1
|
Affiliation(s)
| | - Claudia Bank
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
- Department of Biology, Institute for Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | | |
Collapse
|
2
|
Yamamoto A. Gathering up meiotic telomeres: a novel function of the microtubule-organizing center. Cell Mol Life Sci 2014; 71:2119-34. [PMID: 24413667 PMCID: PMC11113538 DOI: 10.1007/s00018-013-1548-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 11/26/2022]
Abstract
During meiosis, telomeres cluster and promote homologous chromosome pairing. Telomere clustering depends on conserved SUN and KASH domain nuclear membrane proteins, which form a complex called the linker of nucleoskeleton and cytoskeleton (LINC) and connect telomeres with the cytoskeleton. It has been thought that LINC-mediated cytoskeletal forces induce telomere clustering. However, how cytoskeletal forces induce telomere clustering is not fully understood. Recent study of fission yeast has shown that the LINC complex forms the microtubule-organizing center (MTOC) at the telomere, which has been designated as the "telocentrosome", and that microtubule motors gather telomeres via telocentrosome-nucleated microtubules. This MTOC-dependent telomere clustering might be conserved in other eukaryotes. Furthermore, the MTOC-dependent clustering mechanism appears to function in various other biological events. This review presents an overview of the current understanding of the mechanism of meiotic telomere clustering and discusses the universality of the MTOC-dependent clustering mechanism.
Collapse
Affiliation(s)
- Ayumu Yamamoto
- Department of Chemistry, Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Sizuoka, 422-8529, Japan,
| |
Collapse
|
3
|
Albertin W, Marullo P. Polyploidy in fungi: evolution after whole-genome duplication. Proc Biol Sci 2012; 279:2497-509. [PMID: 22492065 PMCID: PMC3350714 DOI: 10.1098/rspb.2012.0434] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 03/13/2012] [Indexed: 01/21/2023] Open
Abstract
Polyploidy is a major evolutionary process in eukaryotes-particularly in plants and, to a less extent, in animals, wherein several past and recent whole-genome duplication events have been described. Surprisingly, the incidence of polyploidy in other eukaryote kingdoms, particularly within fungi, remained largely disregarded by the scientific community working on the evolutionary consequences of polyploidy. Recent studies have significantly increased our knowledge of the occurrence and evolutionary significance of fungal polyploidy. The ecological, structural and functional consequences of polyploidy in fungi are reviewed here and compared with the knowledge acquired with conventional plant and animal models. In particular, the genus Saccharomyces emerges as a relevant model for polyploid studies, in addition to plant and animal models.
Collapse
Affiliation(s)
- Warren Albertin
- CNRS, UMR 0320/UMR 8120 Génétique Végétale, 91190 Gif-sur-Yvette, France.
| | | |
Collapse
|
4
|
Govin J, Dorsey J, Gaucher J, Rousseaux S, Khochbin S, Berger SL. Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes Dev 2010; 24:1772-86. [PMID: 20713519 DOI: 10.1101/gad.1954910] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Profound epigenetic differences exist between genomes derived from male and female gametes; however, the nature of these changes remains largely unknown. We undertook a systematic investigation of chromatin reorganization during gametogenesis, using the model eukaryote Saccharomyces cerevisiae to examine sporulation, which has strong similarities with higher eukaryotic spermatogenesis. We established a mutational screen of histones H3 and H4 to uncover substitutions that reduce sporulation efficiency. We discovered two patches of residues-one on H3 and a second on H4-that are crucial for sporulation but not critical for mitotic growth, and likely comprise interactive nucleosomal surfaces. Furthermore, we identified novel histone post-translational modifications that mark the chromatin reorganization process during sporulation. First, phosphorylation of H3T11 appears to be a key modification during meiosis, and requires the meiotic-specific kinase Mek1. Second, H4 undergoes amino tail acetylation at Lys 5, Lys 8, and Lys 12, and these are synergistically important for post-meiotic chromatin compaction, occurring subsequent to the post-meiotic transient peak in phosphorylation at H4S1, and crucial for recruitment of Bdf1, a bromodomain protein, to chromatin in mature spores. Strikingly, the presence and temporal succession of the new H3 and H4 modifications are detected during mouse spermatogenesis, indicating that they are conserved through evolution. Thus, our results show that investigation of gametogenesis in yeast provides novel insights into chromatin dynamics, which are potentially relevant to epigenetic modulation of the mammalian process.
Collapse
Affiliation(s)
- Jérôme Govin
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
5
|
Kosaka H, Shinohara M, Shinohara A. Csm4-dependent telomere movement on nuclear envelope promotes meiotic recombination. PLoS Genet 2008; 4:e1000196. [PMID: 18818742 PMCID: PMC2533704 DOI: 10.1371/journal.pgen.1000196] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 08/08/2008] [Indexed: 12/03/2022] Open
Abstract
During meiotic prophase, chromosomes display rapid movement, and their telomeres attach to the nuclear envelope and cluster to form a “chromosomal bouquet.” Little is known about the roles of the chromosome movement and telomere clustering in this phase. In budding yeast, telomere clustering is promoted by a meiosis-specific, telomere-binding protein, Ndj1. Here, we show that a meiosis-specific protein, Csm4, which forms a complex with Ndj1, facilitates bouquet formation. In the absence of Csm4, Ndj1-bound telomeres tether to nuclear envelopes but do not cluster, suggesting that telomere clustering in the meiotic prophase consists of at least two distinct steps: Ndj1-dependent tethering to the nuclear envelope and Csm4-dependent clustering/movement. Similar to Ndj1, Csm4 is required for several distinct steps during meiotic recombination. Our results suggest that Csm4 promotes efficient second-end capture of a double-strand break following a homology search, as well as resolution of the double-Holliday junction during crossover formation. We propose that chromosome movement and associated telomere dynamics at the nuclear envelope promotes the completion of key biochemical steps during meiotic recombination. Meiosis is a specialized cell division that produces haploid gametes. Homologous recombination plays a pivotal role in the segregation of homologous chromosomes during meiosis I by creating physical linkages between the chromosomes. Drastic reorganization of chromosomes in the nucleus is a prominent feature of meiotic prophase I, during which telomeres get associated with the nuclear envelope and move within the envelope, culminating in the formation of telomere clusters, often referred to as “chromosome bouquets.” The roles that telomere movement and clustering play in meiotic prophase I are largely unknown. In the budding yeast Saccharomyces cerevisiae, tethering of telomeres to the nuclear envelope is mediated by a meiosis-specific telomere-binding protein, Ndj1. We studied the functions of a meiosis-specific gene, CSM4, in telomere clustering and during meiotic recombination. CSM4 is necessary for the clustering of Ndj1-associated telomeres. Interestingly, csm4 mutants show pleiotropic defects during meiotic recombination. It is likely that the chromosome movement promotes various biochemical reactions during meiotic recombination.
Collapse
Affiliation(s)
- Hiromichi Kosaka
- Institute for Protein Research, Graduate School of Science, Osaka University, Suita, Osaka, Japan
| | | | | |
Collapse
|
6
|
Abstract
Meiosis is a specialized type of cell division that halves the diploid number of chromosomes, yielding four haploid nuclei. Dramatic changes in chromosomal organization occur within the nucleus at the beginning of meiosis which are followed by the separation of homologous chromosomes at the first meiotic division. This is the case for telomeres that display a meiotic-specific behavior with gathering in a limited sector of the nuclear periphery. This leads to a characteristic polarized chromosomal configuration, called the "bouquet" arrangement. The widespread phenomenon of bouquet formation among eukaryotes has led to the hypothesis that it is functionally linked to the process of interactions between homologous chromosomes that are a unique feature of meiosis and are essential for proper chromosome segregation. Various studies in different model organisms have questioned the role of the telomere bouquet in chromosome pairing and recombination, and very recently in meiotic spindle formation, and have provided some clues about the molecular mechanisms that carry out this specific clustering of telomeres.
Collapse
|
7
|
Scherthan H, Trelles-Sticken E. Absence of yKu/Hdf1 but not myosin-like proteins alters chromosome dynamics during prophase I in yeast. Differentiation 2007; 76:91-8. [PMID: 17697124 DOI: 10.1111/j.1432-0436.2007.00212.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Meiosis is central to the formation of haploid gametes or spores in that it segregates homologous chromosomes and halves the chromosome number. A prerequisite of this genome bisection is the pairing of homologous chromosomes during the first meiotic prophase. When budding yeast cells are induced to undergo meiosis, this has profound consequences for nuclear structure: after premeiotic DNA replication centromeres disperse, while telomeres move about the nuclear periphery and temporarily cluster during the leptotene/zygotene transition (bouquet stage) of the prophase to first meiotic division. In vegetative cells, Hdf1p (yKu) and the myosin-like proteins Mlp1p and Mlp2p have been suggested to contribute to the organization of silent chromatin, tethering of telomeres to the nuclear periphery, DNA repair, and telomere maintenance. Here, we investigated by molecular cytology whether yKu and Mlp proteins contribute to telomere and chromosome dynamics in meiosis. It was found that mlp1 Delta mlp2 Delta double-mutant cells undergo centromere dispersion, telomere clustering, homologue pairing, and sporulation like wild type. On the other hand, cells deficient for yKu underwent meiosis-specific chromosomal events with a delay, while they eventually sporulated like wild type. These results suggest that the absence of yKu not only affects vegetative nuclear architecture (Laroche et al., 1998) but also interferes with the ordered occurrence of chromosome dynamics during first meiotic prophase.
Collapse
Affiliation(s)
- Harry Scherthan
- Max-Planck-Institut für Molekulare Genetik, Ihnestr. 73, D-14195 Berlin, Germany.
| | | |
Collapse
|
8
|
Ye CJ, Stevens JB, Liu G, Ye KJ, Yang F, Bremer SW, Heng HHQ. Combined multicolor-FISH and immunostaining. Cytogenet Genome Res 2006; 114:227-34. [PMID: 16954658 DOI: 10.1159/000094205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 02/16/2006] [Indexed: 01/14/2023] Open
Abstract
The combination of multicolor-FISH and immunostaining produces a powerful visual method to analyze in situ DNA-protein interactions and dynamics. Representing one of the major technical improvements of FISH technology, this method has been used extensively in the field of chromosome and genome research, as well as in clinical studies, and serves as an important tool to bridge molecular analysis and cytological description. In this short review, the development and significance of this method will be briefly summarized using a limited number of examples to illustrate the large body of literature. In addition to descriptions of technical considerations, future applications and perspectives have also been discussed focusing specifically on the areas of genome organization, gene expression and medical research. We anticipate that this versatile method will play an important role in the study of the structure and function of the dynamic genome and for the development of potential applications for medical research.
Collapse
Affiliation(s)
- C J Ye
- SeeDNA Biotech Inc, Windsor, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Meiosis creates haploid cells from diploid progenitors. Homologous chromosomes are moved, paired and segregated from each other in a specialized meiosis I division. A second division that lacks a preceding S-phase produces haploid cells. In prophase I, chromosomes attach with their telomeres to the nuclear envelope and undergo oscillating movements that become restricted to a limited nuclear sector during the widely conserved bouquet stage. Recent observations in budding yeast meiosis suggest that telomere clustering depends on actin, whereas exit from the bouquet stage requires meiotic cohesin. Telomere clustering may also be modulated by progression in recombination. These observations suggest that the unique meiotic nuclear topology and telomere dynamics are regulated at different levels.
Collapse
Affiliation(s)
- H Scherthan
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Wu HY, Burgess SM. Ndj1, a telomere-associated protein, promotes meiotic recombination in budding yeast. Mol Cell Biol 2006; 26:3683-94. [PMID: 16648465 PMCID: PMC1488995 DOI: 10.1128/mcb.26.10.3683-3694.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dynamic telomere repositioning is a prominent feature of meiosis. Deletion of a telomere-associated protein, Ndj1, results in the failure of both attachment and clustering of telomeres at the nuclear envelope and delays several landmarks of meiosis I, such as pairing, synaptonemal complex formation, and timing of the meiosis I division. We explored the role of Ndj1 in meiotic recombination, which occurs through the formation and repair of programmed double-strand breaks. The ndj1delta mutation allows for the formation of the first detectable strand invasion intermediate (i.e., single-end invasion) with wild-type kinetics; however, it confers a delay in the formation of the double-Holliday junction intermediate and both crossover and noncrossover products. These results challenge the widely held notion that clustering of telomeres in meiosis promotes the ability of homologous chromosomes to find one another in budding Saccharomyces cerevisiae. We propose that an Ndj1-dependent function is critical for stabilizing analogous strand invasion intermediates that exist in two separate branches of the bifurcated pathway, leading to either noncrossover or crossover formation. These findings provide a link between telomere dynamics and a distinct mechanistic step of meiotic recombination that follows the homology search.
Collapse
Affiliation(s)
- Hsin-Yen Wu
- Section of Molecular and Cellular Biology, Genetics Graduate Program, University of California, Davis, California, USA
| | | |
Collapse
|
11
|
Sproul LR, Anderson DJ, Mackey AT, Saunders WS, Gilbert SP. Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr Biol 2006; 15:1420-7. [PMID: 16085496 PMCID: PMC2386176 DOI: 10.1016/j.cub.2005.06.066] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 06/22/2005] [Accepted: 06/24/2005] [Indexed: 02/03/2023]
Abstract
Kar3, a Saccharomyces cerevisiae Kinesin-14, is essential for karyogamy and meiosis I but also has specific functions during vegetative growth. For its various roles, Kar3 forms a heterodimer with either Cik1 or Vik1, both of which are noncatalytic polypeptides. Here, we present the first biochemical characterization of Kar3Cik1, the kinesin motor that is essential for karyogamy. Kar3Cik1 depolymerizes microtubules from the plus end and promotes robust minus-end-directed microtubule gliding. Immunolocalization studies show that Kar3Cik1 binds preferentially to one end of the microtubule, whereas the Kar3 motor domain, in the absence of Cik1, exhibits significantly higher microtubule lattice binding. Kar3Cik1-promoted microtubule depolymerization requires ATP turnover, and the kinetics fit a single exponential function. The disassembly mechanism is not microtubule catastrophe like that induced by the MCAK Kinesin-13s. Soluble tubulin does not activate the ATPase activity of Kar3Cik1, and there is no evidence of Kar3Cik1(.)tubulin complex formation as observed for MCAK. These results reveal a novel mechanism to regulate microtubule depolymerization. We propose that Cik1 targets Kar3 to the microtubule plus end. Kar3Cik1 then uses its minus-end-directed force to depolymerize microtubules from the plus end, with each tubulin-subunit release event tightly coupled to one ATP turnover.
Collapse
Affiliation(s)
- Lisa R. Sproul
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Daniel J. Anderson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Andrew T. Mackey
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - William S. Saunders
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Susan P. Gilbert
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- *Correspondence:
| |
Collapse
|
12
|
Trelles-Sticken E, Bonfils S, Sollier J, Géli V, Scherthan H, de La Roche Saint-André C. Set1- and Clb5-deficiencies disclose the differential regulation of centromere and telomere dynamics in Saccharomyces cerevisiae meiosis. J Cell Sci 2005; 118:4985-94. [PMID: 16254243 DOI: 10.1242/jcs.02612] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The entry into meiosis is characterized by a lengthy premeiotic S phase and a reorganization of the nuclear architecture. Analysis of centromere and telomere dynamics in wild-type Saccharomyces cerevisiae meiosis suggests that resolution of vegetative centromere and telomere clusters are independent events differently connected to premeiotic S phase. Absence of the B-type cyclin Clb5 or the Set1 histone methyltransferase leads to a delay of premeiotic S phase by separate mechanisms. In clb5Delta cells, centromere cluster resolution appears normal, whereas dissolution of the vegetative telomere clusters is impaired and meiosis-specific clustering of telomeres, i.e. bouquet formation, is grossly delayed. In set1Delta cells, centromere and telomere redistribution are both impaired and bouquet nuclei are absent, despite proper location of the meiosis-specific telomere protein Ndj1. Thus, centromere and telomere redistribution at the onset of prophase I is differentially regulated, with centromere dispersion occurring independently of premeiotic S phase. The normal kinetics of dissolution of the vegetative telomere clusters in a set1Delta mec1-1 mutant suggests the presence of a checkpoint that limits the dispersion of telomeres in absence of Set1.
Collapse
|
13
|
Page SL, Hawley RS. The Drosophila meiotic mutant mei-352 is an allele of klp3A and reveals a role for a kinesin-like protein in crossover distribution. Genetics 2005; 170:1797-807. [PMID: 15965253 PMCID: PMC1449747 DOI: 10.1534/genetics.105.041194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 05/30/2005] [Indexed: 01/31/2023] Open
Abstract
The semisterile meiotic mutant mei-352 alters the distribution of meiotic exchanges without greatly affecting their total frequency. We show that the mei-352 mutation is an allele of the klp3A gene, which encodes a kinesin-like protein of the Kinesin-4 family. The semisterility observed in mei-352 females results from a known defect of klp3A oocytes in mediating pronuclear fusion. Interestingly, other klp3A alleles also exhibit defects in meiotic recombination similar to those of mei-352. Finally, we show that the Klp3A protein localizes within the oocyte nucleus during meiotic prophase, the time at which exchange distribution is established, and extensively colocalizes with DNA. The parallel of the klp3A phenotype with a meiotic defect observed for kar3 mutants in yeast suggests a role for kinesins in early meiosis and might reflect a previously suggested role for this class of kinesins in chromosome condensation.
Collapse
Affiliation(s)
- Scott L Page
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | |
Collapse
|
14
|
Trelles-Sticken E, Adelfalk C, Loidl J, Scherthan H. Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. J Cell Biol 2005; 170:213-23. [PMID: 16027219 PMCID: PMC2171397 DOI: 10.1083/jcb.200501042] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 06/15/2005] [Indexed: 11/25/2022] Open
Abstract
In diploid organisms, meiosis reduces the chromosome number by half during the formation of haploid gametes. During meiotic prophase, telomeres transiently cluster at a limited sector of the nuclear envelope (bouquet stage) near the spindle pole body (SPB). Cohesin is a multisubunit complex that contributes to chromosome segregation in meiosis I and II divisions. In yeast meiosis, deficiency for Rec8 cohesin subunit induces telomere clustering to persist, whereas telomere cluster-SPB colocalization is defective. These defects are rescued by expressing the mitotic cohesin Scc1 in rec8delta meiosis, whereas bouquet-stage exit is independent of Cdc5 pololike kinase. An analysis of living Saccharomyces cerevisiae meiocytes revealed highly mobile telomeres from leptotene up to pachytene, with telomeres experiencing an actin- but not microtubule-dependent constraint of mobility during the bouquet stage. Our results suggest that cohesin is required for exit from actin polymerization-dependent telomere clustering and for linking the SPB to the telomere cluster in synaptic meiosis.
Collapse
|