1
|
Belew MD, Chen J, Cheng Z. Emerging roles of cyclin-dependent kinase 7 in health and diseases. Trends Mol Med 2025; 31:138-151. [PMID: 39414519 PMCID: PMC11825286 DOI: 10.1016/j.molmed.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024]
Abstract
Cyclin-dependent kinase 7 (CDK7) regulates cell cycle and transcription, which are central for cancer progression. CDK7 inhibitors exhibit substantial anticancer activities in preclinical studies and are currently being evaluated in clinical trials. CDK7 is widely expressed in the body. However, the impact of CDK7 inhibition on normal tissues has received little attention. Here, we review the biological functions of CDK7, followed by its emerging roles in development, homeostasis and diseases. We discuss the regulatory mechanisms of CDK7 kinase activation and provide an overview of CDK7 substrates identified to date. Moreover, we highlight unanswered questions and propose key areas for future investigation. An advanced understanding of CDK7 will facilitate the pharmaceutical development of CDK7 inhibitors and help minimize undesirable adverse effects.
Collapse
Affiliation(s)
- Mahder Dawit Belew
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Jingrui Chen
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA
| | - Zhaokang Cheng
- Department of Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd., Spokane, WA 99202-2131, USA.
| |
Collapse
|
2
|
Wan C, Zong RY, Chen XS. The new mechanism of cognitive decline induced by hypertension: High homocysteine-mediated aberrant DNA methylation. Front Cardiovasc Med 2022; 9:928701. [PMID: 36352848 PMCID: PMC9637555 DOI: 10.3389/fcvm.2022.928701] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/30/2022] [Indexed: 11/23/2022] Open
Abstract
The prevalence and severity of hypertension-induced cognitive impairment increase with the prolonging of hypertension. The mechanisms of cognitive impairment induced by hypertension primarily include cerebral blood flow perfusion imbalance, white and gray matter injury with blood-brain barrier disruption, neuroinflammation and amyloid-beta deposition, genetic polymorphisms and variants, and instability of blood pressure. High homocysteine (HHcy) is an independent risk factor for hypertension that also increases the risk of developing early cognitive impairment. Homocysteine (Hcy) levels increase in patients with cognitive impairment induced by hypertension. This review summarizes a new mechanism whereby HHcy-mediated aberrant DNA methylation and exacerbate hypertension. It involves changes in Hcy-dependent DNA methylation products, such as methionine adenosyltransferase, DNA methyltransferases, S-adenosylmethionine, S-adenosylhomocysteine, and methylenetetrahydrofolate reductase (MTHFR). The mechanism also involves DNA methylation changes in the genes of hypertension patients, such as brain-derived neurotrophic factor, apolipoprotein E4, and estrogen receptor alpha, which contribute to learning, memory, and attention deficits. Studies have shown that methionine (Met) induces hypertension in mice. Moreover, DNA hypermethylation leads to cognitive behavioral changes alongside oligodendroglial and/or myelin deficits in Met-induced mice. Taken together, these studies demonstrate that DNA methylation regulates cognitive dysfunction in patients with hypertension. A better understanding of the function and mechanism underlying the effect of Hcy-dependent DNA methylation on hypertension-induced cognitive impairment will be valuable for early diagnosis, interventions, and prevention of further cognitive defects induced by hypertension.
Collapse
Affiliation(s)
- Chong Wan
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- College of Basic Medicine, Army Medical University, Chongqing, China
| | - Rui-Yi Zong
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
- NCO School, Army Medical University, Shijiazhuang, China
| | - Xing-Shu Chen
- Department of Military Medical Geography, Army Medical Training Base, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
3
|
Dion V, Schumacher N, Masar N, Pieltain A, Tocquin P, Lesoinne P, Malgrange B, Vandenbosch R, Franzen R. Cyclin-dependent kinase 7 contributes to myelin maintenance in the adult central nervous system and promotes myelin gene expression. Glia 2022; 70:1652-1665. [PMID: 35488490 DOI: 10.1002/glia.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
Mechanisms regulating oligodendrocyte differentiation, developmental myelination and myelin maintenance in adulthood are complex and still not completely described. Their understanding is crucial for the development of new protective or therapeutic strategies in demyelinating pathologies such as multiple sclerosis. In this perspective, we have investigated the role of Cyclin-dependent kinase 7 (Cdk7), a kinase involved in cell-cycle progression and transcription regulation, in the oligodendroglial lineage. We generated a conditional knock-out mouse model in which Cdk7 is invalidated in post-mitotic oligodendrocytes. At the end of developmental myelination, the number and diameter of myelinated axons, as well as the myelin structure, thickness and protein composition, were normal. However, in young adult and in aged mice, there was a higher number of small caliber myelinated axons associated with a decreased mean axonal diameter, myelin sheaths of large caliber axons were thinner, and the level of some major myelin-associated proteins was reduced. These defects were accompanied by the appearance of an abnormal clasping phenotype. We also used an in vitro oligodendroglial model and showed that Cdk7 pharmacological inhibition led to an altered myelination-associated morphological modification combined with a decreased expression of myelin-specific genes. Altogether, we identified novel functions for Cdk7 in CNS myelination.
Collapse
Affiliation(s)
- Valérie Dion
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Nathalie Masar
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alexandra Pieltain
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Pierre Tocquin
- CARE PhytoSYSTEMS, Integrative Biological Sciences, University of Liège, Liège, Belgium
| | - Pierre Lesoinne
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Brigitte Malgrange
- Laboratory of Developmental Neurobiology, GIGA Stem Cells & GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Stem Cells & GIGA Neurosciences, University of Liège, Liège, Belgium.,Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Kahle KT, Schmouth JF, Lavastre V, Latremoliere A, Zhang J, Andrews N, Omura T, Laganière J, Rochefort D, Hince P, Castonguay G, Gaudet R, Mapplebeck JCS, Sotocinal SG, Duan J, Ward C, Khanna AR, Mogil JS, Dion PA, Woolf CJ, Inquimbert P, Rouleau GA. Inhibition of the kinase WNK1/HSN2 ameliorates neuropathic pain by restoring GABA inhibition. Sci Signal 2016; 9:ra32. [PMID: 27025876 PMCID: PMC5723157 DOI: 10.1126/scisignal.aad0163] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HSN2is a nervous system predominant exon of the gene encoding the kinase WNK1 and is mutated in an autosomal recessive, inherited form of congenital pain insensitivity. The HSN2-containing splice variant is referred to as WNK1/HSN2. We created a knockout mouse specifically lacking theHsn2exon ofWnk1 Although these mice had normal spinal neuron and peripheral sensory neuron morphology and distribution, the mice were less susceptible to hypersensitivity to cold and mechanical stimuli after peripheral nerve injury. In contrast, thermal and mechanical nociceptive responses were similar to control mice in an inflammation-induced pain model. In the nerve injury model of neuropathic pain, WNK1/HSN2 contributed to a maladaptive decrease in the activity of the K(+)-Cl(-)cotransporter KCC2 by increasing its inhibitory phosphorylation at Thr(906)and Thr(1007), resulting in an associated loss of GABA (γ-aminobutyric acid)-mediated inhibition of spinal pain-transmitting nerves. Electrophysiological analysis showed that WNK1/HSN2 shifted the concentration of Cl(-)such that GABA signaling resulted in a less hyperpolarized state (increased neuronal activity) rather than a more hyperpolarized state (decreased neuronal activity) in mouse spinal nerves. Pharmacologically antagonizing WNK activity reduced cold allodynia and mechanical hyperalgesia, decreased KCC2 Thr(906)and Thr(1007)phosphorylation, and restored GABA-mediated inhibition (hyperpolarization) of injured spinal cord lamina II neurons. These data provide mechanistic insight into, and a compelling therapeutic target for treating, neuropathic pain after nerve injury.
Collapse
Affiliation(s)
- Kristopher T Kahle
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA. Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02124, USA.
| | - Jean-François Schmouth
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Valérie Lavastre
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Alban Latremoliere
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jinwei Zhang
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK
| | - Nick Andrews
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Takao Omura
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Janet Laganière
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Daniel Rochefort
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Pascale Hince
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Geneviève Castonguay
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Rébecca Gaudet
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Josiane C S Mapplebeck
- Department of Psychology and Centre for Research on Pain, McGill University, Montréal, Quebec H3A 0G1, Canada
| | - Susana G Sotocinal
- Department of Psychology and Centre for Research on Pain, McGill University, Montréal, Quebec H3A 0G1, Canada
| | - JingJing Duan
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Catherine Ward
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Arjun R Khanna
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA 02124, USA
| | - Jeffrey S Mogil
- Department of Psychology and Centre for Research on Pain, McGill University, Montréal, Quebec H3A 0G1, Canada
| | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Perrine Inquimbert
- Institut des Neurosciences Cellulaires et Integratives, UPR 3212 Centre National de la Recherche Scientifique, and Universite de Strasbourg, 5 rue Blaise Pascal, F-67084 Strasbourg, France
| | - Guy A Rouleau
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Quebec H3A 2B4, Canada. Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.
| |
Collapse
|
5
|
Cyclin-Dependent Kinase CRK9, Required for Spliced Leader trans Splicing of Pre-mRNA in Trypanosomes, Functions in a Complex with a New L-Type Cyclin and a Kinetoplastid-Specific Protein. PLoS Pathog 2016; 12:e1005498. [PMID: 26954683 PMCID: PMC4783070 DOI: 10.1371/journal.ppat.1005498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/18/2016] [Indexed: 01/08/2023] Open
Abstract
In eukaryotes, cyclin-dependent kinases (CDKs) control the cell cycle and critical steps in gene expression. The lethal parasite Trypanosoma brucei, member of the phylogenetic order Kinetoplastida, possesses eleven CDKs which, due to high sequence divergence, were generically termed CDC2-related kinases (CRKs). While several CRKs have been implied in the cell cycle, CRK9 was the first trypanosome CDK shown to control the unusual mode of gene expression found in kinetoplastids. In these organisms, protein-coding genes are arranged in tandem arrays which are transcribed polycistronically. Individual mRNAs are processed from precursor RNA by spliced leader (SL) trans splicing and polyadenylation. CRK9 ablation was lethal in cultured trypanosomes, causing a block of trans splicing before the first transesterification step. Additionally, CRK9 silencing led to dephosphorylation of RNA polymerase II and to hypomethylation of the SL cap structure. Here, we tandem affinity-purified CRK9 and, among potential CRK9 substrates and modifying enzymes, discovered an unusual tripartite complex comprising CRK9, a new L-type cyclin (CYC12) and a protein, termed CRK9-associated protein (CRK9AP), that is only conserved among kinetoplastids. Silencing of either CYC12 or CRK9AP reproduced the effects of depleting CRK9, identifying these proteins as functional partners of CRK9 in vivo. While mammalian cyclin L binds to CDK11, the CRK9 complex deviates substantially from that of CDK11, requiring CRK9AP for efficient CRK9 complex formation and autophosphorylation in vitro. Interference with this unusual CDK rescued mice from lethal trypanosome infections, validating CRK9 as a potential chemotherapeutic target.
Collapse
|
6
|
Heithaus JL, Davenport S, Twyman KA, Torti EE, Batanian JR. An intragenic deletion of the gene MNAT1 in a family with pectus deformities. Am J Med Genet A 2014; 164A:1293-7. [PMID: 24664931 DOI: 10.1002/ajmg.a.36445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 12/26/2013] [Indexed: 11/07/2022]
Abstract
Pectus carinatum and excavatum have multiple genetic associations. We report on a novel association of these deformities in a 34-month-old male and his father, likely due to a small intragenic deletion of MNAT1 (ménage a trois 1 gene). Both individuals share a deletion of MNAT1 located at 14q23.1 and an interstitial duplication of CHRNA7 located at 15q13.3. Deletion of MNAT1 has been associated with connective tissue abnormalities and is likely the etiology of the malformations, whereas the duplication of CHNRA7 is unlikely related due to the lack of association with any such connective tissue abnormalities.
Collapse
Affiliation(s)
- Jennifer L Heithaus
- Department of Pediatrics, Genetics Division, Saint Louis University School of Medicine, St. Louis, Missouri
| | | | | | | | | |
Collapse
|
7
|
Ganuza M, Santamaría D. Cdk7: open questions beyond the prevailing model. Cell Cycle 2012; 11:3519-20. [PMID: 22935708 PMCID: PMC3478293 DOI: 10.4161/cc.21888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Loss of neuronal potassium/chloride cotransporter 3 (KCC3) is responsible for the degenerative phenotype in a conditional mouse model of hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum. J Neurosci 2012; 32:3865-76. [PMID: 22423107 DOI: 10.1523/jneurosci.3679-11.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Disruption of the potassium/chloride cotransporter 3 (KCC3), encoded by the SLC12A6 gene, causes hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC), a neurodevelopmental and neurodegenerative disorder affecting both the peripheral nervous system and CNS. However, the precise role of KCC3 in the maintenance of ion homeostasis in the nervous system and the pathogenic mechanisms leading to HMSN/ACC remain unclear. We established two Slc12a6 Cre/LoxP transgenic mouse lines expressing C-terminal truncated KCC3 in either a neuron-specific or ubiquitous fashion. Our results suggest that neuronal KCC3 expression is crucial for axon volume control. We also demonstrate that the neuropathic features of HMSN/ACC are predominantly due to a neuronal KCC3 deficit, while the auditory impairment is due to loss of non-neuronal KCC3 expression. Furthermore, we demonstrate that KCC3 plays an essential role in inflammatory pain pathways. Finally, we observed hypoplasia of the corpus callosum in both mouse mutants and a marked decrease in axonal tracts serving the auditory cortex in only the general deletion mutant. Together, these results establish KCC3 as an important player in both central and peripheral nervous system maintenance.
Collapse
|
9
|
Ganuza M, Sáiz-Ladera C, Cañamero M, Gómez G, Schneider R, Blasco MA, Pisano D, Paramio JM, Santamaría D, Barbacid M. Genetic inactivation of Cdk7 leads to cell cycle arrest and induces premature aging due to adult stem cell exhaustion. EMBO J 2012; 31:2498-510. [PMID: 22505032 DOI: 10.1038/emboj.2012.94] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/20/2012] [Indexed: 01/09/2023] Open
Abstract
Cyclin-dependent kinase (Cdk)7, the catalytic subunit of the Cdk-activating kinase (CAK) complex has been implicated in the control of cell cycle progression and of RNA polymerase II (RNA pol II)-mediated transcription. Genetic inactivation of the Cdk7 locus revealed that whereas Cdk7 is completely dispensable for global transcription, is essential for the cell cycle via phosphorylation of Cdk1 and Cdk2. In vivo, Cdk7 is also indispensable for cell proliferation except during the initial stages of embryonic development. Interestingly, widespread elimination of Cdk7 in adult tissues with low proliferative indexes had no phenotypic consequences. However, ablation of conditional Cdk7 alleles in tissues with elevated cellular turnover led to the efficient repopulation of these tissues with Cdk7-expressing cells most likely derived from adult stem cells that may have escaped the inactivation of their targeted Cdk7 alleles. This process, a physiological attempt to maintain tissue homeostasis, led to the attrition of adult stem cell pools and to the appearance of age-related phenotypes, including telomere shortening and early death.
Collapse
Affiliation(s)
- Miguel Ganuza
- Experimental Oncology, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Helenius K, Yang Y, Tselykh TV, Pessa HKJ, Frilander MJ, Mäkelä TP. Requirement of TFIIH kinase subunit Mat1 for RNA Pol II C-terminal domain Ser5 phosphorylation, transcription and mRNA turnover. Nucleic Acids Res 2011; 39:5025-35. [PMID: 21385826 PMCID: PMC3130277 DOI: 10.1093/nar/gkr107] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The relevance of serine 5 phosphorylation of RNA polymerase II carboxy-terminal domain during initiation has been difficult to determine in mammalian cells as no general in vivo Ser5 kinase has been identified. Here, we demonstrate that deletion of the TFIIH kinase subunit Mat1 in mouse fibroblasts leads to dramatically reduced Pol II Ser5 phosphorylation. This is associated with defective capping and reduced Ser2 phosphorylation, decreased Pol II progression into elongation and severely attenuated transcription detected through analysis of nascent mRNAs, establishing a general requirement for mammalian Mat1 in transcription. Surprisingly, the general defect in Pol II transcription in Mat1−/− fibroblasts is not reflected in the majority of steady-state mRNAs. This indicates widespread stabilization of mRNAs and points to the existence of a regulatory mechanism to stabilize mRNAs following transcriptional attenuation, thus revealing a potential caveat in similar studies limited to analysis of steady-state mRNAs.
Collapse
Affiliation(s)
- Katja Helenius
- Institute of Biotechnology, University of Helsinki, PO Box 56 Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
11
|
Patel SA, Simon MC. Functional analysis of the Cdk7.cyclin H.Mat1 complex in mouse embryonic stem cells and embryos. J Biol Chem 2010; 285:15587-15598. [PMID: 20231280 PMCID: PMC2865308 DOI: 10.1074/jbc.m109.081687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/22/2010] [Indexed: 01/27/2023] Open
Abstract
The trimeric Cdk7.cyclin H.Mat1 complex functions in cell cycle regulation, as the Cdk-activating kinase, and in transcription, as a module of the general transcription factor TFIIH. As a component of TFIIH, Cdk7 phosphorylates serines 5 and 7 of the carboxyl-terminal domain of RNA polymerase II and can also directly phosphorylate transcription factors to regulate gene expression. Here we have investigated the function of the Cdk7.cyclin H.Mat1 complex in murine embryonic stem (ES) cells and preimplantation embryos to determine whether it regulates the unique cell cycle structure and transcriptional network of pluripotent cells. We demonstrate that depletion of cyclin H leads to differentiation of ES cells independent of changes in cell cycle progression. In contrast, we observed that developmental genes are acutely up-regulated after cyclin H down-regulation, likely perturbing normal ES self-renewal pathways. We further demonstrate that Spt5, a known phosphorylation target of Cdk7, similarly regulates ES pluripotency and gene expression. Consistent with its function in ES cells, cyclin H depletion from mouse embryos also leads to defects in the expansion of the inner cell mass of blastocysts, a transient pluripotent stem cell population in vivo. Our findings indicate that cyclin H has an essential function in promoting the self-renewal of the pluripotent stem cells of blastocyst stage embryos. Collectively, these studies demonstrate a critical and novel role for cyclin H in maintaining ES cell identity and suggest that cyclin H has important functions in early embryonic development.
Collapse
Affiliation(s)
- Shetal A Patel
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
12
|
Functional Evolution of Cyclin-Dependent Kinases. Mol Biotechnol 2009; 42:14-29. [DOI: 10.1007/s12033-008-9126-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
|
13
|
Mat1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipocyte differentiation. Mol Cell Biol 2008; 29:315-23. [PMID: 18981214 DOI: 10.1128/mcb.00347-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian Cdk7, cyclin H, and Mat1 form the kinase submodule of transcription factor IIH (TFIIH) and have been considered ubiquitously expressed elements of the transcriptional machinery. Here we found that Mat1 and Cdk7 levels are undetectable in adipose tissues in vivo and downregulated during adipogenesis, where activation of peroxisome proliferator-activated receptor gamma (PPARgamma) acts as a critical differentiation switch. Using both Mat1(-/-) mouse embryonic fibroblasts and Cdk7 knockdown approaches, we show that the Cdk7 complex is an inhibitor of adipogenesis and is required for inactivation of PPARgamma through the phosphorylation of PPARgamma-S112. The results demonstrate that the Cdk7 submodule of TFIIH acts as a physiological roadblock to adipogenesis by inhibiting PPARgamma activity. The observation that components of TFIIH are absent from transcriptionally active adipose tissue prompts a reevaluation of the ubiquitous nature of basal transcription factors in mammalian tissues.
Collapse
|
14
|
Sano M, Izumi Y, Helenius K, Asakura M, Rossi DJ, Xie M, Taffet G, Hu L, Pautler RG, Wilson CR, Boudina S, Abel ED, Taegtmeyer H, Scaglia F, Graham BH, Kralli A, Shimizu N, Tanaka H, Mäkelä TP, Schneider MD. Ménage-à-trois 1 is critical for the transcriptional function of PPARgamma coactivator 1. Cell Metab 2007; 5:129-42. [PMID: 17276355 DOI: 10.1016/j.cmet.2007.01.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 12/11/2006] [Accepted: 01/12/2007] [Indexed: 12/13/2022]
Abstract
The Cdk7/cyclin H/ménage-à-trois 1 (MAT1) heterotrimer has proposed functions in transcription as the kinase component of basal transcription factor TFIIH and is activated in adult hearts by Gq-, calcineurin-, and biomechanical stress-dependent pathways for hypertrophic growth. Using cardiac-specific Cre, we have ablated MAT1 in myocardium. Despite reduced Cdk7 activity, MAT1-deficient hearts grew normally, but fatal heart failure ensued at 6-8 weeks. By microarray profiling, quantitative RT-PCR, and western blotting at 4 weeks, genes for energy metabolism were found to be suppressed selectively, including targets of peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1). Cardiac metabolic defects were substantiated in isolated perfused hearts and isolated mitochondria. In culture, deleting MAT1 with Cre disrupted PGC-1 function: PGC-1alpha failed to activate PGC-1-responsive promoters and nuclear receptors, GAL4-PGC-1alpha was functionally defective, and PGC-1beta was likewise deficient. PGC-1 bound to both MAT1 and Cdk7 in coprecipitation assays. Thus, we demonstrate a requirement for MAT1 in the operation of PGC-1 coactivators that control cell metabolism.
Collapse
Affiliation(s)
- Motoaki Sano
- Center for Cardiovascular Development, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Aguilar-Fuentes J, Valadez-Graham V, Reynaud E, Zurita M. TFIIH trafficking and its nuclear assembly during early Drosophila embryo development. J Cell Sci 2006; 119:3866-75. [PMID: 16940351 DOI: 10.1242/jcs.03150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We present the first analysis of the dynamics of the transcription DNA-repair factor TFIIH at the onset of transcription in early Drosophila development. TFIIH is composed of ten polypeptides that are part of two complexes - the core and the CAK. We found that the TFIIH core is initially located in the cytoplasm of syncytial blastoderm embryos, and that after mitotic division ten and until the cellular blastoderm stage, the core moves from the cytoplasm to the nucleus. By contrast, the CAK complex is mostly cytoplasmic during cellularization and during gastrulation. However, both components are positioned at promoters of genes that are activated at transcription onset. Later in development, the CAK complex becomes mostly nuclear and co-localizes in most chromosomal regions with the TFIIH core, but not in all sites, suggesting that the CAK complex could have a TFIIH-independent role in transcription of some loci. We also demonstrate that even though the CAK and the core coexist in the early embryo cytoplasm, they do not interact until they are in the nucleus and suggest that the complete assembly of the ten subunits of TFIIH occurs in the nucleus at the mid-blastula transition. In addition, we present evidence that suggests that DNA helicase subunits XPB and XPD are assembled in the core when they are transported into the nucleus and are required for the onset of transcription.
Collapse
Affiliation(s)
- Javier Aguilar-Fuentes
- Department of Developmental Genetics and Molecular Physiology, Institute of Biotechnology, National Autonomous University of México, Av. Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | | | | | | |
Collapse
|
16
|
Fisher RP. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J Cell Sci 2006; 118:5171-80. [PMID: 16280550 DOI: 10.1242/jcs.02718] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In metazoans, cyclin-dependent kinase 7 (CDK7) has essential roles in both the cell-division cycle and transcription, as a CDK-activating kinase (CAK) and as a component of the general transcription factor TFIIH, respectively. Controversy over its double duty has been resolved, but questions remain. First, how does CDK7 achieve the dual substrate specificity necessary to perform both roles? Second, is there a deeper connection implied by the dichotomy of CDK7 function, for example similar mechanisms controlling cell division and gene expression, and/or actual coordination of the two processes? Enzymological studies have revealed solutions to the unusual substrate recognition problem, and there is evidence that the distinct functions of CDK7 can be regulated independently. Finally, despite divergence in their wiring, the CAK-CDK networks of budding yeast, fission yeast and metazoans all link transcriptional regulation with operation of the cell-cycle machinery. This connection might help to ensure that mRNAs encoding effectors of cell division are expressed at the right time in the cycle.
Collapse
Affiliation(s)
- Robert P Fisher
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
17
|
Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005; 30:630-41. [PMID: 16236519 DOI: 10.1016/j.tibs.2005.09.005] [Citation(s) in RCA: 890] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2005] [Revised: 08/11/2005] [Accepted: 09/15/2005] [Indexed: 02/02/2023]
Abstract
Cyclin-dependent kinases (Cdks) are the catalytic subunits of a family of mammalian heterodimeric serine/threonine kinases that have been implicated in the control of cell-cycle progression, transcription and neuronal function. Recent genetic evidence obtained with gene-targeted mice has shown that Cdk4 and Cdk6 are not needed for entry into the cell cycle after mitogenic stimuli and organogenesis; however, they are essential for the proliferation of some endocrine and hematopoietic cells. Cdk2 is also dispensable for the mitotic cell cycle. Indeed, mice without Cdk2 are normal except for their complete sterility: unexpectedly, Cdk2 is crucial for the first meiotic division of male and female germ cells. These findings have important implications both for our current understanding of the role of Cdks in regulating the mammalian cell cycle and for their potential use as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Marcos Malumbres
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, Melchor Fernández Almagro 3, E-28029 Madrid, Spain.
| | | |
Collapse
|
18
|
Abstract
Mice likely represent the most-studied mammalian organism, except for humans. Genetic engineering in embryonic stem cells has allowed derivation of mouse strains lacking particular cell cycle proteins. Analyses of these mutant mice, and cells derived from them, facilitated the studies of the functions of cell cycle apparatus at the organismal and cellular levels. In this review, we give some background about the cell cycle progression during mouse development. We next discuss some insights about in vivo functions of the cell cycle proteins, gleaned from mouse knockout experiments. Our text is meant to provide examples of the recent experiments, rather than to supply an extensive and complete list.
Collapse
Affiliation(s)
- Maria A Ciemerych
- Department of Embryology, Institute of Zoology, Faculty of Biology, Warsaw University, Miecznikowa 1, 02-096 Warsaw, Poland
| | | |
Collapse
|
19
|
Lee KM, Miklos I, Du H, Watt S, Szilagyi Z, Saiz JE, Madabhushi R, Penkett CJ, Sipiczki M, Bähler J, Fisher RP. Impairment of the TFIIH-associated CDK-activating kinase selectively affects cell cycle-regulated gene expression in fission yeast. Mol Biol Cell 2005; 16:2734-45. [PMID: 15829570 PMCID: PMC1142420 DOI: 10.1091/mbc.e04-11-0982] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The fission yeast Mcs6-Mcs2-Pmh1 complex, homologous to metazoan Cdk7-cyclin H-Mat1, has dual functions in cell division and transcription: as a partially redundant cyclin-dependent kinase (CDK)-activating kinase (CAK) that phosphorylates the major cell cycle CDK, Cdc2, on Thr-167; and as the RNA polymerase (Pol) II carboxyl-terminal domain (CTD) kinase associated with transcription factor (TF) IIH. We analyzed conditional mutants of mcs6 and pmh1, which activate Cdc2 normally but cannot complete cell division at restrictive temperature and arrest with decreased CTD phosphorylation. Transcriptional profiling by microarray hybridization revealed only modest effects on global gene expression: a one-third reduction in a severe mcs6 mutant after prolonged incubation at 36 degrees C. In contrast, a small subset of transcripts ( approximately 5%) decreased by more than twofold after Mcs6 complex function was compromised. The signature of repressed genes overlapped significantly with those of cell separation mutants sep10 and sep15. Sep10, a component of the Pol II Mediator complex, becomes essential in mcs6 or pmh1 mutant backgrounds. Moreover, transcripts dependent on the forkhead transcription factor Sep1, which are expressed coordinately during mitosis, were repressed in Mcs6 complex mutants, and Mcs6 also interacts genetically with Sep1. Thus, the Mcs6 complex, a direct activator of Cdc2, also influences the cell cycle transcriptional program, possibly through its TFIIH-associated kinase function.
Collapse
Affiliation(s)
- Karen M Lee
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bamps S, Westerling T, Pihlak A, Tafforeau L, Vandenhaute J, Mäkelä TP, Hermand D. Mcs2 and a novel CAK subunit Pmh1 associate with Skp1 in fission yeast. Biochem Biophys Res Commun 2004; 325:1424-32. [PMID: 15555586 DOI: 10.1016/j.bbrc.2004.10.190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2004] [Indexed: 11/28/2022]
Abstract
The Mcs6 CDK together with its cognate cyclin Mcs2 represents the CDK-activating kinase (CAK) of fission yeast Cdc2. We have attempted to determine complexes in which Mcs6 and Mcs2 mediate this and possible other functions. Here we characterize a novel interaction between Mcs2 and Skp1, a component of the SCF (Skp1-Cullin-F box protein) ubiquitin ligase. Furthermore, we identify a novel protein termed Pmh1 through its association with Skp1. Pmh1 associates with the Mcs6-Mcs2 complex, enhancing its kinase activity, and represents the apparent homolog of metazoan Mat1. Association of Mcs2 or Pmh1 with Skp1 does not appear to be involved in proteolytic degradation, as these complexes do not contain Pcu1, and levels of Mcs2 or Pmh1 are not sensitive to inhibition of SCF and the 26S proteasome. The identified interactions between Skp1 and two regulatory CAK subunits may reflect a novel mechanism to modulate activity and specificity of the Mcs6 kinase.
Collapse
Affiliation(s)
- Sophie Bamps
- Laboratoire de Génétique Moléculaire (GEMO), University of Namur (FUNDP), 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Mutations in some subunits of the basal DNA repair and transcription factor II H (TFIIH) are involved in several human genetic disorders. Transcription factor II H interacts with a variety of factors during transcription, including nuclear receptors, tissue-specific transcription factors, chromatin remodeling complexes and RNA, suggesting that, in addition to its essential role in transcription initiation, it also participates as a regulatory factor. Interpretation of the phenotypes produced by mutations in TFIIH is complicated by the recent finding that TFIIH plays a role in RNA polymerase I (RNA Pol I)-mediated transcription. In vitro reconstituted systems and genetic analysis suggest two possible explanations for the transcriptional phenotypes of TFIIH mutations that are not mutually excluding. The first is that different sets of genes require different levels of transcription to maintain a wild-type phenotype. The second suggests that mutations in TFIIH produce specific phenotypes arising from differential interactions of this complex with different transcription regulatory factors.
Collapse
Affiliation(s)
- Mario Zurita
- Dept of Developmental Genetics and Molecular Physiology, Instituto de Biotecnología, Universidad Nacional Autónoma de México, APDO-Postal 510-3, 62250, Cuernavaca Morelos, México.
| | | |
Collapse
|