1
|
Yu CL, Pang H, Run Z, Wang GH. Anti-Melanogenic Effects of L-Theanine on B16F10 Cells and Zebrafish. Molecules 2025; 30:956. [PMID: 40005265 PMCID: PMC11858779 DOI: 10.3390/molecules30040956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
L-Theanine, a natural amino acid found in green tea (Camellia sinensis) leaves, is known for its diverse psychotropic effects. This study aimed to evaluate the inhibitory effect of L-theanine on melanin production and uncover its regulatory mechanism. We evaluated the anti-melanogenic activities of L-theanine in vitro and in vivo. In B16F10 murine melanoma cells induced by α-melanocyte-stimulating hormone, melanin content and intracellular tyrosinase activity were determined, and melanogenesis-related protein expression and signaling pathways were analyzed by Western blotting. Melanin reduction was further assessed using the zebrafish (Danio rerio) test. L-Theanine reduced the intracellular tyrosinase activity and melanin content of B16F10 cells. It also attenuated the expression of melanogenesis-related proteins, such as microphthalmia- associated transcription factor, tyrosinase (TYR), TYR-related protein-1, and dopachrome tautomerase. L-Theanine modulated the protein kinase A (PKA), cAMP responder element binding protein (CREB), phosphorylation of/protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), and β-catenin. The antimelanogenic activity of L-theanine (<2 mg/mL) was further confirmed using zebrafish larvae. L-Theanine inhibited melanogenesis by downregulating the PKA/CREB and Akt/GSK-3β/β-catenin signaling pathways. In summary, L-theanine shows potential as a skin-whitening compound, warranting further investigation for its possible applications in cosmetic and pharmaceutical products.
Collapse
Affiliation(s)
| | | | | | - Guey-Horng Wang
- Engineering Research Center of Natural Cosmeceuticals College of Fujian Province, Xiamen Medical College, Xiamen 361023, China; (C.-L.Y.); (H.P.)
| |
Collapse
|
2
|
Kim IW, Park WJ, Yun HY, Kim DS. Methylsulfonylmethane promotes melanogenesis via activation of JNK in Mel-Ab cells. Int J Cosmet Sci 2024; 46:918-926. [PMID: 38924609 DOI: 10.1111/ics.12988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/25/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Methylsulfonylmethane (MSM), which contains organic sulphur, has been used for a long time as a medicinal ingredient because of its benefits to human health. MSM is reported to be protective against certain skin disorders, but it is unknown whether it affects melanin synthesis. Therefore, in our current research, we examined the possibility of MSM controlling the production of melanin in Mel-Ab melanocytes. METHODS In Mel-Ab cells, melanin contents and tyrosinase activities were assessed and quantified. The expression of microphthalmia-associated transcription factor (MITF) and tyrosinase was evaluated using western blot analysis, while MSM-induced signalling pathways were investigated. RESULTS The MSM treatment significantly resulted in a dose-dependent increase in melanin production. Furthermore, MSM elevated melanin-related proteins, including MITF and tyrosinase. However, the rate-limiting enzyme of melanin production, tyrosinase, was not directly influenced by it. Therefore, we investigated potential melanogenesis-related signalling pathways that may have been triggered by MSM. Our findings showed that MSM did not influence the signalling pathways associated with glycogen synthase kinase 3β, cAMP response-element binding protein, extracellular signal-regulated kinase, or p38 mitogen-activated protein kinase. However, MSM phosphorylated c-Jun N-terminal kinases/stress-activated protein kinase (JNK/SAPK), which is known to induce melanogenesis. SP600125, a specific JNK inhibitor, inhibited MSM-induced melanogenesis. CONCLUSION Taken together, our study indicates that MSM induces melanin synthesis and may serve as a therapeutic option for hypopigmentary skin disorders such as vitiligo.
Collapse
Affiliation(s)
- In Wook Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Woo-Jae Park
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hye-Young Yun
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Dong-Seok Kim
- Department of Biochemistry, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Jang IS, Lee SJ, Bahn YS, Baek SH, Yu BJ. Engineering of Saccharomyces cerevisiae as a platform strain for microbial production of sphingosine-1-phosphate. Microb Cell Fact 2024; 23:310. [PMID: 39550572 PMCID: PMC11569612 DOI: 10.1186/s12934-024-02579-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Sphingosine-1-phosphate (S1P) is a multifunctional sphingolipid that has been implicated in regulating cellular activities in mammalian cells. Due to its therapeutic potential, there is a growing interest in developing efficient methods for S1P production. To date, the production of S1P has been achieved through chemical synthesis or blood extraction, but these processes have limitations such as complexity and cost. In this study, we generated an S1P-producing Saccharomyces cerevisiae strain by using metabolic engineering and introducing a heterologous sphingolipid biosynthetic pathway to demonstrate the possibility of microbial S1P production. RESULTS To construct the sphingosine-producing S. cerevisiae strain, both the sphingolipid delta 4 desaturase gene (DES1) and the alkaline ceramidase gene (ACER1) derived from Homo sapiens were introduced into the genome of S. cerevisiae by deleting the dihydrosphingosine phosphate lyase gene (DPL1) and the sphingoid long-chain base kinase gene (LCB5) to prevent S1P degradation and byproduct formation, respectively. The sphingosine-producing strain, DDLA, produced sphingolipids containing sphingosine. In flask fed-batch fermentation, the DDLA strain showed a higher production level of sphingosine under aerobic conditions with high initial cell density. The S1P-producing strain was generated by expressing the human sphingosine kinase gene (SPHK1) under the control of the inducible promoter, while deleting the ORM1 gene involved in the regulation of sphingolipid biosynthesis. The S1P-producing strain, DDLAOgS, exhibited the highest sphingosine production level under fed-batch fermentation in a bioreactor, achieving a 2.6-fold increase compared to flask fermentation. S1P biosynthesis in the DDLAOgS strain was verified by qualitative analysis using electrospray ionization mass spectrometry (ESI-MS). CONCLUSIONS We successfully developed a metabolically engineered S. cerevisiae as a platform strain for microbial production of S1P by introducing an exogenous pathway of sphingolipids metabolism. The engineered yeast strains showed significant capabilities for sphingolipid production, including S1P. To our knowledge, this is the first report demonstrating that engineered S. cerevisiae can be a major platform strain for producing microbial S1P.
Collapse
Affiliation(s)
- In-Seung Jang
- Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung Jin Lee
- Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Seung-Ho Baek
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea.
| | - Byung Jo Yu
- Low-Carbon Transition R&D Department, Korea Institute of Industrial Technology (KITECH), Research Institute of Sustainable Development Technology, Cheonan, 31056, Republic of Korea.
| |
Collapse
|
4
|
Kim DY, Won KJ, Kim YY, Yoo DY, Lee HM. Potential Wound Healing and Anti-Melanogenic Activities in Skin Cells of Aralia elata (Miq.) Seem. Flower Essential Oil and Its Chemical Composition. Pharmaceutics 2024; 16:1008. [PMID: 39204353 PMCID: PMC11360783 DOI: 10.3390/pharmaceutics16081008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
Aralia elata (Miq.) Seem. (AES; family Araliaceae) is a medicinal plant and has been reported to have various bioactivities, including anticancer and hepatotoxicity protective activities. However, no studies have investigated the biological activities of AES or its extracts on skin. To address this, we aimed to explore the effect of AES-flower-derived absolute-type essential oil (AESFEO) on skin-related biological activities, especially skin wound healing and whitening-related responses in skin cells (human-derived keratinocytes [HaCaT cells] and melanocytes [B16BL6 cells]) and to identify the components of AESFEO. Cell biological activities were analyzed using WST and BrdU incorporation assays, ELISA, or by immunoblotting. In HaCaT cells, AESFEO promoted proliferation, type IV collagen production, and enhanced the phosphorylations of Erk1/2, p38 MAPK, JNK, and Akt. In B16BL6 cells, AESFEO reduced serum-induced proliferation, α-MSH-stimulated increases in melanin synthesis and tyrosinase activity, and α-MSH-induced increases in MITF, tyrosinase, TRP-1, and TRP-2 expressions. In addition, AESFEO inhibited the phosphorylation of Erk1/2, p38 MAPK, and JNK in α-MSH-stimulated B16BL6 cells. Eighteen compounds were identified in AESFEO by GC/MS. These results suggest that AESFEO has beneficial effects on keratinocyte activities related to skin wound healing and melanocyte activities related to inhibition of skin pigmentation. AESFEO may serve as a useful natural substance for developing agents that facilitate skin wound healing and inhibit melanogenesis.
Collapse
Affiliation(s)
- Do Yoon Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Republic of Korea; (D.Y.K.); (Y.Y.K.); (D.Y.Y.)
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan 31499, Republic of Korea
| | - Kyung Jong Won
- Department of Physiology and Premedical Science, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea;
| | - Yoon Yi Kim
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Republic of Korea; (D.Y.K.); (Y.Y.K.); (D.Y.Y.)
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan 31499, Republic of Korea
| | - Da Yeon Yoo
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Republic of Korea; (D.Y.K.); (Y.Y.K.); (D.Y.Y.)
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan 31499, Republic of Korea
| | - Hwan Myung Lee
- Department of Biotechnology, College of Life and Health Sciences, Hoseo University, Asan 31499, Republic of Korea; (D.Y.K.); (Y.Y.K.); (D.Y.Y.)
- Korea Essential Oil Resource Research Institute, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
5
|
Snyman M, Walsdorf RE, Wix SN, Gill JG. The metabolism of melanin synthesis-From melanocytes to melanoma. Pigment Cell Melanoma Res 2024; 37:438-452. [PMID: 38445351 PMCID: PMC11178461 DOI: 10.1111/pcmr.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/06/2024] [Accepted: 02/18/2024] [Indexed: 03/07/2024]
Abstract
Melanin synthesis involves the successful coordination of metabolic pathways across multiple intracellular compartments including the melanosome, mitochondria, ER/Golgi, and cytoplasm. While pigment production offers a communal protection from UV damage, the process also requires anabolic and redox demands that must be carefully managed by melanocytes. In this report we provide an updated review on melanin metabolism, including recent data leveraging new techniques, and technologies in the field of metabolism. We also discuss the many aspects of melanin synthesis that intersect with metabolic pathways known to impact melanoma phenotypes and behavior. By reviewing the metabolism of melanin synthesis, we hope to highlight outstanding questions and opportunities for future research that could improve patient outcomes in pigmentary and oncologic disease settings.
Collapse
Affiliation(s)
- Marelize Snyman
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Rachel E. Walsdorf
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Sophia N. Wix
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| | - Jennifer G. Gill
- Dermatology Department, University of Texas Southwestern Medical Center, Dallas, Texas, 75235
| |
Collapse
|
6
|
Choi SH, Kim H, Hwang-Bo J, Kim KM, Kwon JE, Lee SR, Hwang SH, Kang SC, Lee YG. Anti-Melanogenic Effects of Cnidium monnieri Extract via p38 Signaling-Mediated Proteasomal Degradation of Tyrosinase. PLANTS (BASEL, SWITZERLAND) 2024; 13:1305. [PMID: 38794376 PMCID: PMC11125256 DOI: 10.3390/plants13101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Cnidium monnieri fructus is widely used in traditional Oriental medicine for treating female genital disorders, male impotence, frigidity, and skin-related conditions in East Asia. However, the role of C. monnieri fructus extract (CMFE) in melanin synthesis is not well elucidated. This study aimed to investigate the anti-melanogenesis effect and mechanism of action of CMFE in α-MSH-stimulated B16F10 cells. Intracellular melanin content and tyrosinase activity were measured in α-MSH-stimulated B16F10 cells treated with various concentrations of CMFE (0.5-5 μg/mL). mRNA and protein levels of tyrosinase and MITF were evaluated using qRT-PCR and ting. CMFE's effect on the proteasomal degradation of tyrosinase was confirmed using a proteasomal degradation inhibitor, MG132. CMFE treatment activated p38, a protein associated with proteasomal degradation. Treatment with CMFE at up to 5 μg/mL showed no significant cytotoxicity. CMFE significantly reduced α-MSH-stimulated melanin production (43.29 ± 3.55% decrease, p < 0.05) and cellular tyrosinase activity (31.14 ± 3.15% decrease, p < 0.05). Although mRNA levels of MITF and tyrosinase increased, CMFE suppressed tyrosinase protein levels. The suppressive effect of CMFE on tyrosinase protein was blocked by MG132. CMFE inhibited melanogenesis by promoting the proteasome degradation of tyrosinase through p38 activation. These findings suggest that CMFE has the potential to be a natural whitening agent for inhibiting melanogenesis.
Collapse
Affiliation(s)
- Soon Ho Choi
- Research Institute, APRG Inc., Yongin 16950, Republic of Korea;
| | - Hyunggun Kim
- Department of Biomechatronic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Jeon Hwang-Bo
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Kyoung Mi Kim
- Research Center, CureBio Therapeutics Co., Ltd., Suwon 16229, Republic of Korea;
| | - Jeong Eun Kwon
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Sung Ryul Lee
- Department of Convergence Biomedical Science, Cardiovascular and Metabolic Disease Center, College of Medicine, Inje University, Busan 47392, Republic of Korea;
| | - Sun Ha Hwang
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Se Chan Kang
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| | - Yeong-Geun Lee
- Department of Biopharmaceutical Biotechnology and Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea; (J.H.-B.); (J.E.K.); (S.H.H.)
| |
Collapse
|
7
|
Logesh R, Prasad SR, Chipurupalli S, Robinson N, Mohankumar SK. Natural tyrosinase enzyme inhibitors: A path from melanin to melanoma and its reported pharmacological activities. Biochim Biophys Acta Rev Cancer 2023; 1878:188968. [PMID: 37657683 DOI: 10.1016/j.bbcan.2023.188968] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
The skin containing melanin pigment acts as a protective barrier and counteracts the UVR and other environmental stressors to maintain or restore disrupted cutaneous homeostasis. The production of melanin pigment is dependent on tyrosine levels. L-tyrosine and L-dihydroxyphenylalanine (L-DOPA) can serve both as a substrates and intermediates of melanin synthetic pathway and as inducers and positive regulators of melanogenesis. The biosynthesis of melanin is stimulated upon exposure to UVR, which can also stimulate local production of hormonal factors, which can stimulate melanoma development by altering the chemical properties of eu- and pheomelanin. The process of melanogenesis can be altered by several pathways. One involves activation of POMC, with the production of POMC peptides including MSH and ACTH, which increase intracellular cAMP levels, which activates the MITF, and helps to stimulate tyrosinase (TYR) expression and activity. Defects in OCA1 to 4 affects melanogenic activity via posttranslational modifications resulting in proteasomal degradation and reducing pigmentation. Further, altering, the MITF factor, helps to regulate the expression of MRGE in melanoma, and helps to increase the TYR glycosylation in ER. CRH stimulates POMC peptides that regulate melanogenesis and also by itself can stimulate melanogenesis. The POMC, P53, ACTH, MSH, MC1R, MITF, and 6-BH4 are found to be important regulators for pigmentation. Melanogenesis can affect melanoma behaviour and inhibit immune responses. Therefore, we reviewed natural products that would alter melanin production. Our special focus was on targeting melanin synthesis and TYR enzyme activity to inhibit melanogenesis as an adjuvant therapy of melanotic melanoma. Furthermore, this review also outlines the current updated pharmacological studies targeting the TYR enzyme from natural sources and its consequential effects on melanin production.
Collapse
Affiliation(s)
- Rajan Logesh
- Department of Pharmacognosy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru 570015, Karnataka, India.
| | - Sagar Rajendra Prasad
- Department of Pharmacognosy, Varadaraja Institute of Pharmaceutical Education and Research, Tumkur 572102, Karnataka, India
| | - Sandhya Chipurupalli
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, India
| | - Nirmal Robinson
- Cellular Stress and Immune Response Laboratory, Centre for Cancer Biology, University of South Australia, Adelaide, Australia
| | - Suresh Kumar Mohankumar
- Pharmacy, Swansea University Medical School, Singleton Park, Swansea University, Wales SA2 8PP, United Kingdom
| |
Collapse
|
8
|
Ding M, Zhen Z, Ju M, Quzong S, Zeng X, Guo X, Li R, Xu M, Xu J, Li H, Zhang W. Metabolomic profiling between vitiligo patients and healthy subjects in plateau exhibited significant differences with those in plain. Clin Immunol 2023; 255:109764. [PMID: 37683903 DOI: 10.1016/j.clim.2023.109764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/22/2023] [Accepted: 09/03/2023] [Indexed: 09/10/2023]
Abstract
Vitiligo is the most common disorder of depigmentation, which is caused by multiple factors like metabolic abnormality, oxidative stress and the disorders of immune. In recent years, several studies have used untargeted metabolomics to analyze differential metabolites in patients with vitiligo, however, the subjects in these studies were all in plain area. In our study, multivariate analysis indicated a distinct separation between the healthy subjects from plateau and plain areas in electrospray positive and negative ions modes, respectively. Similarly, a distinct separation between vitiligo patients and healthy controls from plateau and plain areas was detected in the two ions modes. Among the identified metabolites, the serum levels of sphingosine 1-phosphate (S1P) were markedly higher in vitiligo patients compare to healthy subjects in plain and markedly higher in healthy subjects in plateau compare to those in plain. There are significant differences in serum metabolome between vitiligo patients and healthy subjects in both plateau and plain areas, as well as in healthy subjects from plateau and plain areas. S1P metabolism alteration may be involved in the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Meilin Ding
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Zha Zhen
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Mei Ju
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Suolang Quzong
- Department of Dermatology and Venereology, People's Hospital of Tibet Autonomous Region, Xizang 850010, China
| | - Xuesi Zeng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Xiaoxia Guo
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Rui Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Mingming Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China
| | - Jingjing Xu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210042, China
| | - Hongyang Li
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| | - Wei Zhang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China.
| |
Collapse
|
9
|
Luo L, Yu X, Zeng H, Hu Y, Jiang L, Huang J, Fu C, Chen J, Zeng Q. Fraxin inhibits melanogenesis by suppressing the ERK/MAPK pathway and antagonizes oxidative stress by activating the NRF2 pathway. Heliyon 2023; 9:e18929. [PMID: 37600361 PMCID: PMC10432208 DOI: 10.1016/j.heliyon.2023.e18929] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023] Open
Abstract
Hyperpigmentation disorders, such as melasma and freckles, are highly prevalent and draw increasing attention. Patients thus tend to seek effective and safe cosmetic whitening agents. Fraxin, a bioactive substance extracted from Cortex Fraxini, possesses anti-inflammation and antioxidant properties. In this study, we further explored the anti-melanogenic activities of fraxin were explored in vitro and in vivo. We found that pretreatment with fraxin decreased the melanin content of MNT1 cells and zebrafishes. In MNT1 cells, melanogenesis-related proteins, such as MITF, TYR, TYRP1, and DCT were down-regulated and tyrosinase activity was reduced under fraxin treatment. Further exploration of the mechanism revealed that fraxin could inhibit the phosphorylation of ERK, which is closely related to melanogenesis. Besides, fraxin also protected MNT1 cells from H2O2-induced apoptosis via scavenging reactive oxygen species (ROS) in cells. Further experimentation revealed that fraxin could activate NRF2 and upregulate antioxidase CAT and HO-1. In conclusion, fraxin could be an effective agent with anti-melanogenesis and antioxidant properties for hyperpigmentation disorders.
Collapse
Affiliation(s)
- Liping Luo
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Xing Yu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Hongliang Zeng
- Center of Medical Laboratory Animal, Hunan Academy of Chinese Medicine, Changsha, Hunan, 410031, China
| | - Yibo Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
- Clinical Research Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
10
|
Tokudome Y, Fukutomi M. Sphingomyelin reduces melanogenesis in murine B16 melanoma cells through indirect suppression of tyrosinase. Cytotechnology 2023; 75:93-101. [PMID: 36969571 PMCID: PMC10030692 DOI: 10.1007/s10616-022-00562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022] Open
Abstract
Growing consumer interest in skin whitening has led to intensive investigations of whitening methods. In this study, we evaluated the effect of sphingomyelin, a component of cell membranes, on melanin production. B16 mouse melanoma cells were treated with lauroyl-sphingomyelin (SM) or its metabolite lauroyl-ceramide (CER) and measured for cell viability, melanin content, and direct and indirect tyrosinase activity. Expression of melanin synthesis-related genes encoding tyrosinase (Tyr), tyrosinase-related proteins (Trp1 and Trp2), and microphthalmia-associated transcription factor (Mitf) were quantified by real-time PCR, and SM content in cells was measured by fluorescence high-performance liquid chromatography. SM treatment decreased melanin content in a concentration-dependent manner, without significantly altering the number of viable cells. By contrast, treatment with CER at the same concentrations did not decrease melanin content. SM inhibited the activity of intracellular tyrosinase, but not mushroom-derived tyrosinase. Gene expression levels of Tyr and Mitf were significantly reduced by treatment with SM, while those of Trp2 and Mitf were significantly reduced by CER. Fluorescence-labeled SM was converted to fluorescence-labeled CER in cells over time. In conclusion, CER was found to inhibit melanogenesis without inhibiting tyrosinase activity, suggesting that SM is more water soluble than CER, and is more effectively taken up into cells.
Collapse
Affiliation(s)
- Yoshihiro Tokudome
- Laboratory of Cosmetic Sciences, Regional Innovation Center, Saga University, 1 Honjo, Saga, 840-8502 Japan
- Laboratory of Cosmetic Sciences, Graduate School of Advanced Health Sciences, Saga University, 1 Honjo, Saga, 840-8502 Japan
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295 Japan
| | - Moeko Fukutomi
- Laboratory of Dermatological Physiology, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295 Japan
| |
Collapse
|
11
|
Giannakopoulos A, Sertedaki A, Efthymiadou A, Chrysis D. Addison's disease without hyperpigmentation in pediatrics: pointing towards specific causes. Hormones (Athens) 2023; 22:143-148. [PMID: 36348260 DOI: 10.1007/s42000-022-00415-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Hyperpigmentation of skin and mucous membranes comprises a hallmark of the clinical diagnosis of Addison's disease. However, there have been reports of patients with adrenal insufficiency from diverse causes who did not develop hyperpigmentation. The pathophysiology responsible for the absence of increased pigmentation is not clearly defined in many cases. CASE PRESENTATION We present a patient with isolated glucocorticoid deficiency due to two novel heterozygous variants in the sphingosine-1-phosphate lyase 1 (SPGL1) gene that did not develop any hyperpigmentation. DISCUSSION We elaborate on the presumed mechanism of the absence of hyperpigmentation in adrenal insufficiency due to SPGL1 deficiency and discuss the other reported cases of Addison's disease without hyperpigmentation and the possible mechanism accounted for. CONCLUSION Absence of hyperpigmentation, a basic component of the clinical diagnosis of Addison's disease, may lead to delay of a critical diagnosis, while causes that result in adrenal insufficiency without hyperpigmentation should explicitly be considered in pediatric cases where adrenal failure is documented by clinical symptomatology and biochemistry.
Collapse
Affiliation(s)
- Aristeidis Giannakopoulos
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, 26504, Rio, Patras, Greece.
| | - Amalia Sertedaki
- Division of Endocrinology, Diabetes and Metabolism, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Efthymiadou
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, 26504, Rio, Patras, Greece
| | - Dionisios Chrysis
- Division of Pediatric Endocrinology, Department of Pediatrics, Medical School of Patras, University Hospital, 26504, Rio, Patras, Greece
| |
Collapse
|
12
|
Fernandes B, Cavaco-Paulo A, Matamá T. A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. BIOLOGY 2023; 12:biology12020290. [PMID: 36829566 PMCID: PMC9953601 DOI: 10.3390/biology12020290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023]
Abstract
The natural colour of hair shafts is formed at the bulb of hair follicles, and it is coupled to the hair growth cycle. Three critical processes must happen for efficient pigmentation: (1) melanosome biogenesis in neural crest-derived melanocytes, (2) the biochemical synthesis of melanins (melanogenesis) inside melanosomes, and (3) the transfer of melanin granules to surrounding pre-cortical keratinocytes for their incorporation into nascent hair fibres. All these steps are under complex genetic control. The array of natural hair colour shades are ascribed to polymorphisms in several pigmentary genes. A myriad of factors acting via autocrine, paracrine, and endocrine mechanisms also contributes for hair colour diversity. Given the enormous social and cosmetic importance attributed to hair colour, hair dyeing is today a common practice. Nonetheless, the adverse effects of the long-term usage of such cosmetic procedures demand the development of new methods for colour change. In this context, case reports of hair lightening, darkening and repigmentation as a side-effect of the therapeutic usage of many drugs substantiate the possibility to tune hair colour by interfering with the biology of follicular pigmentary units. By scrutinizing mammalian pigmentation, this review pinpoints key targetable processes for the development of innovative cosmetics that can safely change the hair colour from the inside out.
Collapse
Affiliation(s)
- Bruno Fernandes
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| | - Teresa Matamá
- CEB—Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (A.C.-P.); (T.M.); Tel.: +351-253-604-409 (A.C.-P.); +351-253-601-599 (T.M.)
| |
Collapse
|
13
|
Kamilijiang M, Zang D, Abudukelimu N, Aidarhan N, Liu G, Aisa HA. Anti-Melanogenesis Effect of Polysaccharide from Saussurea involucrata on Forskolin-Induced Melanogenesis in B16F10 Melanoma Cells. Nutrients 2022; 14:5044. [PMID: 36501075 PMCID: PMC9736293 DOI: 10.3390/nu14235044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
As one of the prominent medicinal plants listed in the Chinese pharmacopoeia (2020), Saussurea involucrata (Kar. et Kir.) Sch.-Bip was demonstrated to possess various therapeutic effects. In our recent research, we extracted the polysaccharides from S. involucrata (SIP) at optimal conditions and conducted further structure elucidation on the main fraction as well as the confirmation of its possible anti-inflammatory activity. Hence, in this work, we assessed the in vitro antioxidant activity and anti-melanogenesis effects of the crude SIP in forskolin-induced B16F10 melanoma cells. The results show that SIP possessed strong antioxidant activity and was effective in concentration-dependently decreasing melanin formation and inhibiting tyrosinase activity in forskolin-induced B16F10 cells. Based on these results, the inhibitory mechanism of melanogenesis was investigated by measuring Tyrosinase (TYR), Tyrosinase related protein-1 (TRP-1), Tyrosinase related protein-2 (TRP-2), Microphthalmia-associated transcription factor (MITF), cAMP-response element binding protein (CREB), mitogen-activated protein kinases (MAPK) signaling protein members, and β-catenin degradation in forskolin-induced B16F10 cells. The anti-melanogenesis response of SIP might be attributed to the regulation of c-Jun N-terminal kinase (JNK) phosphorylation and β-catenin degradation pathways. These results suggest that polysaccharides from S. involucrata possess a strong anti-melanogenic effect, and thus could be used as a high-value natural material for skin whitening in cosmeceutical industries.
Collapse
Affiliation(s)
- Mayila Kamilijiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nuermaimaiti Abudukelimu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Nurbolat Aidarhan
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
14
|
Miyasaka K, Manse Y, Yoneda A, Takeda S, Shimizu N, Yamada W, Morikawa T, Shimoda H. Anti‐melanogenic effects of glucosylceramides and elasticamide derived from rice oil by‐products in melanoma cells, melanocytes, and human skin. J Food Biochem 2022; 46:e14353. [DOI: 10.1111/jfbc.14353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
Affiliation(s)
| | - Yoshiaki Manse
- Pharmaceutical Research and Technology Institute Kindai University Higashi‐osaka Japan
| | - Akari Yoneda
- Oryza Oil & Fat Chemical Co., Ltd. Ichinomiya Japan
| | - Shogo Takeda
- Oryza Oil & Fat Chemical Co., Ltd. Ichinomiya Japan
| | | | - Wakana Yamada
- Pharmaceutical Research and Technology Institute Kindai University Higashi‐osaka Japan
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute Kindai University Higashi‐osaka Japan
| | | |
Collapse
|
15
|
Li RZ, Wang XR, Wang J, Xie C, Wang XX, Pan HD, Meng WY, Liang TL, Li JX, Yan PY, Wu QB, Liu L, Yao XJ, Leung ELH. The key role of sphingolipid metabolism in cancer: New therapeutic targets, diagnostic and prognostic values, and anti-tumor immunotherapy resistance. Front Oncol 2022; 12:941643. [PMID: 35965565 PMCID: PMC9364366 DOI: 10.3389/fonc.2022.941643] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022] Open
Abstract
Biologically active sphingolipids are closely related to the growth, differentiation, aging, and apoptosis of cancer cells. Some sphingolipids, such as ceramides, are favorable metabolites in the sphingolipid metabolic pathway, usually mediating antiproliferative responses, through inhibiting cancer cell growth and migration, as well as inducing autophagy and apoptosis. However, other sphingolipids, such as S1P, play the opposite role, which induces cancer cell transformation, migration and growth and promotes drug resistance. There are also other sphingolipids, as well as enzymes, played potentially critical roles in cancer physiology and therapeutics. This review aimed to explore the important roles of sphingolipid metabolism in cancer. In this article, we summarized the role and value of sphingolipid metabolism in cancer, including the distribution of sphingolipids, the functions, and their relevance to cancer diagnosis and prognosis. We also summarized the known and potential antitumor targets present in sphingolipid metabolism, analyzed the correlation between sphingolipid metabolism and tumor immunity, and summarize the antitumor effects of natural compounds based on sphingolipids. Through the analysis and summary of sphingolipid antitumor therapeutic targets and immune correlation, we aim to provide ideas for the development of new antitumor drugs, exploration of new therapeutic means for tumors, and study of immunotherapy resistance mechanisms.
Collapse
Affiliation(s)
- Run-Ze Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Xuan-Run Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jian Wang
- Department of Oncology, Luzhou People’s Hospital, Luzhou, Sichuan, China
| | - Chun Xie
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
| | - Xing-Xia Wang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Hu-Dan Pan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
| | - Wei-Yu Meng
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Tu-Liang Liang
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Jia-Xin Li
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Pei-Yu Yan
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Qi-Biao Wu
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
| | - Liang Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Xiao-Jun Yao
- Dr. Neher’s Biophysics Laboratory for Innovative Drug Discovery/State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, Macao SAR, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, University of Macau, Macao, Macao SAR, China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macao, Macao SAR, China
- Breast Surgery, Zhuhai Hospital of Traditional Chinese and Western Medicine, Zhuhai, China
- *Correspondence: Xiao-Jun Yao, ; Liang Liu, ; Elaine Lai-Han Leung,
| |
Collapse
|
16
|
Characterization of a melanocyte progenitor population in human interfollicular epidermis. Cell Rep 2022; 38:110419. [PMID: 35235792 DOI: 10.1016/j.celrep.2022.110419] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/23/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022] Open
Abstract
It is still unknown whether the human interfollicular epidermis harbors a reservoir of melanocyte precursor cells. Here, we clearly distinguish between three distinct types of melanocytes in human interfollicular epidermis: (1) cKit+CD90-, (2) cKit+CD90+, and (3) cKit-CD90+. Importantly, we identify the Kit tyrosine kinase receptor (cKit) as a marker expressed specifically in mature, melanin-producing melanocytes. Thus, both cKit+CD90- and cKit+CD90+ cells represent polydendritic, pigmented mature melanocytes, whereas cKit-CD90+ cells display bipolar, non-dendritic morphology with reduced melanin content. Additionally, using tissue-engineered pigmented dermo-epidermal skin substitutes (melDESSs), we reveal that the cKit expression also plays an important role during melanogenesis in melDESS in vivo. Interestingly, cKit-CD90+ cells lack the expression of markers such as HMB45, TYR, and TRP1 in vitro and in vivo. However, they co-express neural-crest progenitor markers and demonstrate multilineage differentiation potential in vitro. Hence, we propose that cKit-CD90+ cells constitute the precursor melanocyte reservoir in human interfollicular epidermis.
Collapse
|
17
|
Calycosin, a Common Dietary Isoflavonoid, Suppresses Melanogenesis through the Downregulation of PKA/CREB and p38 MAPK Signaling Pathways. Int J Mol Sci 2022; 23:ijms23031358. [PMID: 35163281 PMCID: PMC8836186 DOI: 10.3390/ijms23031358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 02/02/2023] Open
Abstract
Calycosin, a bioactive isoflavonoid isolated from root extracts of Astragalus membranaceus, has been reported to inhibit melanogenesis, the mechanism of which remains undefined. In this study, we interrogated the mechanistic basis by which calycosin inhibits melanin production in two model systems, i.e., B16F10 melanoma cells and zebrafish embryos. Calycosin was effective in protecting B16F10 cells from α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis and tyrosinase activity. This anti-melanogenic effect was accompanied by decreased expression levels of microphthalmia-associated transcription factor (MITF), a key protein controlling melanin synthesis, and its target genes tyrosinase and tyrosinase-related protein-2 (TRP-2) in calycosin-treated cells. Mechanistically, we obtained the first evidence that calycosin-mediated MITF downregulation was attributable to its ability to block signaling pathways mediated by cAMP response element-binding protein (CREB) and p38 MAP kinase. The protein kinase A (PKA) inhibitor H-89 and p38 inhibitor SB203580 validated the premise that calycosin inhibits melanin synthesis and tyrosinase activity by regulating the PKA/CREB and p38 MAPK signaling pathways. Moreover, the in vivo anti-melanogenic efficacy of calycosin was manifested by its ability to suppress body pigmentation and tyrosinase activity in zebrafish embryos. Together, these data suggested the translational potential of calycosin to be developed as skin-lightening cosmeceuticals.
Collapse
|
18
|
Radiofrequency Irradiation Mitigated UV-B-Induced Skin Pigmentation by Increasing Lymphangiogenesis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020454. [PMID: 35056769 PMCID: PMC8780734 DOI: 10.3390/molecules27020454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 11/18/2022]
Abstract
Dermal macrophages containing melanin increase skin pigmentation since dermal melanin removal is slower than epidermal melanin removal. Lymphatic vessels are also involved in melanin clearance. We evaluated whether radiofrequency (RF) irradiation induced an increase in HSP90, which promotes lymphangiogenesis by activating the BRAF/MEK/ERK pathway and decreasing tyrosinase activity, in the UV-B exposed animal model. The HSP90/BRAF/MEK/ERK pathway was upregulated by RF. Tyrosinase activity and the VEGF-C/VEGFR 3/PI3K/pAKT1/2/pERK1/2 pathway, which increase lymphangiogenesis, as well as the expression of the lymphatic endothelial marker LYVE-1, were increased by RF. Additionally, the number of melanin-containing dermal macrophages, the melanin content in the lymph nodes, and melanin deposition in the skin were decreased by RF. In conclusion, RF increased HSP90/BRAF/MEK/ERK expression, which decreased tyrosinase activity and increased lymphangiogenesis to eventually promote the clearance of dermal melanin-containing macrophages, thereby decreasing skin pigmentation.
Collapse
|
19
|
Zhao N, Su X, Li H, Li Z, Wang Y, Chen J, Zhuang W. Schisandrin B inhibits α-melanocyte-stimulating hormone-induced melanogenesis in B16F10 cells via downregulation of MAPK and CREB signaling pathways. Biosci Biotechnol Biochem 2021; 85:834-841. [PMID: 33580697 DOI: 10.1093/bbb/zbaa100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022]
Abstract
Schisandrin B (Sch B), a lignan compound in Schisandra, possesses antioxidant, anti-inflammatory, and antiobesity activities. The effect of Sch B on melanogenesis and molecular mechanisms are still unknown. Therefore, we aimed to investigate the antimelanogenic effects of Sch B on α-melanocyte-stimulating hormone-induced B16F10 cells and elucidate the underlying molecular mechanisms. We found that Sch B significantly suppressed melanin content and mushroom tyrosinase (TYR) activity. Sch B treatment decreased the expression of TYR, melanocyte-inducing transcription factor (MITF), tyrosinase-related protein (TRP) 1, and TRP2. Moreover, Sch B modulated the phosphorylation of p38, extracellular-regulated protein kinase, c-Jun N-terminal kinase, and cAMP-response element binding protein (CREB), implying that these pathways may be involved in suppressing melanogenesis. Furthermore, we found that Sch B decreased melanogenesis by downregulating MITF and melanogenic enzymes via MAPK and CREB pathways. Overall, these findings indicate that Sch B has the potential use in whitening.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - He Li
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Zhengyi Li
- Department of Clinical Examination Basis, Laboratory Academy, Jilin Medical University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
20
|
Yang Y, Wei X, Bai J, Huang M, Hao T, Hao Y, Wang Y, Li C. MicroRNA-340 is involved in ultraviolet B-induced pigmentation by regulating the MITF/TYRP1 axis. J Int Med Res 2021; 48:300060520971510. [PMID: 33179560 PMCID: PMC7673059 DOI: 10.1177/0300060520971510] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective There is growing evidence that ultraviolet B (UVB) irradiation can change the expression profile of microRNAs (miRNAs) in immortalized human epidermal melanocytes (Pig-1). We aimed to investigate the effect of miR-340 on regulating UVB-induced pigmentation. Methods Real-time quantitative PCR (qRT-PCR) was used to evaluate the expression of miR-340 in Pig-1 cells. Immunoblotting analysis, qRT-PCR, and luciferase reporter assays were used to detect the potential target of miR-340. The sodium hydroxide dissolution assay was used to assess the effect of miR-340 on changes in melanin content. Results Expression of miR-340 was reduced in human Pig-1 cells after UVB irradiation. We found a negative correlation between miR-340 and melanocyte inducing transcription factor (MITF) in Pig-1 cells after UVB irradiation. Knockdown and overexpression of MITF in Pig-1 cells down- and upregulated melanogenesis, respectively. Overexpression of miR-340 inhibited MITF expression, reduced the amount of melanin, and suppressed expression of multiple key molecules involved in the pigment synthesis pathway, whereas knockdown of miR-340 showed the opposite results. Conclusions Our results showed that miR-340 inhibited melanogenesis by regulating the downstream molecules of MITF and its signaling pathways, suggested that miRNA-340 may be a new target for the clinical treatment of UVB-induced pigmentation.
Collapse
Affiliation(s)
- Yi Yang
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Xuanjin Wei
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Jia Bai
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Min Huang
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Tian Hao
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Yonghong Hao
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Yilin Wang
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| | - Chengxin Li
- Department of Dermatology, First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Modulating skin colour: role of the thioredoxin and glutathione systems in regulating melanogenesis. Biosci Rep 2021; 41:228417. [PMID: 33871027 PMCID: PMC8112849 DOI: 10.1042/bsr20210427] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 01/23/2023] Open
Abstract
Different skin colour among individuals is determined by the varying amount and types of melanin pigment. Melanin is produced in melanocytes, a type of dendritic cell located in the basal layer of the epidermis, through the process of melanogenesis. Melanogenesis consists of a series of biochemical and enzymatic reactions catalysed by tyrosinase and other tyrosinase-related proteins, leading to the formation of two types of melanin, eumelanin and pheomelanin. Melanogenesis can be regulated intrinsically by several signalling pathways, including the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA), stem cell factor (SCF)/c-kit and wingless-related integration site (Wnt)/β-catenin signalling pathways. Ultraviolet radiation (UVR) is the major extrinsic factor in the regulation of melanogenesis, through the generation of reactive oxygen species (ROS). Antioxidants or antioxidant systems, with the ability to scavenge ROS, may decrease melanogenesis. This review focuses on the two main cellular antioxidant systems, the thioredoxin (Trx) and glutathione (GSH) systems, and discusses their roles in melanogenesis. In the Trx system, high levels/activities of thioredoxin reductase (TrxR) are correlated with melanin formation. The GSH system is linked with regulating pheomelanin formation. Exogenous addition of GSH has been shown to act as a depigmenting agent, suggesting that other antioxidants may also have the potential to act as depigmenting agents for the treatment of human hyperpigmentation disorders.
Collapse
|
22
|
Ko HH, Chang YT, Kuo YH, Lin CH, Chen YF. Oenothera laciniata Hill Extracts Exhibits Antioxidant Effects and Attenuates Melanogenesis in B16-F10 Cells via Downregulating CREB/MITF/Tyrosinase and Upregulating p-ERK and p-JNK. PLANTS 2021; 10:plants10040727. [PMID: 33917957 PMCID: PMC8068348 DOI: 10.3390/plants10040727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023]
Abstract
Oenothera laciniata Hill is a perennial herb traditionally used to alleviate inflammatory complications. This study investigated the antioxidant and anti-melanogenic activities of O. laciniata. The methanolic extract (OLM) of O. laciniata and its different fractions, including ethyl acetate (OLEF), n-butanol (OLBF), and water (OLWF) fractions, were prepared. Antioxidant activities were evaluated by total phenolic content, the radical-scavenging effect on 2,2-diphenyl-1-picrylhydrazyl (DPPH•), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS+•), and superoxide anion (O2−•), reducing capacity, and metal chelating ability. OLM and its fractions exhibited potent antioxidant activity in these in vitro assays, with a correlation between radical-scavenging activity and total phenolic content. OLM and its fractions inhibited the mushroom tyrosinase activity superior to the reference control, ascorbic acid. In B16-F10 melanoma cells, OLM and its fractions significantly decreased melanin production and tyrosinase activity. Mechanistic investigations revealed that OLM and its fractions inhibited tyrosinase and TRP-2 expressions via downregulating MITF and phosphorylated CREB and differentially inducing ERK or JNK phosphorylation. Additionally, OLM and its fractions caused no significant cytotoxicity towards B16-F10 or skin fibroblast cells at concentrations used in these cellular assays. These findings demonstrated the potential of O. laciniata extracts as the ideal skin protective agent with dual antioxidant and anti-melanogenic activities.
Collapse
Affiliation(s)
- Horng-Huey Ko
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-H.K.); (Y.-T.C.)
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yeo-Tzu Chang
- Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (H.-H.K.); (Y.-T.C.)
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Chia-Hsuan Lin
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Yih-Fung Chen
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-7-3121101 (ext. 2765)
| |
Collapse
|
23
|
Saeedi M, Khezri K, Seyed Zakaryaei A, Mohammadamini H. A comprehensive review of the therapeutic potential of α-arbutin. Phytother Res 2021; 35:4136-4154. [PMID: 33724594 DOI: 10.1002/ptr.7076] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Cosmetic dermatology preparations such as bleaching agents are ingredients with skin-related biological activities for increasing and improving skin beauty. The possibility of controlling skin hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. Recently, cosmetics containing herbal and botanical ingredients have attracted many interests for consumers of cosmetic products because these preparations are found safer than other preparations with synthetic components. However, high-quality trial studies in larger samples are needed to confirm safety and clinical efficacy of phytotherapeutic agents with high therapeutic index. Arbutin (p-hydroxyphenyl-β-d-glucopyranoside) is a bioactive hydrophilic polyphenol with two isomers including alpha-arbutin (4-hydroxyphenyl-α-glucopyranoside) and β-arbutin (4-hydroxyphenyl-β-glucopyranoside). It is used as a medicinal plant in phytopharmacy. Studies have shown that alpha-arbutin is 10 times more effective than natural arbutin. A comparison of IC50 values showed that α-arbutin (with concentration 2.0 mM) has a more potent inhibitory activity on human tyrosinase against natural arbutin (with higher concentration than 30 mM). A review of recent studies showed that arbutin could be beneficial in treatment of various diseases such as hyperpigmentation disorders, types of cancers, central nervous system disorders, osteoporosis, diabetes, etc. This study was designed to describe the therapeutic efficiencies of arbutin.
Collapse
Affiliation(s)
- Majid Saeedi
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | | | | |
Collapse
|
24
|
Yang ZT, Lu DX, Hong EK, Zhang BY, Jiang MC, Yang YJ, Zhang DJ. Extraction and Separation of Sinapine from Rapeseed Cake and the Mode of Action of Melanin Production Inhibition. Mol Biol 2021. [DOI: 10.1134/s002689332005012x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Huang HC, Wang SS, Tsai TC, Ko WP, Chang TM. Phoenix dactylifera L. Seed Extract Exhibits Antioxidant Effects and Attenuates Melanogenesis in B16F10 Murine Melanoma Cells by Downregulating PKA Signaling. Antioxidants (Basel) 2020; 9:antiox9121270. [PMID: 33327616 PMCID: PMC7765122 DOI: 10.3390/antiox9121270] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Background: The mode of action of Phoenix dactylifera seed extract in skin care has never been explored. Methods: P. dactylifera L. seeds were extracted by ultrasonic extraction. The antioxidant characteristics of the extract were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS+) assays and scavenging methods. The total phenolic content, reducing capacity, iron (II) ion-chelation, and intracellular reactive oxygen species (ROS)-scavenging capacities were also investigated. The effects of P. dactylifera L. seed extract on melanogenesis were evaluated spectrophotometrically by a mushroom tyrosinase activity assay, determination of intracellular tyrosinase activity, and melanin content. The expression levels of melanogenesis-related proteins were analyzed by Western blotting. Results: The results revealed that the P. dactylifera L. seed extract exerted apparent antioxidant capacity and significantly decreased intracellular ROS content at concentrations of 0.245 and 0.49 (mg/mL). Furthermore, the extract decreased the expression of melanocortin 1 receptor (MC1R), microphthalmia-associated transcription factor (MITF), tyrosinase, tyrosinase-related protein-1 (TRP1), and tyrosinase-related protein-2 (TRP2), and inhibited melanogenesis in B16F10 cells. Conclusions: Our results revealed that P. dactylifera L. seed extract attenuated melanogenesis in B16F10 cells by downregulating protein kinase A (PKA) signaling pathways. Hence, the extract could be used as a type of skin-whitening agent in skin care products.
Collapse
Affiliation(s)
- Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 406040, Taiwan;
| | - Shr-Shiuan Wang
- Department of Applied Cosmetology, HungKuang University, Taichung City 43302, Taiwan;
| | - Tsang-Chi Tsai
- O’right Plant Extract R&D Center, Hair O’right International Corporation, Taoyuan City 32544, Taiwan; (T.-C.T.); (W.-P.K.)
| | - Wang-Ping Ko
- O’right Plant Extract R&D Center, Hair O’right International Corporation, Taoyuan City 32544, Taiwan; (T.-C.T.); (W.-P.K.)
| | - Tsong-Min Chang
- Department of Applied Cosmetology, HungKuang University, Taichung City 43302, Taiwan;
- Correspondence: ; Tel.: +886-4-263-18652 (ext. 2216)
| |
Collapse
|
26
|
Skin Brightening Efficacy of Exosomes Derived from Human Adipose Tissue-Derived Stem/Stromal Cells: A Prospective, Split-Face, Randomized Placebo-Controlled Study. COSMETICS 2020. [DOI: 10.3390/cosmetics7040090] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Studies have shown that stem cells and their derivatives, including conditioned media (CM), have inhibitory effects on skin pigmentation. However, evidence supporting the skin brightening effect of exosomes derived from stem cells is lacking. We studied the antipigmentation effect in vitro and skin brightening efficacy in vivo of exosomes derived from human adipose tissue-derived mesenchymal stem/stromal cells (ASC-exosomes). Exosomes were isolated from the CM of ASCs using the tangential flow filtration method. ASC-exosomes reduced intracellular melanin levels in B16F10 melanoma cells regardless of the presence of the α-melanocyte-stimulating hormone (α-MSH). The skin brightening efficacy of a cosmetic formulation containing ASC-exosomes was assessed in human volunteers with hyperpigmentation in a prospective, split-face, double-blind, randomized placebo-controlled study. The ASC-exosome-containing formulation statistically decreased the melanin contents compared to the placebo control. However, the melanin-reduction activity was limited and diminished along with time. A further improvement in efficient transdermal delivery of ASC-exosomes will be helpful for more profound efficacy. In summary, these results suggest that ASC-exosomes can be used as a cosmeceutical for skin brightening.
Collapse
|
27
|
Sangkaew O, Yompakdee C. Fermented Unpolished Black Rice ( Oryza sativa L.) Inhibits Melanogenesis via ERK, p38, and AKT Phosphorylation in B16F10 Melanoma Cells. J Microbiol Biotechnol 2020; 30:1184-1194. [PMID: 32423183 PMCID: PMC9745659 DOI: 10.4014/jmb.2003.03019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
Melanin is a major factor that darkens skin color as one of the defense systems to prevent the harmful effects of UV light. However, darkened skin from the localized or systemic accumulation of melanin is viewed in many cultures as an esthetic problem. Consequentially, searching for antimelanogenic agents from natural sources is very popular worldwide. Previous screening of fermented rice products, obtained from various rice cultivars fermented with different sources of loog-pang (Thai traditional fermentation starter), revealed that the highest ability to reduce the melanin content in B16F10 melanoma cells was from unpolished black rice fermented with a defined starter mixture of microbes isolated from loog-pang E11. The aim of this study was to investigate the mechanism of the fermented unpolished black rice (FUBR) on the inhibition of melanogenesis in B16F10 melanoma cells. The strongest reduction of cellular melanin content was found in the FUBR sap (FUBRS). The melanin reduction activity was consistent with the significant decrease in the intracellular tyrosinase activity. The FUBRS showed no cytotoxic effect to B16F10 melanoma or Hs68 human fibroblast cell lines. It also significantly reduced the transcript and protein expression levels of tyrosinase, tyrosinase-related protein 1 (TYRP-1), TYRP-2, and microphthalmia-associated transcription factor. Furthermore, it induced a significantly increased level of phosphorylated ERK, p38 and Akt signaling pathways, which likely contributed to the negative regulation of melanogenesis. From these results, a model for the mechanism of FUBRS on melanogenesis inhibition was proposed. Moreover, these results strongly suggested that FUBRS possesses antimelanogenesis activity with high potential for cosmeceutical application as a skin depigmenting agent.
Collapse
Affiliation(s)
- Orrarat Sangkaew
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chulee Yompakdee
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
28
|
Moon HR, Jung JM, Kim SY, Song Y, Chang SE. TGF-β3 suppresses melanogenesis in human melanocytes cocultured with UV-irradiated neighboring cells and human skin. J Dermatol Sci 2020; 99:100-108. [PMID: 32620316 DOI: 10.1016/j.jdermsci.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Ultraviolet radiation (UVR) is the most well-known cause of skin pigmentation accompanied with photoaging. Transforming growth factor (TGF)-β1 was previously shown to have anti-melanogenic property; however, it can induce scarring in skin. OBJECTIVE We investigated the effect of TGF-β3 on melanogenesis in human melanocytes cocultured with UV-irradiated skin constituent cells, and UV-irradiated human skin. METHODS UVB irradiation or treatment with stem cell factor (SCF) and endothelin-1 (ET-1) was applied to human melanocytes cocultured with keratinocytes and/or fibroblasts and ex vivo human skin. Mechanistic pathways were further explored after treatment with TGF-β3. RESULTS While UVB irradiation or SCF/ET-1 enhanced melanogenesis, TGF-β3 effectively inhibited melanin accumulation and tyrosinase activity via downregulation of the extracellular signal-regulated kinase (ERK)/microphthalmia-associated transcription factor (MITF) pathway. TGF-β3 increased the expression of differentiation markers of keratinocytes. CONCLUSION TGF-β3 effectively suppressed UVR-stimulated melanogenesis indicating that topical TGF-β3 may be a suitable candidate for the treatment of UV-associated hyperpigmentation disorders.
Collapse
Affiliation(s)
- Hye-Rim Moon
- Beautiful skin clinic, 16-26, Sanbon-ro 323beon-gil, Gunpo-si, Gyeonggi-do, Republic of Korea
| | - Joon Min Jung
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Su Yeon Kim
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Youngsup Song
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Sung Eun Chang
- Department of Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Kim KI, Jung KE, Shin YB, Kim CD, Yoon TJ. Sorafenib induces pigmentation via the regulation of β-catenin signalling pathway in melanoma cells. Exp Dermatol 2020; 31:57-63. [PMID: 32391926 DOI: 10.1111/exd.14112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 01/23/2023]
Abstract
We conducted large-scale screening test on drugs that were already approved for other diseases to find pigmentation-modulating agents. Among drugs with potential for pigmentation control, we selected sorafenib and further investigated the effect on pigmentation using HM3KO melanoma cells. As a result of treating melanoma cells with sorafenib, pigmentation was promoted in terms of melanin content and tyrosinase activity. Sorafenib increased mRNA and protein levels of pigmentation-related genes such as MITF, tyrosinase and TRP1. To uncover the action mechanism, we investigated the effect of sorafenib on the intracellular signalling pathways. Sorafenib reduced phosphorylation of AKT and ERK, suggesting that sorafenib induces pigmentation through inhibition of the AKT and ERK pathways. In addition, sorafenib significantly increased the level of active β-catenin, together with activation of β-catenin signalling. Mechanistic study revealed that sorafenib decreased phosphorylation of serine 9 (S9) of GSK3β, while it increased phosphorylation of tyrosine 216 (Y216) of GSK3β. These results suggest that sorafenib activates the β-catenin signalling through the regulation of GSK3β phosphorylation, thereby affecting the pigmentation process.
Collapse
Affiliation(s)
- Kyung-Il Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Korea
| | - Kyung Eun Jung
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Young-Bin Shin
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Korea
| | - Chang-Deok Kim
- Department of Dermatology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Tae-Jin Yoon
- Department of Dermatology and Institute of Health Sciences, School of Medicine, Gyeongsang National University & Hospital, Jinju, Korea
| |
Collapse
|
30
|
Shin SY, Sun SO, Ko JY, Oh YS, Cho SS, Park DH, Park KM. New Synthesized Galloyl-RGD Inhibits Melanogenesis by Regulating the CREB and ERK Signaling Pathway in B16F10 Melanoma Cells. Photochem Photobiol 2020; 96:1321-1331. [PMID: 32348553 DOI: 10.1111/php.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/09/2020] [Indexed: 12/15/2022]
Abstract
Gallic acid (3, 4, 5-trihydroxybenzoic acid) is a phytochemical derived from diverse herbs. It has been reported to have effective antifungal, antiviral and antioxidant activity. However, gallic acid exhibits low solubility and instability at high temperatures. In a previous study, in order to overcome these limitations, we synthesized galloyl-RGD by combining gallic acid with arginine, glycine and asparaginic acid (RGD peptide). This compound showed better thermal stability than gallic acid. In this study, we investigated the antimelanogenic effect of galloyl-RGD and the underlying mechanism for this effect. Galloyl-RGD markedly inhibited melanin content and tyrosinase activity in a concentration-dependent manner. We also found that galloyl-RGD decreased the levels of melanogenesis-related gene and protein. In addition, galloyl-RGD reduces intracellular cyclic adenosine monophosphate (cAMP) levels that leads to inhibition of cAMP-responsive element binding protein (CREB) phosphorylation and activates extracellular signal-regulated kinase (ERK) expression. These results indicate that CREB and ERK regulation by galloyl-RGD contributes to reduced melanin synthesis via degradation of microphthalmia-associated transcription factor. Therefore, galloyl-RGD can be potential candidate for application in cosmetic or pharmaceutical industry.
Collapse
Affiliation(s)
- Seo Yeon Shin
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Sang Ouk Sun
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Jae Yeon Ko
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Yun Seo Oh
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| | - Seung-Sik Cho
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, Jeannam, Korea
| | - Dae-Hun Park
- Department of Nursing, Dongshin University, Jeonnam, Korea
| | - Kyung Mok Park
- Department of Pharmaceutical Engineering, Dongshin University, Jeonnam, Korea
| |
Collapse
|
31
|
Argania Spinosa Fruit Shell Extract-Induced Melanogenesis via cAMP Signaling Pathway Activation. Int J Mol Sci 2020; 21:ijms21072539. [PMID: 32268492 PMCID: PMC7177760 DOI: 10.3390/ijms21072539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 11/30/2022] Open
Abstract
We have previously reported that argan oil and argan press-cake from the kernels of Argania spinosa have an anti-melanogenesis effect. Here, the effect of argan fruit shell ethanol extract (AFSEE) on melanogenesis in B16F10 cells was determined, and the mechanism underlying its effect was elucidated. The proliferation of AFSEE-treated B16F10 cells was evaluated using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay, while the melanin content was quantified using a spectrophotometric method. The expression of melanogenesis-related proteins was determined by Western blot and real-time PCR, while global gene expression was determined using a DNA microarray. In vitro analysis results showed that the melanin content of B16F10 cells was significantly increased by AFSEE, without cytotoxicity, by increasing the melanogenic enzyme tyrosinase (TRY), tyrosinase related-protein 1 (TRP1), and dopachrome tautomerase (DCT) protein and mRNA expression, as well as upregulating microphthalmia-associated transcription factor (MITF) expression through mitogen-activated protein kinases (MAPKs) extracellular signal-regulated kinase (ERK) and p38, and the cyclic adenosine monophosphate (cAMP) signaling pathway, as indicated by the microarray analysis results. AFSEE’s melanogenesis promotion effect is primarily attributed to its polyphenolic components. In conclusion, AFSEE promotes melanogenesis in B16F10 cells by upregulating the expression of the melanogenic enzymes through the cAMP–MITF signaling pathway.AFSEE may be used as a cosmetics product component to promote melanogenesis, or as a therapeutic against hypopigmentation disorders.
Collapse
|
32
|
Park K, Park H, Lee DH, Kim KH, Kim ST, Chung JH. 110‐year history of dermatology at the Seoul National University Hospital: prosperity through international cooperation. Int J Dermatol 2020; 59:e112-e114. [DOI: 10.1111/ijd.14784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/12/2019] [Accepted: 12/23/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Kyoung‐Chan Park
- Department of Dermatology Seoul National University College of Medicine Seoul Korea
- Department of Dermatology Seoul National University Bundang Hospital Seoul Korea
| | - Hyunsun Park
- Department of Dermatology Seoul Metropolitan Government Seoul National University Boramae Medical Center Seoul Korea
| | - Dong Hun Lee
- Department of Dermatology Seoul National University College of Medicine Seoul Korea
- Department of Dermatology Seoul National University Hospital Seoul Korea
| | - Kyu Han Kim
- Department of Dermatology Seoul National University College of Medicine Seoul Korea
- Department of Dermatology Seoul National University Hospital Seoul Korea
| | - Sang Tae Kim
- Institute of Medical History and Culture Seoul National University Hospital Seoul Korea
| | - Jin Ho Chung
- Department of Dermatology Seoul National University College of Medicine Seoul Korea
- Department of Dermatology Seoul National University Hospital Seoul Korea
| |
Collapse
|
33
|
Zhao N, Su X, Wang Y, Chen J, Zhuang W. Traditional Chinese Herbal Medicine for Whitening. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20905148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Melanin is the chief pigment responsible for the pigmentation of human skin. Increasing evidence indicates that traditional Chinese drugs with skin-whitening effects are attracting the attention of consumers and researchers because they are perceived to be milder, safer, and healthier than synthetic alternatives. This commentary summarizes the current research on Chinese herbal medicines that inhibit melanin and their biological activities. The findings presented in this study suggest that these traditional Chinese herbal medicines might be potential candidates for novel skin-whitening agents.
Collapse
Affiliation(s)
- Na Zhao
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Xiaoming Su
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Yueyang Wang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| | - Jianguang Chen
- Department of Pharmacology, College of Pharmacy, Beihua University, Jilin, China
| | - Wenyue Zhuang
- Department of Molecular Biology Test Technique, College of Medical Technology, Beihua University, Jilin, China
| |
Collapse
|
34
|
Yuan XH, Tian YD, Oh JH, Bach TT, Chung JH, Jin ZH. Melochia corchorifolia extract inhibits melanogenesis in B16F10 mouse melanoma cells via activation of the ERK signaling. J Cosmet Dermatol 2020; 19:2421-2427. [PMID: 31901006 DOI: 10.1111/jocd.13282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Numerous researches have focused on discovering available inhibitors of melanogenesis from natural medicinal plants with stable efficacy and safety to resolve cutaneous hyperpigmentary problems. Melochia corchorifolia Linn. (MC) has been used as folk medicine to treat various diseases. However, the effect of MC on melanogenesis remains unknown. AIM In this study, we investigated the effect of MC extract on melanogenesis and its underlying mechanisms in B16F10 mouse melanoma cells. METHODS B16F10 cells were treated with MC extract, and then, cell viability, melanin content, and tyrosinase activity were analyzed. The mRNA and protein expression of tyrosinase and microphthalmia-associated transcription factor (MITF) were evaluated using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blotting, respectively. Phosphorylated or total protein levels in MC extract-induced signaling pathways were analyzed by Western blotting. RESULTS Treatment of B16F10 cells with MC extract inhibited melanin synthesis and intracellular tyrosinase activity in a dose-dependent manner with no cytotoxicity. Protein and mRNA expressions of tyrosinase and MITF were also significantly decreased by MC extract treatment. In addition, phosphorylated level of extracellular signal-regulated kinase (ERK) was obviously increased by MC extract, but AKT pathway was not activated. Inhibited ERK phosphorylation by pretreatment with a selective ERK inhibitor PD98059 significantly reversed the decreased melanin content induced by treatment with MC extract in B16F10 cells. CONCLUSION MC extract inhibits melanogenesis in B16F10 mouse melanoma cells through suppression of MITF-tyrosinase signaling pathway by ERK activation.
Collapse
Affiliation(s)
- Xing-Hua Yuan
- Department of Dermatology, Yanbian University Hospital, Yanji, China.,Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Yu-Dan Tian
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Jang-Hee Oh
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea
| | - Tran The Bach
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea.,Laboratory of Cutaneous Aging Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea.,Institute of Human-Environment Interface Biology, Medical Research Center, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Korea
| | - Zhe-Hu Jin
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| |
Collapse
|
35
|
Zaidi KU, Ali SA, Ali A, Naaz I. Natural Tyrosinase Inhibitors: Role of Herbals in the Treatment of Hyperpigmentary Disorders. Mini Rev Med Chem 2019; 19:796-808. [PMID: 31244414 DOI: 10.2174/1389557519666190116101039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 11/02/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022]
Abstract
Cutaneous pigmentation plays critical role in determining the color of skin along with photo protection of skin from dreadful effects of ultraviolet radiations. Conversely, abnormal accumulation of melanin is responsible for hyper pigmentary disorders such as melasma, senile lentigines and freckles. Because of the visible nature of dermatologic diseases, they have a considerable psychosomatic effect on affected patients. Tyrosinase inhibitors are molecules that interrelate in some way with the enzyme to prevent it from working in the normal manner. Past many decades witnessed the quest for the development of natural tyrosinase inhibitors due to imperative role played by tyrosinase in the process of melanogenesis and fungi or fruit enzymatic browning. Mechanism of pigmentation is characterized by the intact process of the synthesis of specialized black pigment within melanosomes. Melanin is synthesized by a cascade of enzymatic and chemical reactions. For this reason, melanin production is mainly controlled by the expression and activation of tyrosinase. In the current article, we discussed tyrosinase inhibitors from the natural sources, which can be an essential constituent of cosmetics products and depigmenting agents for the treatment of hyperpigmentory disorders.
Collapse
Affiliation(s)
- Kamal Uddin Zaidi
- Biotechnology Pharmacology Laboratory CSRD, Peoples University, Bhanpur Bhopal 462037, India
| | - Sharique A Ali
- Post Graduate Department of Biotechnology and Zoology, Saifia College of Science Bhopal 462001, India
| | - Ayesha Ali
- Post Graduate Department of Biotechnology and Zoology, Saifia College of Science Bhopal 462001, India
| | - Ishrat Naaz
- Post Graduate Department of Biotechnology and Zoology, Saifia College of Science Bhopal 462001, India
| |
Collapse
|
36
|
Na JI, Shin JW, Choi HR, Kwon SH, Park KC. Resveratrol as a Multifunctional Topical Hypopigmenting Agent. Int J Mol Sci 2019; 20:ijms20040956. [PMID: 30813264 PMCID: PMC6412432 DOI: 10.3390/ijms20040956] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Melanin is produced in melanocytes and stored in melanosomes, after which it is transferred to keratinocytes and, thus, determines skin color. Despite its beneficial sun-protective effects, abnormal accumulation of melanin results in esthetic problems. A range of topical hypopigmenting agents have been evaluated for their use in the treatment of pigmentary disorders with varying degrees of success. Hydroquinone (HQ), which competes with tyrosine, is the main ingredient in topical pharmacological agents. However, frequent occurrence of adverse reactions is an important factor that limits its use. Thus, efforts to discover effective topical hypopigmenting agents with less adverse effects continue. Here, we describe the potential of resveratrol to function as an effective hypopigmenting agent based on its mechanism of action. Resveratrol is not only a direct tyrosinase inhibitor but an indirect inhibitor as well. Additionally, it can affect keratinocytes, which regulate the function of melanocytes. Resveratrol regulates the inflammatory process of keratinocytes and protects them from oxidative damage. In this way, it prevents keratinocyte-induced melanocyte stimulation. Furthermore, it has a rescuing effect on the stemness of interfollicular epidermal cells that can repair signs of photoaging in the melasma, a typical pigmentary skin disorder. Overall, resveratrol is a promising potent hypopigmenting agent.
Collapse
Affiliation(s)
- Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Soon-Hyo Kwon
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| | - Kyung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 463-707, Korea.
| |
Collapse
|
37
|
N. Masum M, Yamauchi K, Mitsunaga T. Tyrosinase Inhibitors from Natural and Synthetic Sources as Skin-lightening Agents. ACTA ACUST UNITED AC 2019. [DOI: 10.7831/ras.7.41] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Kosei Yamauchi
- The united graduate school of agricultural science, Gifu University
| | - Tohru Mitsunaga
- The united graduate school of agricultural science, Gifu University
| |
Collapse
|
38
|
Bae IH, Lee ES, Yoo JW, Lee SH, Ko JY, Kim YJ, Lee TR, Kim DY, Lee CS. Mannosylerythritol lipids inhibit melanogenesis via suppressing ERK-CREB-MiTF-tyrosinase signalling in normal human melanocytes and a three-dimensional human skin equivalent. Exp Dermatol 2018; 28:738-741. [PMID: 30408247 DOI: 10.1111/exd.13836] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/26/2018] [Accepted: 11/02/2018] [Indexed: 11/27/2022]
Abstract
Hyperpigmentation is caused by excessive production of melanin in melanocytes. Mannosylerythritol lipids (MELs) are glycolipid biosurfactants that are abundantly produced by yeasts and used commercially in cosmetics. However, the potential depigmenting efficacy of MELs has not been evaluated. In this study, the depigmentary effect of MELs was tested in primary normal human melanocytes (NHMs), α-melanocyte-stimulating hormone (MSH)-stimulated B16 cells (murine melanoma cells) and a human skin equivalent (MelanoDerm) using photography, Fontana-Masson (F&M) staining and two-photon microscopy. Mannosylerythritol lipids significantly decreased the melanin contents in NHMs and α-MSH-stimulated B16 cells. Consistent with these findings, MELs treatment had a clear whitening effect in a human skin equivalent, brightening the tissue colour and reducing the melanin content. The molecular mechanism underlying the anti-melanogenic effect of MELs treatment was examined by real-time PCR and Western blotting. Mechanistically, MELs clearly suppressed the gene expression levels of representative melanogenic enzymes, including tyrosinase, Tyrp-1 and Tyrp-2, by inhibiting the ERK/CREB/MiTF signalling pathway in NHMs. This work demonstrates for the first time that MELs exert whitening effects on human melanocytes and skin equivalent. Thus, we suggest that MELs could be developed as a potent anti-melanogenic agent for effective whitening, beyond their use as a biosurfactant in cosmetics.
Collapse
Affiliation(s)
- Il-Hong Bae
- Amorepacific Corporation R&D Center, Yongin-si, Korea.,Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Eun Soo Lee
- Amorepacific Corporation R&D Center, Yongin-si, Korea
| | - Jae Won Yoo
- Amorepacific Corporation R&D Center, Yongin-si, Korea
| | - Sung Hoon Lee
- Amorepacific Corporation R&D Center, Yongin-si, Korea
| | - Jae Young Ko
- Amorepacific Corporation R&D Center, Yongin-si, Korea
| | - Yong Jin Kim
- Amorepacific Corporation R&D Center, Yongin-si, Korea
| | - Tae Ryong Lee
- Amorepacific Corporation R&D Center, Yongin-si, Korea
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Chang Seok Lee
- Department of Beauty and Cosmetic Science, Eulji University, Seongnam-si, Gyeonggi-do, Korea
| |
Collapse
|
39
|
Oh TI, Jung HJ, Lee YM, Lee S, Kim GH, Kan SY, Kang H, Oh T, Ko HM, Kwak KC, Lim JH. Zerumbone, a Tropical Ginger Sesquiterpene of Zingiber officinale Roscoe, Attenuates α-MSH-Induced Melanogenesis in B16F10 Cells. Int J Mol Sci 2018; 19:E3149. [PMID: 30322121 PMCID: PMC6214111 DOI: 10.3390/ijms19103149] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 10/11/2018] [Indexed: 12/24/2022] Open
Abstract
Zerumbone (ZER), an active constituent of the Zingiberaceae family, has been shown to exhibit several biological activities, such as anti-inflammatory, anti-allergic, anti-microbial, and anti-cancer; however, it has not been studied for anti-melanogenic properties. In the present study, we demonstrate that ZER and Zingiber officinale (ZO) extract significantly attenuate melanin accumulation in α-melanocyte-stimulating hormone (α-MSH)-stimulated mouse melanogenic B16F10 cells. Further, to elucidate the molecular mechanism by which ZER suppresses melanin accumulation, we analyzed the expression of melanogenesis-associated transcription factor, microphthalmia-associated transcription factor (MITF), and its target genes, such as tyrosinase, tyrosinase-related protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2), in B16F10 cells that are stimulated by α-MSH. Here, we found that ZER inhibits the MITF-mediated expression of melanogenic genes upon α-MSH stimulation. Additionally, cells treated with different concentrations of zerumbone and ZO showed increased extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation, which are involved in the degradation mechanism of MITF. Pharmacological inhibition of ERK1/2 using U0126 sufficiently reversed the anti-melanogenic effect of ZER, suggesting that increased phosphorylation of ERK1/2 is required for its anti-melanogenic activity. Taken together, these results suggest that ZER and ZO extract can be used as active ingredients in skin-whitening cosmetics because of their anti-melanogenic effect.
Collapse
Affiliation(s)
- Taek-In Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Hye-Jeong Jung
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Yoon-Mi Lee
- Department of Food Bioscience, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Sujin Lee
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Geon-Hee Kim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Sang-Yeon Kan
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Hyeji Kang
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Taerim Oh
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
| | - Hyun Myung Ko
- Department of Life Science, College of Science and Technology, Woosuk University, 66 Daehak-ro, Jincheon-eup, Chungcheongbuk-do 27841, Korea.
| | - Keun-Chang Kwak
- Department of Research & Development Center, BSB korea Co., Ltd., 66 Daehak-ro, Jincheon-eup, Chungcheongbuk-do 27841, Korea.
| | - Ji-Hong Lim
- Department of Biomedical Chemistry, College of Biomedical & Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea.
- Diabetes and Bio-Research Center, Konkuk University, Chungju 27478, Korea.
| |
Collapse
|
40
|
Attenuation of melanogenesis by Nymphaea nouchali (Burm. f) flower extract through the regulation of cAMP/CREB/MAPKs/MITF and proteasomal degradation of tyrosinase. Sci Rep 2018; 8:13928. [PMID: 30224716 PMCID: PMC6141596 DOI: 10.1038/s41598-018-32303-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
Medicinal plants have been used to treat diseases from time immemorial. We aimed to examine the efficacy of the ethyl acetate fraction of Nymphaea nouchali flower extract (NNFE) against melanogenesis process, and the underlying mechanisms in vitro and in vivo. Paper spray ionisation mass spectroscopy and (+) mode electrospray ionisation revealed the presence of seven flavonoids, two spermidine alkaloids, 3,4,8,9,10-pentahydroxy-dibenzo[b,d]pyran-6-one, and shoyuflavone C in NNFE. NNFE (100 µg/mL) significantly inhibited the monophenolase and diphenolase activities of mushroom tyrosinase at 94.90 ± 0.003% and 93.034 ± 0.003%, respectively. NNFE significantly suppressed cellular tyrosinase activity and melanin synthesis in vitro in melan-a cells and in vivo in HRM2 hairless mice. Furthermore, NNFE inhibited tyrosinase (TYR), tyrosinase-related protein (TYRP)-1, TYRP-2, and microphthalmia-associated transcription factor (MITF) expression, thereby blocking melanin synthesis. In particular, NNFE suppressed cAMP production with subsequent downregulation of CREB phosphorylation. Additionally, it stimulated MAP kinase phosphorylation (p38, JNK, and ERK1/2) and the proteasomal debasement pathway, leading to degradation of tyrosinase and MITF and the suppression of melanin production. Moreover, selective inhibitors of ERK1/2, JNK, and p38 attenuated NNFE inhibitory effects on melanogenesis, and MG-132 (a proteasome inhibitor) prevented the NNFE-induced decline in tyrosinase protein levels. In conclusion, these findings indicate that NNFE is a potential therapy for hyperpigmentation.
Collapse
|
41
|
Byeon JH, Alam MB, Kim KC, Heo S, Lim JY, Kwon YG, Zhao P, Cha YH, Choi HJ, Lee SH. Anti-Melanogenic Effect of Chestnut Spike Extract through Downregulation of Tyrosinase-Related Proteins and Activation of ERK 1/2. Nat Prod Commun 2018; 13. [DOI: 10.1177/1934578x1801300825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025] Open
Abstract
Melanin has been reported to be the key factor for skin homeostasis. Besides defining an important human phenotypic trait, melanin overproduction may cause various disorders such as vitiligo, Addison's disease, Cushing's syndrome, and melasma. In this study, we aimed to investigate the anti-melanogenic potential of dried spike extract of chestnut. The extract inhibited tyrosinase (TYR) activity in a dose-dependent manner. Cellular melanin content decreased markedly after treatment with the extract. The spike extract inhibited microphthalmia-associated transcription factor (MITF) expression and downregulated TYR, TYRP-1, and TYRP-2 protein expression by increasing the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 signalling pathway in melan-a cells. In addition, treatment with U0126, a specific inhibitor of ERK, restored melanin content. Collectively, these results suggest that the chestnut spike extract attenuated melanogenesis by inhibiting MITF expression and downregulating TYR, TYRP-1, and TYRP-2 protein expressions via activation of ERK1/2 pathway.
Collapse
Affiliation(s)
- Jung-Hee Byeon
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Md Badrul Alam
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food & Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki-Chan Kim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sangsun Heo
- School of Bioconvergence, Jungbu University, Gumsan 32713, Republic of Korea
| | - Ji-young Lim
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Gyung Kwon
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Peijun Zhao
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeong-Ho Cha
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hee-Jeong Choi
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Han Lee
- School of Food Science & Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
- Food & Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
42
|
Lee J, Ji J, Park S. Antiwrinkle and antimelanogenesis activity of the ethanol extracts of Lespedeza cuneata G. Don for development of the cosmeceutical ingredients. Food Sci Nutr 2018; 6:1307-1316. [PMID: 30065832 PMCID: PMC6060902 DOI: 10.1002/fsn3.682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/15/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022] Open
Abstract
To develop the ingredient with the cosmeceutical function, the antiwrinkle and antimelanogenesis effects of the ethanol extract of Lespedeza cuneata G. Don were investigated. DPPH radical scavenging activity was significantly increased with the extract of L. cuneata G. Don. Cell viability on CCD986Sk human fibroblast was also increased by the ethanol extract of L. cuneata G. Don. The inhibitory function of the extract of L. cuneata G. Don on collagenase, elastase, and tyrosinase was evaluated. Protein expression level of Claudin-1, Occludin, and ZO-1 was up-regulated in HaCaT human keratinocyte by the extract of L. cuneata G. Don. In addition, the extract of L. cuneata G. Don inhibited melanin synthesis in B16F10 murine melanoma cells by decreasing MITF, TRP1, and TRP2 protein levels and increasing the phosphorylated Erk and Akt. Thus, these findings would be useful for developing the new cosmeceutical formulations based on the extract of L. cuneata G. Don.
Collapse
Affiliation(s)
- Jongsung Lee
- Department of Genetic EngineeringSungkyunkwan UniversitySuwonKorea
| | - Jun Ji
- Department of Natural MedicineHallym UniversityChuncheonKorea
- FA CompanySejongKorea
| | - See‐Hyoung Park
- Department of Bio and Chemical EngineeringHongik UniversitySejongKorea
| |
Collapse
|
43
|
Analysis of Cell Signal Transduction Based on Kullback-Leibler Divergence: Channel Capacity and Conservation of Its Production Rate during Cascade. ENTROPY 2018; 20:e20060438. [PMID: 33265528 PMCID: PMC7512958 DOI: 10.3390/e20060438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 05/26/2018] [Accepted: 06/03/2018] [Indexed: 11/30/2022]
Abstract
Kullback–Leibler divergence (KLD) is a type of extended mutual entropy, which is used as a measure of information gain when transferring from a prior distribution to a posterior distribution. In this study, KLD is applied to the thermodynamic analysis of cell signal transduction cascade and serves an alternative to mutual entropy. When KLD is minimized, the divergence is given by the ratio of the prior selection probability of the signaling molecule to the posterior selection probability. Moreover, the information gain during the entire channel is shown to be adequately described by average KLD production rate. Thus, this approach provides a framework for the quantitative analysis of signal transduction. Moreover, the proposed approach can identify an effective cascade for a signaling network.
Collapse
|
44
|
|
45
|
Azam MS, Kwon M, Choi J, Kim HR. Sargaquinoic acid ameliorates hyperpigmentation through cAMP and ERK-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells. Biomed Pharmacother 2018; 104:582-589. [PMID: 29803170 DOI: 10.1016/j.biopha.2018.05.083] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Hyperpigmentation disorders of the skin adversely influence the quality of life. We previously demonstrated the hypopigmenting properties of the ethanolic extract from Sargassum serratifolium and identified sargaquinoic acid (SQA) as an active component. The current study aims to investigate the hypopigmenting action of SQA in α-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 cells. SQA attenuated cellular melanin synthesis by inhibiting the expression of the melanogenic enzymes, including tyrosinase (TYR), tyrosinase-related protein 1 (TRP1), and TRP2. SQA also inhibited cellular TYR activity in a dose-dependent manner. Reduced intracellular cAMP accumulation by SQA treatment resulted in the suppressed phosphorylation of cAMP-responsive element-binding protein (CREB), leading to the downregulation of microphthalmia-associated transcription factor (MITF) in α-MSH-stimulated B16F10 cells. SQA increased the phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and MITF (Ser73), inducing proteasomal degradation of MITF. SQA showed high binding affinity to the cAMP binding domain of PKA; the direct binding of SQA to PKA may exert an additional inhibitory effect on the PKA-dependent CREB activation. Our data demonstrated that SQA suppressed melanin production through the cAMP/CREB- and ERK1/2-mediated downregulation of MITF in α-MSH-stimulated B16F10 cells and SQA has a potential therapeutic agent for the treatment of skin hyperpigmentation disorders.
Collapse
Affiliation(s)
- Mohammed Shariful Azam
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| | - Misung Kwon
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| | - Jinkyung Choi
- Department of Foodservice Management, Woosong University, Daejeon 34606, Republic of Korea.
| | - Hyeung-Rak Kim
- Department of Food Science and Nutrition, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea; CEO, PhyHeal Co. Ltd, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
46
|
Ha JH, Jeong YJ, Xuan SH, Lee JY, Park J, Park SN. Methyl-2-acetylamino-3-(4-hydroxyl-3,5-dimethoxybenzoylthio)propanoate suppresses melanogenesis through ERK signaling pathway mediated MITF proteasomal degradation. J Dermatol Sci 2018; 91:S0923-1811(18)30169-5. [PMID: 29735364 DOI: 10.1016/j.jdermsci.2018.04.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Microphthalmia-associated transcription factor (MITF) is regulated by expression and/or degradation pathway, controlling to the expression of melanogenic enzymes for melanin synthesis. Methyl-2-acetylamino-3-(4-hydroxyl-3,5-dimethoxybenzoylthio)propanoate (MAHDP) is reported to anti-melanogenesis effect but its mechanism remain unclear. OBJECTIVE To investigate the effects of MAHDP on melanogenesis and elucidate its mechanism. METHODS Tyrosinase activity, melanogenic proteins and gene expression levels were measured with MAHDP treatment in B16F1 cells, human melanocytes, reconstructed skin and clinical trial. RESULTS MAHDP attenuated melanin production in α-MSH (melanocyte stimulating hormone) stimulated-B16F1 cells. MAHDP decreased the expression of tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). But, MADPH did not affect the phosphorylation of p38 MAPK, JNK and AKT, which are associated with the regulation of MITF expression. These results suggest that MITF downstream is regulated not transcriptionally but translationally. Treatment of MG132 (a proteasomal degradation inhibitor) almost abolished the decrease of MITF protein levels by MAHDP. Phosphorylation and ubiquitination of MITF for proteasomal degradation were increased by treatment of MAHDP. Treatment of PD98059 (an ERK phosphorylation inhibitor) abrogated ERK phosphorylation, downregulation of MITF and tyrosinase as well as the decrease of melanin contents by MAHDP. Therefore, the degradation of MITF proteins by MAHDP is regulated to the ERK signaling. Finally, MAHDP improved the pigmentation in human epidermal melanocytes, a UVB-irradiated the reconstructed skin model and clinical trial without cytotoxicity and skin irritation. CONCLUSION These results clearly demonstrate that MAHDP suppresses the expression of melanogenic enzymes through ERK phosphorylation-mediated MITF proteasomal degradation, and suggest that MAHDP may be efficient as a therapeutic agent for hyperpigmentation.
Collapse
Affiliation(s)
- Ji Hoon Ha
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Yoon Ju Jeong
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Song Hua Xuan
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea
| | - Jae-Young Lee
- Daebong LS. Ltd., 692-8, Gojan-dong, Namdong-gu, Incheon 21697, Republic of Korea
| | - Jino Park
- Daebong LS. Ltd., 692-8, Gojan-dong, Namdong-gu, Incheon 21697, Republic of Korea
| | - Soo Nam Park
- Department of Fine Chemistry, Cosmetic R&D Center, Cosmetic Industry Coupled Collaboration Center, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea.
| |
Collapse
|
47
|
Tsuruyama T. The Conservation of Average Entropy Production Rate in a Model of Signal Transduction: Information Thermodynamics Based on the Fluctuation Theorem. ENTROPY 2018; 20:e20040303. [PMID: 33265394 PMCID: PMC7512822 DOI: 10.3390/e20040303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/11/2022]
Abstract
Cell signal transduction is a non-equilibrium process characterized by the reaction cascade. This study aims to quantify and compare signal transduction cascades using a model of signal transduction. The signal duration was found to be linked to step-by-step transition probability, which was determined using information theory. By applying the fluctuation theorem for reversible signal steps, the transition probability was described using the average entropy production rate. Specifically, when the signal event number during the cascade was maximized, the average entropy production rate was found to be conserved during the entire cascade. This approach provides a quantitative means of analyzing signal transduction and identifies an effective cascade for a signaling network.
Collapse
Affiliation(s)
- Tatsuaki Tsuruyama
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Shogoin-kawahara-cho 54, Sakyo-ku, Kyoto 606-8057, Japan; ; Tel.: +81-75-366-7694; Fax: +81-75-366-7660
- Department of Drug Discovery Medicine, Pathology Division, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8315, Japan
| |
Collapse
|
48
|
Zhao P, Alam MB, An H, Choi HJ, Cha YH, Yoo CY, Kim HH, Lee SH. Antimelanogenic Effect of an Oroxylum indicum Seed Extract by Suppression of MITF Expression through Activation of MAPK Signaling Protein. Int J Mol Sci 2018; 19:760. [PMID: 29518952 PMCID: PMC5877621 DOI: 10.3390/ijms19030760] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 02/01/2023] Open
Abstract
In this study, the antimelanogenic effect of an ethyl acetate fraction of Oroxylum indicum Vent. seeds (OISEA) and its underlying mechanisms in melan-a cells were investigated. Antimelanogenesis activity was confirmed by assessing inhibition of tyrosinase activity and melanin content in the cells. Both transcriptional and translational expression of microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase related protein-1 and 2 (TYRP-1 and TYRP-2), were also examined. The results depicted that pretreatment of OISEA significantly inhibits not only tyrosinase activity, but melanin production and intracellular tyrosinase activity. By repressing the expression of tyrosinase, TYRP-1, TYRP-2, and MITF, OISEA interrupted melanin production. Additionally, OISEA interfered with the phosphorylation of p38, extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun N-terminal kinase (JNK), with the reversal of OISEA-induced melanogenesis inhibition after treatment with the specific inhibitors SB239063, U0126, and SP600125. Overall, these results suggest that OISEA can stimulate p38, ERK1/2, JNK phosphorylation, and subsequent suppression of melanin, leading to the inhibition of melanogenic enzymes and melanin production, possibly owing to the presence of polyphenolic compounds.
Collapse
Affiliation(s)
- Peijun Zhao
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Md Badrul Alam
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea.
| | - Hongyan An
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Hee-Jeong Choi
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Yeong Ho Cha
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Chi-Yeol Yoo
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
| | - Hyo-Hyun Kim
- MR Innovation Co., Ltd., KNU Technopark, Daegu 41566, Korea.
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Korea.
- Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
49
|
Fukunaga S, Wada S, Aoi W, Osada‐Oka M, Minamiyama Y, Ichikawa H, Higashi A. Effect of melanogenesis inhibition by a yeast extract in comparison to that by other food extracts, and its mechanism of action. J Food Biochem 2018. [DOI: 10.1111/jfbc.12520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Shoko Fukunaga
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Sayori Wada
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Wataru Aoi
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Mayuko Osada‐Oka
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Yukiko Minamiyama
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| | - Hiroshi Ichikawa
- Graduate School of Life and Medical SciencesDoshisha University, Tatara MiyakodaniKyotanabe Kyoto610 0394 Japan
| | - Akane Higashi
- Division of Applied Life Sciences, Graduate School of Life and Environmental SciencesKyoto Prefectural UniversityShimogamo Kyoto606 8522 Japan
| |
Collapse
|
50
|
Wu H, Zhao Y, Huang Q, Cai M, Pan Q, Fu M, An X, Xia Z, Liu M, Jin Y, He L, Shang J. NK1R/5-HT1AR interaction is related to the regulation of melanogenesis. FASEB J 2018; 32:3193-3214. [PMID: 29430989 DOI: 10.1096/fj.201700564rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Substance P (SP) is a candidate mediator along the brain-skin axis and can mimic the effects of stress to regulate melanogenesis. Previously, we and others have found that the regulation of SP for pigmentary function was mediated by neurokinin 1 receptor (NK1R). Emerging evidence has accumulated that psychologic stress can induce dysfunction in the cutaneous serotonin 5-hydroxytryptamine (5-HT)-5-HT1A/1B receptor system, thereby resulting in skin hypopigmentation. Moreover, NK1R and 5-HTR (except 5-HT3) belong to GPCR. The present study aimed at assessing the possible existence of NK1R-5-HTR interactions and related melanogenic functions. Western blot and PCR detection revealed that SP reduced expression of 5-HT1A receptor via the NK1 receptor. Biochemical analyses showed that NK1R and 5-HT1AR could colocalize and interact in a cell and in the skin. When the N terminus of the NK1R protein was removed NK1R surface targeting was prevented, the interaction between NK1R-5-HT1AR decreased, and the depigmentation caused by SP and WAY100635 could be rescued. Importantly, pharmaceutical coadministration of NK1R agonist (SP) and 5-HT1A antagonist (WAY100635) enhanced the NK1-5-HT1A receptor coimmunoprecipitation along with the depigmentary response. SP and WAY100635 cooperation elicited activation of a signaling cascade (the extracellular, regulated protein kinase p-JNK signaling pathway) and inhibition of p70S6K1 phosphorylation and greatly reduced melanin production in vitro and in vivo in mice and zebrafish. Moreover, the SP-induced depigmentation response did not be occur in 5-htr1aa+/- zebrafish embryos. Taken together, the results of our systemic study increases our knowledge of the roles of NK1R and 5-HT1AR in melanogenesis and provides possible, novel therapeutic strategies for treatment of skin hypo/hyperpigmentation.-Wu, H., Zhao, Y., Huang, Q., Cai, M., Pan, Q., Fu, M., An, X., Xia, Z., Liu, M., Jin, Y., He, L., Shang, J. NK1R/5-HT1AR interaction is related to the regulation of melanogenesis.
Collapse
Affiliation(s)
- Huali Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Yucheng Zhao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Qiaoling Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Minxuan Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qi Pan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Mengsi Fu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaohong An
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Zhenjiang Xia
- Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Meng Liu
- The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China; and
| | - Yu Jin
- University of California, Santa Barbara, Santa Barbara, California, USA
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jing Shang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Traditional Chinese Medicine (TCM) Evaluation and Translational Research, China Pharmaceutical University, Nanjing, China.,School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China.,Qinghai Key Laboratory of Tibetan Medicine Pharmacology and Safety Evaluation, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| |
Collapse
|