stevenson
- Department of Pediatrics, Division of Medical Genetics, Stanford University, Stanford, California, USA
| | - Germana Viscogliosi
- Center for Rare Diseases and Birth Defect, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defect, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
7
|
Nandi S, Chennappan S, Andrasch Y, Fidan M, Engler M, Ahmad M, Tuckermann JP, Zenker M, Cirstea IC. Increased osteoclastogenesis contributes to bone loss in the Costello syndrome Hras G12V mouse model. Front Cell Dev Biol 2022; 10:1000575. [PMID: 36330334 PMCID: PMC9624175 DOI: 10.3389/fcell.2022.1000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
RAS GTPases are ubiquitous GDP/GTP-binding proteins that function as molecular switches in cellular signalling and control numerous signalling pathways and biological processes. Pathogenic mutations in RAS genes severely affect cellular homeostasis, leading to cancer when occurring in somatic cells and developmental disorders when the germline is affected. These disorders are generally termed as RASopathies and among them Costello syndrome (CS) is a distinctive entity that is caused by specific HRAS germline mutations. The majority of these mutations affect residues 12 and 13, the same sites as somatic oncogenic HRAS mutations. The hallmarks of the disease include congenital cardiac anomalies, impaired thriving and growth, neurocognitive impairments, distinctive craniofacial anomalies, and susceptibility to cancer. Adult patients often present signs of premature aging including reduced bone mineral density and osteoporosis. Using a CS mouse model harbouring a Hras G12V germline mutation, we aimed at determining whether this model recapitulates the patients’ bone phenotype and which bone cells are driving the phenotype when mutated. Our data revealed that Hras G12V mutation induces bone loss in mice at certain ages. In addition, we identified that bone loss correlated with an increased number of osteoclasts in vivo and Hras G12V mutations increased osteoclastogenesis in vitro. Last, but not least, mutant osteoclast differentiation was reduced by treatment in vitro with MEK and PI3K inhibitors, respectively. These results indicate that Hras is a novel regulator of bone homeostasis and an increased osteoclastogenesis due to Hras G12V mutation contributes to bone loss in the Costello syndrome.
Collapse
Affiliation(s)
- Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | - Yannik Andrasch
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
- *Correspondence: Ion Cristian Cirstea,
| |
Collapse
|
8
|
Leoni C, Viscogliosi G, Tartaglia M, Aoki Y, Zampino G. Multidisciplinary Management of Costello Syndrome: Current Perspectives. J Multidiscip Healthc 2022; 15:1277-1296. [PMID: 35677617 PMCID: PMC9169840 DOI: 10.2147/jmdh.s291757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/10/2022] [Indexed: 01/09/2023] Open
Abstract
Costello syndrome (CS) is a rare neurodevelopmental disorder caused by germline mutations in HRAS. It belongs among the RASopathies, a group of syndromes characterized by alterations in components of the RAS/MAPK signaling pathway and sharing overlapping phenotypes. Its typical features include a distinctive facial appearance, growth delay, intellectual disability, ectodermal, cardiac, and musculoskeletal abnormalities, and cancer predisposition. Due to the several comorbidities having a strong impact on the quality of life, a multidisciplinary team is essential in the management of such a condition from infancy to adult age, to promptly address any detected issue and to develop appropriate personalized follow-up protocols and treatment strategies. With the present paper we aim to highlight the core and ancillary medical disciplines involved in managing the health challenges characterizing CS from pediatric to adult age, according to literature and to our large clinical experience.
Collapse
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Germana Viscogliosi
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Yoko Aoki
- Department of Medical Genetics, Tohoku University School of Medicine, Sendai, Japan
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
9
|
Brady DC, Hmeljak J, Dar AC. Understanding and drugging RAS: 40 years to break the tip of the iceberg. Dis Model Mech 2022; 15:274631. [PMID: 35244677 PMCID: PMC8905715 DOI: 10.1242/dmm.049519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several cancers and rare genetic diseases are caused by dysregulation in the RAS signaling pathway. RAS proteins serve as molecular switches that regulate pathways involved in cellular growth, differentiation and survival. These pathways have been an intense area of investigation for four decades, since the initial identification of somatic RAS mutations linked to human cancers. In the past few years, inhibitors against several RAS effectors, as well as direct inhibitors of the K-RAS mutant G12C, have been developed. This Special Issue in DMM includes original Research articles on RAS-driven cancers and RASopathies. The articles provide insights into mechanisms and biomarkers, and evaluate therapeutic targets. Several articles also present new disease models, whereas others describe technologies or approaches to evaluate the function of RAS in vivo. The collection also includes a series of Review articles on RAS biology and translational aspects of defining and treating RAS-driven diseases. In this Editorial, we summarize this collection and discuss the potential impact of the articles within this evolving area of research. We also identify areas of growth and possible future developments. Summary: This Editorial introduces DMM’s new Special Issue on the RAS pathway. The Guest Editors reflect on the impact of the featured articles on the landscape of the RAS field.
Collapse
Affiliation(s)
- Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julija Hmeljak
- The Company of Biologists, Bidder Building, Station Road, Histon, Cambridge CB24 9LF, UK
| | - Arvin C Dar
- Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, Center for Therapeutic Discovery, Mount Sinai, New York, NY 10029-5674, USA
| |
Collapse
|
10
|
Abstract
The term RASopathy was originally created to describe a phenotypically similar group of medical genetic syndromes caused by germline pathogenic variants in components of the RAS/mitogen-activated protein kinase (RAS/MAPK) pathway. In defining a RASopathy syndrome, one needs to consider the complex nature of the RAS/MAPK pathway, the numerous genes and regulatory components involved, its crosstalk with other signaling pathways and the phenotypic spectrum among these syndromes. Three main guiding principles to the definition should be considered. First, a RASopathy is a clinical syndrome with overlapping phenotypic features caused by germline pathogenic variants associated with the RAS/MAPK pathway. Second, a RASopathy is caused by multiple pathogenetic mechanisms, all of which lead to a similar outcome of RAS/MAPK pathway activation/dysregulation. Finally, because a RASopathy has dysfunctional germline RAS/MAPK pathway activation/dysregulation, it may, therefore, be amenable to treatment with pathway modulators. Summary: RASopathy is a term used to unify a phenotypically similar group of medical genetic syndromes, yet its definition is challenging and should consider the perspectives of clinicians, scientists and the patients.
Collapse
Affiliation(s)
- Katherine A Rauen
- Department of Pediatrics, Division of Genomic Medicine, University of California Davis, Sacramento, CA 95817, USA.,Department of Pediatrics, UC Davis MIND Institute, Sacramento, CA 95817, USA
| |
Collapse
|
11
|
Abstract
The RASopathies are a group of disorders caused by a germline mutation in one of the genes encoding a component of the RAS/MAPK pathway. These disorders, including neurofibromatosis type 1, Noonan syndrome, cardiofaciocutaneous syndrome, Costello syndrome and Legius syndrome, among others, have overlapping clinical features due to RAS/MAPK dysfunction. Although several of the RASopathies are very rare, collectively, these disorders are relatively common. In this Review, we discuss the pathogenesis of the RASopathy-associated genetic variants and the knowledge gained about RAS/MAPK signaling that resulted from studying RASopathies. We also describe the cell and animal models of the RASopathies and explore emerging RASopathy genes. Preclinical and clinical experiences with targeted agents as therapeutics for RASopathies are also discussed. Finally, we review how the recently developed drugs targeting RAS/MAPK-driven malignancies, such as inhibitors of RAS activation, direct RAS inhibitors and RAS/MAPK pathway inhibitors, might be leveraged for patients with RASopathies.
Collapse
Affiliation(s)
- Katie E Hebron
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Edjay Ralph Hernandez
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Marielle E Yohe
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? SCIENCE ADVANCES 2022; 8:eabm2059. [PMID: 35030014 PMCID: PMC8759737 DOI: 10.1126/sciadv.abm2059] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
The question of how same-gene mutations can drive both cancer and neurodevelopmental disorders has been puzzling. It has also been puzzling why those with neurodevelopmental disorders have a high risk of cancer. Ras, MEK, PI3K, PTEN, and SHP2 are among the oncogenic proteins that can harbor mutations that encode diseases other than cancer. Understanding why some of their mutations can promote cancer, whereas others promote neurodevelopmental diseases, and why even the same mutations may promote both phenotypes, has important clinical ramifications. Here, we review the literature and address these tantalizing questions. We propose that cell type–specific expression of the mutant protein, and of other proteins in the respective pathway, timing of activation (during embryonic development or sporadic emergence), and the absolute number of molecules that the mutations activate, alone or in combination, are pivotal in determining the pathological phenotypes—cancer and (or) developmental disorders.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|