1
|
Basta MD, Menko AS, Walker JL. PI3K Isoform-Specific Regulation of Leader and Follower Cell Function for Collective Migration and Proliferation in Response to Injury. Cells 2022; 11:3515. [PMID: 36359913 PMCID: PMC9658457 DOI: 10.3390/cells11213515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 07/29/2023] Open
Abstract
To ensure proper wound healing it is important to elucidate the signaling cues that coordinate leader and follower cell behavior to promote collective migration and proliferation for wound healing in response to injury. Using an ex vivo post-cataract surgery wound healing model we investigated the role of class I phosphatidylinositol-3-kinase (PI3K) isoforms in this process. Our findings revealed a specific role for p110α signaling independent of Akt for promoting the collective migration and proliferation of the epithelium for wound closure. In addition, we found an important role for p110α signaling in orchestrating proper polarized cytoskeletal organization within both leader and wounded epithelial follower cells to coordinate their function for wound healing. p110α was necessary to signal the formation and persistence of vimentin rich-lamellipodia extensions by leader cells and the reorganization of actomyosin into stress fibers along the basal domains of the wounded lens epithelial follower cells for movement. Together, our study reveals a critical role for p110α in the collective migration of an epithelium in response to wounding.
Collapse
Affiliation(s)
- Morgan D. Basta
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A. Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Janice L. Walker
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
- Department of Ophthalmology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Lu J, Xiao Z, Xu M, Li L. New Insights into LINC00346 and its Role in Disease. Front Cell Dev Biol 2022; 9:819785. [PMID: 35096842 PMCID: PMC8794746 DOI: 10.3389/fcell.2021.819785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that long intergenic non-protein-coding RNA 346 (LINC00346) functions as an oncogene in the tumorigenesis of several cancers. The expression level of LINC00346 has been shown to be obviously correlated with prognosis, lymphoma metastasis, histological grade, TNM stage, tumor size and pathologic stage. LINC00346 has been found to regulate specific cellular functions by interacting with several molecules and signaling pathways. In this review, we summarize recent evidence concerning the role of LINC00346 in the occurrence and development of diseases. We also discuss the potential clinical utility of LINC00346, thereby providing new insight into the diagnosis and treatment of diseases. In addition, we further discuss the potential clinical utility of LINC00346 in the diagnosis, prognostication, and treatment of diseases.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Xiao
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Mengqiu Xu
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Abdellatef S, Fakhoury I, Al Haddad M, Jaafar L, Maalouf H, Hanna S, Khalil B, El Masri Z, Hodgson L, El-Sibai M. StarD13 negatively regulates invadopodia formation and invasion in high-grade serous (HGS) ovarian adenocarcinoma cells by inhibiting Cdc42. Eur J Cell Biol 2022; 101:151197. [PMID: 34958986 PMCID: PMC8756770 DOI: 10.1016/j.ejcb.2021.151197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 01/03/2023] Open
Abstract
Metastasis remains the main challenge to overcome for treating ovarian cancers. In this study, we investigate the potential role of the Cdc42 GAP StarD13 in the modulation of cell motility, invasion in ovarian cancer cells. StarD13 depletion does not affect the 2D motility of ovarian cancer cells. More importantly, StarD13 inhibits matrix degradation, invadopodia formation and cell invasion through the inhibition of Cdc42. StarD13 does not localize to mature TKS4-labeled invadopodia that possess matrix degradation ability, while a Cdc42 FRET biosensor, detects Cdc42 activation in these invadopodia. In fact, StarD13 localization and Cdc42 activation appear mutually exclusive in invadopodial structures. Finally, for the first time we uncover a potential role of Cdc42 in the direct recruitment of TKS4 to invadopodia. This study emphasizes the specific role of StarD13 as a narrow spatial regulator of Cdc42, inhibiting invasion, suggesting the suitability of StarD13 for targeted therapy.
Collapse
Affiliation(s)
- Sandra Abdellatef
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Isabelle Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Maria Al Haddad
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Leila Jaafar
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Hiba Maalouf
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Samer Hanna
- Department of Pediatrics Hematology/Oncology division, Weill Cornell Medicine, Joan & Sanford I. Weill Medical College of Cornell University, Ithaca, NY, USA
| | - Bassem Khalil
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Zeinab El Masri
- Department of Biochemistry and Molecular Biology, University Park, Pennsylvania State University, State College, PA, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon,Correspondence to: Department of Natural Sciences, Lebanese American University, P.O. Box: 13-5053, Chouran 1102 2801, Beirut, Lebanon. (M. El-Sibai)
| |
Collapse
|
4
|
SRC Signaling in Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1270:57-71. [PMID: 33123993 DOI: 10.1007/978-3-030-47189-7_4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pioneering experiments performed by Harold Varmus and Mike Bishop in 1976 led to one of the most influential discoveries in cancer research and identified the first cancer-causing oncogene called Src. Later experimental and clinical evidence suggested that Src kinase plays a significant role in promoting tumor growth and progression and its activity is associated with poor patient survival. Thus, several Src inhibitors were developed and approved by FDA for treatment of cancer patients. Tumor microenvironment (TME) is a highly complex and dynamic milieu where significant cross-talk occurs between cancer cells and TME components, which consist of tumor-associated macrophages, fibroblasts, and other immune and vascular cells. Growth factors and chemokines activate multiple signaling cascades in TME and induce multiple kinases and pathways, including Src, leading to tumor growth, invasion/metastasis, angiogenesis, drug resistance, and progression. Here, we will systemically evaluate recent findings regarding regulation of Src and significance of targeting Src in cancer therapy.
Collapse
|
5
|
Hall TJ, Vernimmen D, Browne JA, Mullen MP, Gordon SV, MacHugh DE, O’Doherty AM. Alveolar Macrophage Chromatin Is Modified to Orchestrate Host Response to Mycobacterium bovis Infection. Front Genet 2020; 10:1386. [PMID: 32117424 PMCID: PMC7020904 DOI: 10.3389/fgene.2019.01386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Bovine tuberculosis is caused by infection with Mycobacterium bovis, which can also cause disease in a range of other mammals, including humans. Alveolar macrophages are the key immune effector cells that first encounter M. bovis and how the macrophage epigenome responds to mycobacterial pathogens is currently not well understood. Here, we have used chromatin immunoprecipitation sequencing (ChIP-seq), RNA-seq and miRNA-seq to examine the effect of M. bovis infection on the bovine alveolar macrophage (bAM) epigenome. We show that H3K4me3 is more prevalent, at a genome-wide level, in chromatin from M. bovis-infected bAM compared to control non-infected bAM; this was particularly evident at the transcriptional start sites of genes that determine programmed macrophage responses to mycobacterial infection (e.g. M1/M2 macrophage polarisation). This pattern was also supported by the distribution of RNA Polymerase II (Pol II) ChIP-seq results, which highlighted significantly increased transcriptional activity at genes demarcated by permissive chromatin. Identification of these genes enabled integration of high-density genome-wide association study (GWAS) data, which revealed genomic regions associated with resilience to infection with M. bovis in cattle. Through integration of these data, we show that bAM transcriptional reprogramming occurs through differential distribution of H3K4me3 and Pol II at key immune genes. Furthermore, this subset of genes can be used to prioritise genomic variants from a relevant GWAS data set.
Collapse
Affiliation(s)
- Thomas J. Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| | - Douglas Vernimmen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - John A. Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| | - Michael P. Mullen
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E. MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Alan M. O’Doherty
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
The Role of Rho GTPases in Motility and Invasion of Glioblastoma Cells. Anal Cell Pathol (Amst) 2020; 2020:9274016. [PMID: 32089990 PMCID: PMC7013281 DOI: 10.1155/2020/9274016] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/27/2022] Open
Abstract
Astrocytomas are primary malignant brain tumors that originate from astrocytes. Grade IV astrocytoma or glioblastoma is a highly invasive tumor that occur within the brain parenchyma. The Rho family of small GTPases, which includes Rac1, Cdc42, and RhoA, is an important family whose members are key regulators of the invasion and migration of glioblastoma cells. In this review, we describe the role played by the Rho family of GTPases in the regulation of the invasion and migration of glioblastoma cells. Specifically, we focus on the role played by RhoA, Rac1, RhoG, and Cdc42 in cell migration through rearrangement of actin cytoskeleton, cell adhesion, and invasion. Finally, we highlight the importance of potentially targeting Rho GTPases in the treatment of glioblastoma.
Collapse
|
7
|
Hypoxia and EGF Stimulation Regulate VEGF Expression in Human Glioblastoma Multiforme (GBM) Cells by Differential Regulation of the PI3K/Rho-GTPase and MAPK Pathways. Cells 2019; 8:cells8111397. [PMID: 31698752 PMCID: PMC6912653 DOI: 10.3390/cells8111397] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common and deadly cancers of the central nervous system (CNS). It is characterized by the presence of hypoxic regions, especially in the core, leading to an increase in vascularity. This increased vascularization is driven by the expression of the major angiogenic inducer VEGF and the indirect angiogenic inducer Epidermal growth factor (EGF), which stimulates VEGF expression. In this study, we examine the regulation of VEGF by both hypoxia and the EGF signaling pathway. We also examine the involvement of pathways downstream from EGF signaling, including the mitogen-activated protein kinase/extracellular regulated kinase (MAPK/ERK) pathway and the Phosphatidylinositol-3-kinase/RhoA/C (PI3K/RhoA/C) pathway in this regulation. Our results show that VEGF expression and secretion levels increase following either hypoxia or EGF stimulation, with the two stimuli signaling in parallel. We also observed an increase in ERK and protein kinase B (Akt) phosphorylation, in response to EGF stimulation, with kinetics that correlated with the kinetics of the effect on VEGF. Using pharmacological inhibitors against ERK and PI3K and small interfering RNAs (siRNAs) against RhoA and RhoC, we found that both the ERK and the PI3K/RhoA/C pathways have to cooperate in order to lead to an increase in VEGF expression, downstream from EGF. In response to hypoxia, however, only ERK was involved in the regulation of VEGF. Hypoxia also led to a surprising decrease in the activation of PI3K and RhoA/C. Finally, the decrease in the activation of these Rho-GTPases was found to be mediated through a hypoxia-driven overexpression of the Rho-GTPase GTPase activating protein (GAP), StarD13. Therefore, while under normoxic conditions, EGF stimulates the activation of both the PI3K and the MAPK pathways and the induction of VEGF, in glioblastoma cells, hypoxic conditions lead to the suppression of the PI3K/RhoA/C pathway and an exclusive switch to the MAPK pathway.
Collapse
|
8
|
Connexin 43 Loss Triggers Cell Cycle Entry and Invasion in Non-Neoplastic Breast Epithelium: A Role for Noncanonical Wnt Signaling. Cancers (Basel) 2019; 11:cancers11030339. [PMID: 30857262 PMCID: PMC6468895 DOI: 10.3390/cancers11030339] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 12/26/2022] Open
Abstract
(1) Background: The expression of connexin 43 (Cx43) is disrupted in breast cancer, and re-expression of this protein in human breast cancer cell lines leads to decreased proliferation and invasiveness, suggesting a tumor suppressive role. This study aims to investigate the role of Cx43 in proliferation and invasion starting from non-neoplastic breast epithelium. (2) Methods: Nontumorigenic human mammary epithelial HMT-3522 S1 cells and Cx43 shRNA-transfected counterparts were cultured under 2-dimensional (2-D) and 3-D conditions. (3) Results: Silencing Cx43 induced mislocalization of β-catenin and Scrib from apicolateral membrane domains in glandular structures or acini formed in 3-D culture, suggesting the loss of apical polarity. Cell cycle entry and proliferation were enhanced, concomitantly with c-Myc and cyclin D1 upregulation, while no detectable activation of Wnt/β-catenin signaling was observed. Motility and invasion were also triggered and were associated with altered acinar morphology and activation of ERK1/2 and Rho GTPase signaling, which acts downstream of the noncanonical Wnt pathway. The invasion of Cx43-shRNA S1 cells was observed only under permissive stiffness of the extracellular matrix (ECM). (4) Conclusion: Our results suggest that Cx43 controls proliferation and invasion in the normal mammary epithelium in part by regulating noncanonical Wnt signaling.
Collapse
|
9
|
Fostok SF, El-Sibai M, El-Sabban M, Talhouk RS. Gap Junctions and Wnt Signaling in the Mammary Gland: a Cross-Talk? J Mammary Gland Biol Neoplasia 2019; 24:17-38. [PMID: 30194659 DOI: 10.1007/s10911-018-9411-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/03/2018] [Indexed: 12/21/2022] Open
Abstract
Connexins (Cxs), the building blocks of gap junctions (GJs), exhibit spatiotemporal patterns of expression and regulate the development and differentiation of the mammary gland, acting via channel-dependent and channel-independent mechanisms. Impaired Cx expression and localization are reported in breast cancer, suggesting a tumor suppressive role for Cxs. The signaling events that mediate the role of GJs in the development and tumorigenesis of the mammary gland remain poorly identified. The Wnt pathways, encompassing the canonical or the Wnt/β-catenin pathway and the noncanonical β-catenin-independent pathway, also play important roles in those processes. Indeed, aberrant Wnt signaling is associated with breast cancer. Despite the coincident roles of Cxs and Wnt pathways, the cross-talk in the breast tissue is poorly defined, although this is reported in a number of other tissues. Our previous studies revealed a channel-independent role for Cx43 in inducing differentiation or suppressing tumorigenesis of mammary epithelial cells by acting as a negative regulator of the Wnt/β-catenin pathway. Here, we provide a brief overview of mammary gland development, with emphasis on the role of Cxs in development and tumorigenesis of this tissue. We also discuss the role of Wnt signaling in similar contexts, and review the literature illustrating interplay between Cxs and Wnt pathways.
Collapse
Affiliation(s)
- Sabreen F Fostok
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University (LAU), Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut (AUB), Beirut, Lebanon
| | - Rabih S Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut (AUB), P.O. Box: 11-0236, Beirut, Lebanon.
| |
Collapse
|
10
|
El Atat O, Fakih A, El-Sibai M. RHOG Activates RAC1 through CDC42 Leading to Tube Formation in Vascular Endothelial Cells. Cells 2019; 8:cells8020171. [PMID: 30781697 PMCID: PMC6406863 DOI: 10.3390/cells8020171] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a hallmark of cancer cell malignancy. The role of the RHO family GTPase RHOG in angiogenesis in vascular endothelial cells has recently been elucidated. However, the regulation of RHOG during this process, as well as its cross-talk with other RHO GTPases, have yet to be fully examined. In this study, we found that siRNA-mediated depletion of RHOG strongly inhibits tube formation in vascular endothelial cells (ECV cells), an effect reversed by transfecting dominant active constructs of CDC42 or RAC1 in the RHOG-depleted cells. We also found CDC42 to be upstream from RAC1 in these cells. Inhibiting either Phosphatidyl inositol (3) kinase (PI3K) with Wortmannin or the mitogen-activated protein kinase extracellular-regulated kinase (MAPK ERK) with U0126 leads to the inhibition of tube formation. While knocking down either RHO, GTPase did not affect p-AKT levels, and p-ERK decreased in response to the knocking down of RHOG, CDC42 or RAC1. Recovering active RHO GTPases in U0126-treated cells also did not reverse the inhibition of tube formation, placing ERK downstream from PI3K-RHOG-CDC42-RAC1 in vascular endothelial cells. Finally, RHOA and the Rho activated protein kinases ROCK1 and ROCK2 positively regulated tube formation independently of ERK, while RHOC seemed to inhibit the process. Collectively, our data confirmed the essential role of RHOG in angiogenesis, shedding light on a potential new therapeutic target for cancer malignancy and metastasis.
Collapse
Affiliation(s)
- Oula El Atat
- Department of Natural Sciences, Lebanese American University, Beirut 1102 2801, Lebanon.
| | - Amira Fakih
- Department of Natural Sciences, Lebanese American University, Beirut 1102 2801, Lebanon.
| | - Mirvat El-Sibai
- Department of Natural Sciences, Lebanese American University, Beirut 1102 2801, Lebanon.
| |
Collapse
|
11
|
Stallaert W, Brüggemann Y, Sabet O, Baak L, Gattiglio M, Bastiaens PIH. Contact inhibitory Eph signaling suppresses EGF-promoted cell migration by decoupling EGFR activity from vesicular recycling. Sci Signal 2018; 11:11/541/eaat0114. [DOI: 10.1126/scisignal.aat0114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Nalbant P, Dehmelt L. Exploratory cell dynamics: a sense of touch for cells? Biol Chem 2018; 399:809-819. [DOI: 10.1515/hsz-2017-0341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 04/06/2018] [Indexed: 01/28/2023]
Abstract
Abstract
Cells need to process multifaceted external cues to steer their dynamic behavior. To efficiently perform this task, cells implement several exploratory mechanisms to actively sample their environment. In particular, cells can use exploratory actin-based cell protrusions and contractions to engage and squeeze the environment and to actively probe its chemical and mechanical properties. Multiple excitable signal networks were identified that can generate local activity pulses to control these exploratory processes. Such excitable signal networks offer particularly efficient mechanisms to process chemical or mechanical signals to steer dynamic cell behavior, such as directional migration, tissue morphogenesis and cell fate decisions.
Collapse
Affiliation(s)
- Perihan Nalbant
- Department of Molecular Cell Biology , Center for Medical Biotechnology , University of Duisburg-Essen, Universitätsstrasse 2 , D-45141 Essen , Germany
| | - Leif Dehmelt
- Department of Systemic Cell Biology , Max Planck Institute of Molecular Physiology, and Dortmund University of Technology, Faculty of Chemistry and Chemical Biology , Otto-Hahn-Str. 4a , D-44227 Dortmund , Germany
| |
Collapse
|
13
|
Mori K, Toiyama Y, Otake K, Ide S, Imaoka H, Okigami M, Okugawa Y, Fujikawa H, Saigusa S, Hiro J, Kobayashi M, Ohi M, Tanaka K, Inoue Y, Kobayashi Y, Mohri Y, Kobayashi I, Goel A, Kusunoki M. Successful identification of a predictive biomarker for lymph node metastasis in colorectal cancer using a proteomic approach. Oncotarget 2017; 8:106935-106947. [PMID: 29291001 PMCID: PMC5739786 DOI: 10.18632/oncotarget.22149] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/29/2017] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC)-associated mortality is primarily caused by lymph node (LN) and distant metastasis, highlighting the need for biomarkers that predict LN metastasis and facilitate better therapeutic strategies. We used an Isobaric Tags for Relative and Absolute Quantification (iTRAQ)-based comparative proteomics approach to identify novel biomarkers for predicting LN metastasis in CRC patients. We analyzed five paired samples of CRC with or without LN metastasis, adjacent normal mucosa, and normal colon mucosa, and differentially expressed proteins were identified and subsequently validated at the protein and/or mRNA levels by immunohistochemistry and qRT-PCR, respectively. We identified 55 proteins specifically associated with LN metastasis, from which we selected ezrin for further analysis and functional assessment. Expression of ezrin at both the protein and mRNA levels was significantly higher in CRC tissues than in adjacent normal colonic mucosa. In univariate analysis, high ezrin expression was significantly associated with tumor progression and poor prognosis, which was consistent with our in vitro findings that ezrin promotes the metastatic capacity of CRC cells by enabling cell invasion and migration. In multivariate analysis, high levels of ezrin protein and mRNA in CRC samples were independent predictors of LN metastasis. Our data thus identify ezrin as a novel protein and mRNA biomarker for predicting LN metastasis in CRC patients.
Collapse
Affiliation(s)
- Koichiro Mori
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuji Toiyama
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Kohei Otake
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Shozo Ide
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroki Imaoka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masato Okigami
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yoshinaga Okugawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Hiroyuki Fujikawa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Susumu Saigusa
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Junichiro Hiro
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Minako Kobayashi
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Masaki Ohi
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Koji Tanaka
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yasuhiro Inoue
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Yuhko Kobayashi
- Center for Molecular Biology and Genetics, Mie University, Mie, Japan
| | - Yasuhiko Mohri
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Issei Kobayashi
- Center for Molecular Biology and Genetics, Mie University, Mie, Japan
| | - Ajay Goel
- Center for Gastrointestinal Research & Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor University Medical Center, Dallas, TX USA
| | - Masato Kusunoki
- Department of Gastrointestinal and Pediatric Surgery, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
14
|
Conduit SE, Ramaswamy V, Remke M, Watkins DN, Wainwright BJ, Taylor MD, Mitchell CA, Dyson JM. A compartmentalized phosphoinositide signaling axis at cilia is regulated by INPP5E to maintain cilia and promote Sonic Hedgehog medulloblastoma. Oncogene 2017. [PMID: 28650469 DOI: 10.1038/onc.2017.208] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sonic Hedgehog (SHH) signaling at primary cilia drives the proliferation and progression of a subset of medulloblastomas, the most common malignant paediatric brain tumor. Severe side effects associated with conventional treatments and resistance to targeted therapies has led to the need for new strategies. SHH signaling is dependent on primary cilia for signal transduction suggesting the potential for cilia destabilizing mechanisms as a therapeutic target. INPP5E is an inositol polyphosphate 5-phosphatase that hydrolyses PtdIns(4,5)P2 and more potently, the phosphoinositide (PI) 3-kinase product PtdIns(3,4,5)P3. INPP5E promotes SHH signaling during embryonic development via PtdIns(4,5)P2 hydrolysis at cilia, that in turn regulates the cilia recruitment of the SHH suppressor GPR161. However, the role INPP5E plays in cancer is unknown and the contribution of PI3-kinase signaling to cilia function is little characterized. Here, we reveal INPP5E promotes SHH signaling in SHH medulloblastoma by negatively regulating a cilia-compartmentalized PI3-kinase signaling axis that maintains primary cilia on tumor cells. Conditional deletion of Inpp5e in a murine model of constitutively active Smoothened-driven medulloblastoma slowed tumor progression, suppressed cell proliferation, reduced SHH signaling and promoted tumor cell cilia loss. PtdIns(3,4,5)P3, its effector pAKT and the target pGSK3β, which when non-phosphorylated promotes cilia assembly/stability, localized to tumor cell cilia. The number of PtdIns(3,4,5)P3/pAKT/pGSK3β-positive cilia was increased in cultured Inpp5e-null tumor cells relative to controls. PI3-kinase inhibition or expression of wild-type, but not catalytically inactive HA-INPP5E partially rescued cilia loss in Inpp5e-null tumor cells in vitro. INPP5E mRNA and copy number were reduced in human SHH medulloblastoma compared to other molecular subtypes and consistent with the murine model, reduced INPP5E was associated with improved overall survival. Therefore our study identifies a compartmentalized PtdIns(3,4,5)P3/AKT/GSK3β signaling axis at cilia in SHH-dependent medulloblastoma that is regulated by INPP5E to maintain tumor cell cilia, promote SHH signaling and thereby medulloblastoma progression.
Collapse
Affiliation(s)
- S E Conduit
- Department of Biochemistry and Molecular Biology, Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - V Ramaswamy
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - M Remke
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - D N Watkins
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, New South Wales, Australia.,Department of Thoracic Medicine, St Vincent's Hospital, Darlinghurst, New South Wales, Australia
| | - B J Wainwright
- Division of Molecular Genetics and Development, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - M D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - C A Mitchell
- Department of Biochemistry and Molecular Biology, Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - J M Dyson
- Department of Biochemistry and Molecular Biology, Cancer Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
SPSB1-mediated HnRNP A1 ubiquitylation regulates alternative splicing and cell migration in EGF signaling. Cell Res 2017; 27:540-558. [PMID: 28084329 DOI: 10.1038/cr.2017.7] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/31/2022] Open
Abstract
Extracellular signals have been shown to impact on alternative pre-mRNA splicing; however, the molecular mechanisms and biological significance of signal-induced splicing regulation remain largely unknown. Here, we report that epidermal growth factor (EGF) induces splicing changes through ubiquitylation of a well-known splicing regulator, hnRNP A1. EGF signaling upregulates an E3 ubiquitin (Ub) ligase adaptor, SPRY domain-containing SOCS box protein 1 (SPSB1), which recruits Elongin B/C-Cullin complexes to conjugate lysine 29-linked polyUb chains onto hnRNP A1. Importantly, SPSB1 and ubiquitylation of hnRNP A1 have a critical role in EGF-driven cell migration. Mechanistically, EGF-induced ubiquitylation of hnRNP A1 together with the activation of SR protein kinases (SRPKs) results in the upregulation of a Rac1 splicing isoform, Rac1b, to promote cell motility. These findings unravel a novel crosstalk between protein ubiquitylation and alternative splicing in EGF/EGF receptor signaling, and identify a new EGF/SPSB1/hnRNP A1/Rac1 axis in modulating cell migration, which may have important implications for cancer treatment.
Collapse
|
16
|
Ohnishi Y, Yasui H, Kakudo K, Nozaki M. Regulation of cell migration via the EGFR signaling pathway in oral squamous cell carcinoma cells. Oncol Lett 2016; 13:930-936. [PMID: 28356980 DOI: 10.3892/ol.2016.5500] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 10/18/2016] [Indexed: 12/29/2022] Open
Abstract
Cell migration potency is essential in cancer metastasis and is often regulated by extracellular stimuli. Oral squamous cell carcinoma cell lines include those that are sensitive, as well as resistant, to the effects of the epidermal growth factor receptor (EGFR) inhibitor cetuximab on cell migration. In the present study, the molecular differences in the EGFR response to cell migration between the SAS cetuximab-sensitive and HSC4 cetuximab-resistant cell lines was examined. Treatment with the EGFR inhibitors AG1478 and cetuximab reduced the migration potency of SAS cells, but not HSC4 cells. The migration of the two cell lines was inhibited under serum-free culture conditions, and the addition of EGF to the serum-free medium promoted the migration of SAS cells, but not HSC4 cells. In addition, SAS cell migration was reduced by the mitogen-activated protein kinase kinase and protein kinase B (Akt) inhibitors PD98059 and MK2206, whereas HSC4 cell migration was only inhibited by MK2206. EGF induced an increase in extracellular signal-regulated kinase phosphorylation levels in HSC4 cells, and stimulated Akt phosphorylation levels in SAS cells. Furthermore, the staining of actin filaments with phalloidin was significantly increased by the inhibition of EGFR in SAS cells, but was not observed as altered in HSC4 cells. Conversely, the addition of EGF to the culture medium decreased the accumulation of actin filaments in SAS cells. The results suggest that the EGF-EGFR signaling pathway has an important role in SAS cell migration via the modulation of actin dynamics, and that HSC4 cell migration is regulated by a serum component other than EGFR.
Collapse
Affiliation(s)
- Yuichi Ohnishi
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Hiroki Yasui
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Kenji Kakudo
- Second Department of Oral and Maxillofacial Surgery, Osaka Dental University, Hirakata, Osaka 573-1121, Japan
| | - Masami Nozaki
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Abstract
Physiological stimuli activate protein kinases for finite periods of time, which is critical for specific biological outcomes. Mimicking this transient biological activity of kinases is challenging due to the limitations of existing methods. Here, we report a strategy enabling transient kinase activation in living cells. Using two protein-engineering approaches, we achieve independent control of kinase activation and inactivation. We show successful regulation of tyrosine kinase c-Src (Src) and Ser/Thr kinase p38α (p38), demonstrating broad applicability of the method. By activating Src for finite periods of time, we reveal how the duration of kinase activation affects secondary morphological changes that follow transient Src activation. This approach highlights distinct roles for sequential Src-Rac1- and Src-PI3K-signaling pathways at different stages during transient Src activation. Finally, we demonstrate that this method enables transient activation of Src and p38 in a specific signaling complex, providing a tool for targeted regulation of individual signaling pathways.
Collapse
|
18
|
Hernandez K, Swiatkowski P, Patel MV, Liang C, Dudzinski NR, Brzustowicz LM, Firestein BL. Overexpression of Isoforms of Nitric Oxide Synthase 1 Adaptor Protein, Encoded by a Risk Gene for Schizophrenia, Alters Actin Dynamics and Synaptic Function. Front Cell Neurosci 2016; 10:6. [PMID: 26869880 PMCID: PMC4735351 DOI: 10.3389/fncel.2016.00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function.
Collapse
Affiliation(s)
- Kristina Hernandez
- Department of Cell Biology and Neuroscience, Human Genetics Institute of New Jersey, Rutgers—The State University of New JerseyPiscataway, NJ, USA
| | - Przemyslaw Swiatkowski
- Department of Cell Biology and Neuroscience, Rutgers—The State University of New JerseyPiscataway, NJ, USA
| | - Mihir V. Patel
- Department of Cell Biology and Neuroscience, Rutgers—The State University of New JerseyPiscataway, NJ, USA
| | - Chen Liang
- Department of Cell Biology and Neuroscience, Rutgers—The State University of New JerseyPiscataway, NJ, USA
| | - Natasha R. Dudzinski
- Department of Cell Biology and Neuroscience, Rutgers—The State University of New JerseyPiscataway, NJ, USA
| | - Linda M. Brzustowicz
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers—The State University of New JerseyPiscataway, NJ, USA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, Human Genetics Institute of New Jersey, Rutgers—The State University of New JerseyPiscataway, NJ, USA
| |
Collapse
|
19
|
A phosphorylation switch controls the spatiotemporal activation of Rho GTPases in directional cell migration. Nat Commun 2015; 6:7721. [PMID: 26166433 PMCID: PMC4510974 DOI: 10.1038/ncomms8721] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/04/2015] [Indexed: 12/15/2022] Open
Abstract
Although cell migration plays a central role in development and disease, the underlying molecular mechanism is not fully understood. Here we report that a phosphorylation-mediated molecular switch comprising deleted in liver cancer 1 (DLC1), tensin-3 (TNS3), phosphatase and tensin homologue (PTEN) and phosphoinositide-3-kinase (PI3K) controls the spatiotemporal activation of the small GTPases, Rac1 and RhoA, thereby initiating directional cell migration induced by growth factors. On epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) stimulation, TNS3 and PTEN are phosphorylated at specific Thr residues, which trigger the rearrangement of the TNS3–DLC1 and PTEN–PI3K complexes into the TNS3–PI3K and PTEN–DLC1 complexes. Subsequently, the TNS3–PI3K complex translocates to the leading edge of a migrating cell to promote Rac1 activation, whereas PTEN–DLC1 translocates to the posterior for localized RhoA activation. Our work identifies a core signalling mechanism by which an external motility stimulus is coupled to the spatiotemporal activation of Rac1 and RhoA to drive directional cell migration. Directed cell migration requires spatially regulated activity of GTPases Rac1 and RhoA. Here Cao et al. show that growth factor stimulation promotes phosphorylation of tensin-3 and phosphatase and tensin homologue (PTEN) and their association with PI 3-kinase and deleted in liver cancer 1 (DLC1) to regulate GTPase activity.
Collapse
|
20
|
Lin B, Yin T, Wu YI, Inoue T, Levchenko A. Interplay between chemotaxis and contact inhibition of locomotion determines exploratory cell migration. Nat Commun 2015; 6:6619. [PMID: 25851023 PMCID: PMC4391292 DOI: 10.1038/ncomms7619] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/12/2015] [Indexed: 01/08/2023] Open
Abstract
Directed cell migration in native environments is influenced by multiple migratory cues. These cues may include simultaneously occurring attractive soluble growth factor gradients and repulsive effects arising from cell-cell contact, termed contact inhibition of locomotion (CIL). How single cells reconcile potentially conflicting cues remains poorly understood. Here we show that a dynamic crosstalk between epidermal growth factor (EGF)-mediated chemotaxis and CIL guides metastatic breast cancer cell motility, whereby cells become progressively insensitive to CIL in a chemotactic input-dependent manner. This balance is determined via integration of protrusion-enhancing signalling from EGF gradients and protrusion-suppressing signalling induced by CIL, mediated in part through EphB. Our results further suggest that EphB and EGF signalling inputs control protrusion formation by converging onto regulation of phosphatidylinositol 3-kinase (PI3K). We propose that this intricate interplay may enhance the spread of loose cell ensembles in pathophysiological conditions such as cancer, and possibly other physiological settings.
Collapse
Affiliation(s)
- Benjamin Lin
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Biomedical Engineering, Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| | - Taofei Yin
- Department of Genetics and Developmental Biology, Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | - Yi I Wu
- Department of Genetics and Developmental Biology, Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | - Takanari Inoue
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Precursory Research for Embryonic Science and Technology Investigator, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Andre Levchenko
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Biomedical Engineering, Systems Biology Institute, Yale University, West Haven, Connecticut 06516, USA
| |
Collapse
|
21
|
Phosphorylation of Dok1 by Abl family kinases inhibits CrkI transforming activity. Oncogene 2014; 34:2650-9. [PMID: 25043303 PMCID: PMC4302068 DOI: 10.1038/onc.2014.210] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 12/11/2022]
Abstract
The Crk SH2/SH3 adaptor and the Abl nonreceptor tyrosine kinase were first identified as oncoproteins, and both can induce tumorigenesis when overexpressed or mutationally activated. We previously reported the surprising finding that inhibition or knockdown of Abl family kinases enhanced transformation of mouse fibroblasts by CrkI. Abl family inhibitors are currently used or are being tested for treatment of human malignancies, and our finding raised concerns that such inhibitors might actually promote the growth of tumors overexpressing CrkI. Here, we identify the Dok1 adaptor as the key effector for the enhancement of CrkI transformation by Abl inhibition. We show that phosphorylation of tyrosines 295 and 361 of Dok1 by Abl family kinases suppresses CrkI transforming activity, and that upon phosphorylation these tyrosines bind the SH2 domains of the Ras inhibitor p120 RasGAP. Knockdown of RasGAP resulted in a similar enhancement of CrkI transformation, consistent with a critical role for Ras activity. Imaging studies using a FRET sensor of Ras activation revealed alterations in the localization of activated Ras in CrkI-transformed cells. Our results support a model in which Dok1 phosphorylation normally suppresses localized Ras pathway activity in Crk-transformed cells via recruitment and/or activation of RasGAP, and that preventing this negative feedback mechanism by inhibiting Abl family kinases leads to enhanced transformation by Crk.
Collapse
|
22
|
A Trio-Rac1-Pak1 signalling axis drives invadopodia disassembly. Nat Cell Biol 2014; 16:574-86. [PMID: 24859002 PMCID: PMC4083618 DOI: 10.1038/ncb2972] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
Rho family GTPases control cell migration and participate in the regulation of cancer metastasis. Invadopodia, associated with invasive tumor cells, are crucial for cellular invasion and metastasis. To study Rac1 GTPase in invadopodia dynamics, we developed a genetically-encoded, single-chain Rac1 Fluorescence Resonance Energy Transfer (FRET) biosensor. The biosensor shows Rac1 activity exclusion from the core of invadopodia, and higher activity when invadopodia disappear, suggesting that reduced Rac1 activity is necessary for their stability, and Rac1 activation is involved in disassembly. Photoactivating Rac1 at invadopodia confirmed this previously-unknown Rac1 function. We built an invadopodia disassembly model, where a signaling axis involving TrioGEF, Rac1, PAK1, and phosphorylation of cortactin, causing invadopodia dissolution. This mechanism is critical for the proper turnover of invasive structures during tumor cell invasion, where a balance of proteolytic activity and locomotory protrusions must be carefully coordinated to achieve a maximally invasive phenotype.
Collapse
|
23
|
Khalil BD, Hanna S, Saykali BA, El-Sitt S, Nasrallah A, Marston D, El-Sabban M, Hahn KM, Symons M, El-Sibai M. The regulation of RhoA at focal adhesions by StarD13 is important for astrocytoma cell motility. Exp Cell Res 2013; 321:109-22. [PMID: 24333506 DOI: 10.1016/j.yexcr.2013.11.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 11/27/2013] [Accepted: 11/29/2013] [Indexed: 10/25/2022]
Abstract
Malignant astrocytomas are highly invasive into adjacent and distant regions of the normal brain. Rho GTPases are small monomeric G proteins that play important roles in cytoskeleton rearrangement, cell motility, and tumor invasion. In the present study, we show that the knock down of StarD13, a GTPase activating protein (GAP) for RhoA and Cdc42, inhibits astrocytoma cell migration through modulating focal adhesion dynamics and cell adhesion. This effect is mediated by the resulting constitutive activation of RhoA and the subsequent indirect inhibition of Rac. Using Total Internal Reflection Fluorescence (TIRF)-based Förster Resonance Energy Transfer (FRET), we show that RhoA activity localizes with focal adhesions at the basal surface of astrocytoma cells. Moreover, the knock down of StarD13 inhibits the cycling of RhoA activation at the rear edge of cells, which makes them defective in retracting their tail. This study highlights the importance of the regulation of RhoA activity in focal adhesions of astrocytoma cells and establishes StarD13 as a GAP playing a major role in this process.
Collapse
Affiliation(s)
- Bassem D Khalil
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Samer Hanna
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Bechara A Saykali
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Sally El-Sitt
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Anita Nasrallah
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon
| | - Daniel Marston
- Department of Pharmacology, University of North Carolina School of Medicine, CB7365, Chapel Hill, NC27599, USA
| | - Marwan El-Sabban
- Department of Human Morphology, Faculty of Medicine, The American University of Beirut, Beirut, Lebanon
| | - Klaus M Hahn
- Department of Pharmacology, University of North Carolina School of Medicine, CB7365, Chapel Hill, NC27599, USA
| | - Marc Symons
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research at North Shore-LIJ, North Shore University Hospital, Manhasset, NY 11030, USA
| | - Mirvat El-Sibai
- Department of Natural Sciences, The Lebanese American University, P.O. Box: 13-5053, Chouran, Beirut 1102 2801, Lebanon.
| |
Collapse
|
24
|
Al-aidaroos AQO, Yuen HF, Guo K, Zhang SD, Chung TH, Chng WJ, Zeng Q. Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells. J Clin Invest 2013; 123:3459-71. [PMID: 23867504 PMCID: PMC4011027 DOI: 10.1172/jci66824] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 05/10/2013] [Indexed: 12/16/2022] Open
Abstract
Metastasis-associated phosphatase of regenerating liver-3 (PRL-3) has pleiotropic effects in driving cancer progression, yet the signaling mechanisms of PRL-3 are still not fully understood. Here, we provide evidence for PRL-3-induced hyperactivation of EGFR and its downstream signaling cascades in multiple human cancer cell lines. Mechanistically, PRL-3-induced activation of EGFR was attributed primarily to transcriptional downregulation of protein tyrosine phosphatase 1B (PTP1B), an inhibitory phosphatase for EGFR. Functionally, PRL-3-induced hyperactivation of EGFR correlated with increased cell growth, promigratory characteristics, and tumorigenicity. Moreover, PRL-3 induced cellular addiction to EGFR signaling, as evidenced by the pronounced reversion of these oncogenic attributes upon EGFR-specific inhibition. Of clinical significance, we verified elevated PRL-3 expression as a predictive marker for favorable therapeutic response in a heterogeneous colorectal cancer (CRC) patient cohort treated with the clinically approved anti-EGFR antibody cetuximab. The identification of PRL-3-driven EGFR hyperactivation and consequential addiction to EGFR signaling opens new avenues for inhibiting PRL-3-driven cancer progression. We propose that elevated PRL-3 expression is an important clinical predictive biomarker for favorable anti-EGFR cancer therapy.
Collapse
Affiliation(s)
- Abdul Qader Omer Al-aidaroos
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hiu Fung Yuen
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ke Guo
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shu Dong Zhang
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tae-Hoon Chung
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wee Joo Chng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Qi Zeng
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore.
Center for Cancer Research and Cell Biology, Queen’s University of Belfast, Belfast, United Kingdom.
Haematological Malignancy Genomics Lab, Cancer Science Institute of Singapore, National University of Singapore, Singapore.
Department of Haematology-Oncology, National University Cancer Institute, Singapore National University Health System, Singapore.
Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
25
|
Novotny MJ, Bridge DR, Martin KH, Weed SA, Wysolmerski RB, Olson JC. Metastatic MTLn3 and non-metastatic MTC adenocarcinoma cells can be differentiated by Pseudomonas aeruginosa. Biol Open 2013; 2:891-900. [PMID: 24143275 PMCID: PMC3773335 DOI: 10.1242/bio.20133632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 06/07/2013] [Indexed: 12/11/2022] Open
Abstract
Cancer patients are known to be highly susceptible to Pseudomonas aeruginosa (Pa) infection, but it remains unknown whether alterations at the tumor cell level can contribute to infection. This study explored how cellular changes associated with tumor metastasis influence Pa infection using highly metastatic MTLn3 cells and non-metastatic MTC cells as cell culture models. MTLn3 cells were found to be more sensitive to Pa infection than MTC cells based on increased translocation of the type III secretion effector, ExoS, into MTLn3 cells. Subsequent studies found that higher levels of ExoS translocation into MTLn3 cells related to Pa entry and secretion of ExoS within MTLn3 cells, rather than conventional ExoS translocation by external Pa. ExoS includes both Rho GTPase activating protein (GAP) and ADP-ribosyltransferase (ADPRT) enzyme activities, and differences in MTLn3 and MTC cell responsiveness to ExoS were found to relate to the targeting of ExoS-GAP activity to Rho GTPases. MTLn3 cell migration is mediated by RhoA activation at the leading edge, and inhibition of RhoA activity decreased ExoS translocation into MTLn3 cells to levels similar to those of MTC cells. The ability of Pa to be internalized and transfer ExoS more efficiently in association with Rho activation during tumor metastasis confirms that alterations in cell migration that occur in conjunction with tumor metastasis contribute to Pa infection in cancer patients. This study also raises the possibility that Pa might serve as a biological tool for dissecting or detecting cellular alterations associated with tumor metastasis.
Collapse
Affiliation(s)
- Matthew J Novotny
- Department of Microbiology, Immunology and Cell Biology, West Virginia University Health Sciences Center , Morgantown, WV 26506-9177 , USA
| | | | | | | | | | | |
Collapse
|
26
|
Tanabe A, Shiraishi M, Negishi M, Saito N, Tanabe M, Sasaki Y. MARCKS dephosphorylation is involved in bradykinin-induced neurite outgrowth in neuroblastoma SH-SY5Y cells. J Cell Physiol 2012; 227:618-29. [PMID: 21448919 DOI: 10.1002/jcp.22763] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bradykinin (BK) plays a major role in producing peripheral sensitization in response to peripheral inflammation and in pain transmission in the central nerve system (CNS). Because BK activates protein kinase C (PKC) through phospholipase C (PLC)-β and myristoylated alanine-rich C kinase substrate (MARCKS) has been found to be a substrate of PKC, we explored the possibility that BK could induce MARCKS phosphorylation and regulate its function. BK stimulation induced transient MARCKS phosphorylation on Ser159 with a peak at 1 min in human neuroblastoma SH-SY5Y cells. By contrast, PKC activation by the phorbol ester phorbol 12,13-dibutyrate (PDBu) elicited MARCKS phosphorylation which lasted more than 10 min. Western blotting analyses and glutathione S-transferase (GST) pull-down analyses showed that the phosphorylation by BK was the result of activation of the PKC-dependent RhoA/Rho-associated coiled-coil kinase (ROCK) pathway. Protein phosphatase (PP) 2A inhibitors calyculin A and fostriecin inhibited the dephosphorylation of MARCKS after BK-induced phosphorylation. Moreover, immunoprecipitation analyses showed that PP2A interacts with MARCKS. These results indicated that PP2A is the dominant PP of MARCKS after BK stimulation. We established SH-SY5Y cell lines expressing wild-type MARCKS and unphosphorylatable MARCKS, and cell morphology changes after cell stimulation were studied. PDBu induced lamellipodia formation on the neuroblastoma cell line SH-SY5Y and the morphology was sustained, whereas BK induced neurite outgrowth of the cells via lamellipodia-like actin accumulation that depended on transient MARCKS phosphorylation. Thus these findings show a novel BK signal cascade-that is, BK promotes neurite outgrowth through transient MARCKS phosphorylation involving the PKC-dependent RhoA/ROCK pathway and PP2A in a neuroblastoma cell line.
Collapse
Affiliation(s)
- Atsuhiro Tanabe
- Laboratory of Pharmacology, School of Pharmacy, Kitasato University, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Wessels D, Kuhl S, Soll DR. Quantitative Analysis of Basic Motile Behavior in Amoeboid Cells. Methods Cell Biol 2012. [DOI: 10.1016/b978-0-12-405914-6.00022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Pang H. Immunofluorescence Detection and F-actin Staining of MTLn3 Cells. Bio Protoc 2012. [DOI: 10.21769/bioprotoc.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
29
|
Boroughs LK, Antonyak MA, Johnson JL, Cerione RA. A unique role for heat shock protein 70 and its binding partner tissue transglutaminase in cancer cell migration. J Biol Chem 2011; 286:37094-107. [PMID: 21896482 PMCID: PMC3199457 DOI: 10.1074/jbc.m111.242438] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 08/02/2011] [Indexed: 01/23/2023] Open
Abstract
Cell migration is essential for several important biological outcomes and is involved in various developmental disorders and disease states including cancer cell invasiveness and metastasis. A fundamental step in cell migration is the development of a leading edge. By using HeLa carcinoma cells as an initial model system, we uncovered a surprising role for the heat shock protein 70 (Hsp70) and its ability to bind the protein cross-linking enzyme, tissue transglutaminase (tTG), in cancer cell migration. Treatment of HeLa cells with EGF results in the activation of a plasma membrane-associated pool of tTG and its redistribution to the leading edges of these cells, which are essential events for EGF-stimulated HeLa cell migration. However, we then found that the ability of tTG to be localized to the leading edge is dependent on Hsp70. Similarly, the localization of tTG to the leading edges of MDAMB231 breast carcinoma cells, where it also plays an essential role in their migration, has a strict requirement for Hsp70. Treatment of these different cell lines with inhibitors against the ATP hydrolytic activity of Hsp70 prevented tTG from localizing to their leading edges and thereby blocked EGF-stimulated HeLa cell migration, as well as the constitutive migration normally exhibited by MDAMB231 cells. These findings highlight a new and unconventional role for the chaperonin activity of Hsp70 in the localization of a key regulatory protein (tTG) at the leading edges of cancer cells and the important consequences that this holds for their ability to migrate.
Collapse
Affiliation(s)
- Lindsey K. Boroughs
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Marc A. Antonyak
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Jared L. Johnson
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| | - Richard A. Cerione
- From the Department of Molecular Medicine, Cornell University, Ithaca, New York 14853
| |
Collapse
|
30
|
Inducible knockout of GRP78/BiP in the hematopoietic system suppresses Pten-null leukemogenesis and AKT oncogenic signaling. Blood 2011; 119:817-25. [PMID: 21937694 DOI: 10.1182/blood-2011-06-357384] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Traditionally, GRP78 is regarded as protective against hypoxia and nutrient starvation prevalent in the microenvironment of solid tumors; thus, its role in the development of hematologic malignancies remains to be determined. To directly elucidate the requirement of GRP78 in leukemogenesis, we created a biallelic conditional knockout mouse model of GRP78 and PTEN in the hematopoietic system. Strikingly, heterozygous knockdown of GRP78 in PTEN null mice is sufficient to restore the hematopoietic stem cell population back to the normal percentage and suppress leukemic blast cell expansion. AKT/mTOR activation in PTEN null BM cells is potently inhibited by Grp78 heterozygosity, corresponding with suppression of the PI3K/AKT pathway by GRP78 knockdown in leukemia cell lines. This is the first demonstration that GRP78 is a critical effector of leukemia progression, at least in part through regulation of oncogenic PI3K/AKT signaling. In agreement with PI3K/AKT as an effector for cytosine arabinoside resistance in acute myeloid leukemia, overexpression of GRP78 renders human leukemic cells more resistant to cytosine arabinoside-induced apoptosis, whereas knockdown of GRP78 sensitizes them. These, coupled with the emerging association of elevated GRP78 expression in leukemic blasts of adult patients and early relapse in childhood leukemia, suggest that GRP78 is a novel therapeutic target for leukemia.
Collapse
|
31
|
Lysophosphatidic acid induces a migratory phenotype through a crosstalk between RhoA-Rock and Src-FAK signalling in colon cancer cells. Eur J Pharmacol 2011; 671:7-17. [PMID: 21968138 DOI: 10.1016/j.ejphar.2011.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/23/2011] [Accepted: 09/08/2011] [Indexed: 01/07/2023]
Abstract
Lysophosphatidic acid (LPA) acts as a potent stimulator of tumorigenesis. Cell-cell adhesion disassembly, actin cytoskeletal alterations, and increased migratory potential are initial steps of colorectal cancer progression. However, the role that LPA plays in these events in this cancer type is still unknown. We explored this question by using Caco-2 cells, as colon cancer model, and treatment with LPA or pretreatment with different cell signalling inhibitors. Changes in the location of adherent junction proteins were examined by immunofluorescence and immunoblotting. The actin cytoskeleton organisation and focal adhesion were analysed by confocal microscopy. Rho-GTPase activation was analysed by the pull-down assay, FAK and Src activation by immunoblotting, and cell migration by the wound healing technique. We show that LPA induced adherent junction disassembly, perijunctional actin cytoskeletal reorganisation, and increased cell migration. These events were dependent on Src, Rho and Rock because their chemical inhibitors PP2, toxin A and Y27632, respectively, abrogated the effects of LPA. Moreover, we showed that Src acts upstream of RhoA in this signalling cascade and that LPA induces focal adhesion formation and FAK redistribution and activation in confluent monolayers. Focal adhesion formation was also observed in the front of migrating cells in response to LPA, and Rock inhibitor abolished this effect. In conclusion, our findings show that LPA modulates adherent junction disassembly, actin cytoskeletal disorganisation, and focal adhesion formation, conferring a migratory phenotype in colon tumour cells. We suggest a functional regulatory cascade that integrates RhoA-Rock and Src-FAK signalling to control these events during colorectal cancer progression.
Collapse
|
32
|
Abstract
Chemotaxis of tumour cells and stromal cells in the surrounding microenvironment is an essential component of tumour dissemination during progression and metastasis. This Review summarizes how chemotaxis directs the different behaviours of tumour cells and stromal cells in vivo, how molecular pathways regulate chemotaxis in tumour cells and how chemotaxis choreographs cell behaviour to shape the tumour microenvironment and to determine metastatic spread. The central importance of chemotaxis in cancer progression is highlighted by discussion of the use of chemotaxis as a prognostic marker, a treatment end point and a target of therapeutic intervention.
Collapse
Affiliation(s)
- Evanthia T Roussos
- Department of Anatomy and Structural Biology, Program in Tumor Microenvironment and Metastasis, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
33
|
Arpaia E, Blaser H, Quintela-Fandino M, Duncan G, Leong HS, Ablack A, Nambiar SC, Lind EF, Silvester J, Fleming CK, Rufini A, Tusche MW, Brüstle A, Ohashi PS, Lewis JD, Mak TW. The interaction between caveolin-1 and Rho-GTPases promotes metastasis by controlling the expression of alpha5-integrin and the activation of Src, Ras and Erk. Oncogene 2011; 31:884-96. [PMID: 21765460 PMCID: PMC3289793 DOI: 10.1038/onc.2011.288] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Proteins containing a caveolin-binding domain (CBD), such as the Rho-GTPases, can interact with caveolin-1 (Cav1) through its caveolin scaffold domain. Rho-GTPases are important regulators of p130(Cas), which is crucial for both normal cell migration and Src kinase-mediated metastasis of cancer cells. However, although Rho-GTPases (particularly RhoC) and Cav1 have been linked to cancer progression and metastasis, the underlying molecular mechanisms are largely unknown. To investigate the function of Cav1-Rho-GTPase interaction in metastasis, we disrupted Cav1-Rho-GTPase binding in melanoma and mammary epithelial tumor cells by overexpressing CBD, and examined the loss-of-function of RhoC in metastatic cancer cells. Cancer cells overexpressing CBD or lacking RhoC had reduced p130(Cas) phosphorylation and Rac1 activation, resulting in an inhibition of migration and invasion in vitro. The activity of Src and the activation of its downstream targets FAK, Pyk2, Ras and extracellular signal-regulated kinase (Erk)1/2 were also impaired. A reduction in α5-integrin expression, which is required for binding to fibronectin and thus cell migration and survival, was observed in CBD-expressing cells and cells lacking RhoC. As a result of these defects, CBD-expressing melanoma cells had a reduced ability to metastasize in recipient mice, and impaired extravasation and survival in secondary sites in chicken embryos. Our data indicate that interaction between Cav1 and Rho-GTPases (most likely RhoC but not RhoA) promotes metastasis by stimulating α5-integrin expression and regulating the Src-dependent activation of p130(Cas)/Rac1, FAK/Pyk2 and Ras/Erk1/2 signaling cascades.
Collapse
Affiliation(s)
- E Arpaia
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Proto-oncogenic H-Ras, K-Ras, and N-Ras are involved in muscle differentiation via phosphatidylinositol 3-kinase. Cell Res 2010; 20:919-34. [DOI: 10.1038/cr.2010.92] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
35
|
Meng Y, Lu Z, Yu S, Zhang Q, Ma Y, Chen J. Ezrin promotes invasion and metastasis of pancreatic cancer cells. J Transl Med 2010; 8:61. [PMID: 20569470 PMCID: PMC2916894 DOI: 10.1186/1479-5876-8-61] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 06/23/2010] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Pancreatic cancer has a high mortality rate because it is usually diagnosed when metastasis have already occurred (microscopic and gross disease). Ezrin plays important roles in cell motility, invasion and tumor progression, and it is especially crucial for metastasis. However, its function in pancreatic cancer remains elusive. METHODS AND RESULTS We found that ezrin overexpression promoted cell protrusion, microvillus formation, anchorage-independent growth, motility and invasion in a pancreatic cancer cell line, MiaPaCa-2, whereas ezrin silencing resulted in the opposite effects. Ezrin overexpression also increased the number of metastatic foci (6/8 vs. 1/8) in a spontaneous metastasis nude mouse model. Furthermore, ezrin overexpression activated Erk1/2 in MiaPaCa-2 cells, which might be partially related to the alteration of cell morphology and invasion. Immunohistochemical analysis showed that ezrin was overexpressed in pancreatic ductal adenocarcinoma (PDAC) (91.4%) and precancerous lesions, i.e. the tubular complexes in chronic pancreatitis (CP) and pancreatic intraepithelial neoplasm (PanIN) (85.7% and 97.1%, respectively), compared to normal pancreatic tissues (0%). Ezrin was also expressed in intercalated ducts adjacent to the adenocarcinoma, which has been considered to be the origin of ducts and acini, as well as the starting point of pancreatic ductal carcinoma development. CONCLUSIONS We propose that ezrin might play functional roles in modulating morphology, growth, motility and invasion of pancreatic cancer cells, and that the Erk1/2 pathway may be involved in these roles. Moreover, ezrin may participate in the early events of PDAC development and may promote its progression to the advanced stage.
Collapse
Affiliation(s)
- Yunxiao Meng
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, 1 Shuai Fu Yuan Hu Tong, Beijing, China
| | | | | | | | | | | |
Collapse
|
36
|
Zanca C, Cozzolino F, Quintavalle C, Di Costanzo S, Ricci-Vitiani L, Santoriello M, Monti M, Pucci P, Condorelli G. PED interacts with Rac1 and regulates cell migration/invasion processes in human non-small cell lung cancer cells. J Cell Physiol 2010; 225:63-72. [DOI: 10.1002/jcp.22197] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
The tight junction protein, occludin, regulates the directional migration of epithelial cells. Dev Cell 2010; 18:52-63. [PMID: 20152177 DOI: 10.1016/j.devcel.2009.12.008] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 10/16/2009] [Accepted: 12/16/2009] [Indexed: 11/22/2022]
Abstract
Cell polarity proteins regulate tight junction formation and directional migration in epithelial cells. To date, the mechanism by which these polarity proteins assemble at the leading edge of migrating epithelial cells remains unclear. We report that occludin, a transmembrane protein, is localized at the leading edge of migrating cells and regulates directional cell migration. During migration, occludin knockdown disrupted accumulation of aPKC-Par3 and PATJ at the leading edge, and led to a disorganized microtubule network and defective reorientation of the microtubule organization center (MTOC). Phosphorylation of occludin at tyrosine 473 residue allowed recruitment of p85 alpha to the leading edge via association with its C-terminal SH2 domain. Loss of occludin attenuated activation of PI3K, leading to disorganization of the actin cytoskeleton and reduced cell protrusions. Our data indicate that occludin is required for the leading-edge localization of polarity proteins aPKC-Par3 and PATJ and promotes cell protrusion by regulating membrane-localized activation of PI3K.
Collapse
|
38
|
Abstract
Src is a non-receptor cytoplasmic tyrosine kinase which becomes activated following the stimulation of plasma membrane receptors including receptor tyrosine kinases and integrins, and is an indispensable player of multiple physiological homeostatic pathways. Once activated, Src is the starting point for several biochemical cascades that thereby propagate signals generated extracellularly along intracellular interconnected transduction pathways. Src transmits signals promoting cell survival and mitogenesis and, in addition, exerts a profound effect on the reorganization of the cytoskeleton and the adhesion systems that underpin cell migration and invasion. Because increased activity of Src is a frequent occurrence in many types of human cancer, and because there is evidence of a prominent role of Src in invasion and in other tumor progression-related events such as epithelial-mesenchymal transition (EMT) and development of metastasis, inhibitors targeting Src are being viewed as promising drugs for cancer therapy.
Collapse
Affiliation(s)
- Marcello Guarino
- Department of Pathology, Hospital of Vimercate, Vimercate, MB, Italy.
| |
Collapse
|
39
|
Taboubi S, Garrouste F, Parat F, Pommier G, Faure E, Monferran S, Kovacic H, Lehmann M. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration. Mol Biol Cell 2010; 21:946-55. [PMID: 20089844 PMCID: PMC2836975 DOI: 10.1091/mbc.e09-06-0497] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
After skin wound, released growth factors and extracellular nucleotides regulate the different phases of healing, including re-epithelialization. Here, we show that, in keratinocytes, purinergic P2Y2 receptors inhibit the motogenic IGF-I/PI3K pathway. Therefore, extracellular nucleotides may play key roles during skin remodelling after wound. Insulin-like growth factor-I (IGF-I) activation of phosphoinositol 3-kinase (PI3K) is an essential pathway for keratinocyte migration that is required for epidermis wound healing. We have previously reported that activation of Gα(q/11)-coupled-P2Y2 purinergic receptors by extracellular nucleotides delays keratinocyte wound closure. Here, we report that activation of P2Y2 receptors by extracellular UTP inhibits the IGF-I–induced p110α-PI3K activation. Using siRNA and pharmacological inhibitors, we demonstrate that the UTP antagonistic effects on PI3K pathway are mediated by Gα(q/11)—and not G(i/o)—independently of phospholipase Cβ. Purinergic signaling does not affect the formation of the IGF-I receptor/insulin receptor substrate-I/p85 complex, but blocks the activity of a membrane-targeted active p110α mutant, indicating that UTP acts downstream of PI3K membrane recruitment. UTP was also found to efficiently attenuate, within few minutes, the IGF-I–induced PI3K-controlled translocation of the actin-nucleating protein cortactin to the plasma membrane. This supports the UTP ability to alter later migratory events. Indeed, UTP inhibits keratinocyte spreading and migration promoted by either IGF-I or a membrane-targeted active p110α mutant, in a Gα(q/11)-dependent manner both. These findings provide new insight into the signaling cross-talk between receptor tyrosine kinase and Gα(q/11)-coupled receptors, which mediate opposite effects on p110α-PI3K activity and keratinocyte migration.
Collapse
Affiliation(s)
- Salma Taboubi
- INSERM UMR 911, Centre de Recherche en Oncologie Biologique et en Oncopharmacologie, Université Aix-Marseille, Marseille 13005, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Regulation of Class IA PI 3-kinases: C2 domain-iSH2 domain contacts inhibit p85/p110alpha and are disrupted in oncogenic p85 mutants. Proc Natl Acad Sci U S A 2009; 106:20258-63. [PMID: 19915146 DOI: 10.1073/pnas.0902369106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We previously proposed a model of Class IA PI3K regulation in which p85 inhibition of p110alpha requires (i) an inhibitory contact between the p85 nSH2 domain and the p110alpha helical domain, and (ii) a contact between the p85 nSH2 and iSH2 domains that orients the nSH2 so as to inhibit p110alpha. We proposed that oncogenic truncations of p85 fail to inhibit p110 due to a loss of the iSH2-nSH2 contact. However, we now find that within the context of a minimal regulatory fragment of p85 (the nSH2-iSH2 fragment, termed p85ni), the nSH2 domain rotates much more freely (tau(c) approximately 12.7 ns) than it could if it were interacting rigidly with the iSH2 domain. These data are not compatible with our previous model. We therefore tested an alternative model in which oncogenic p85 truncations destabilize an interface between the p110alpha C2 domain (residue N345) and the p85 iSH2 domain (residues D560 and N564). p85ni-D560K/N564K shows reduced inhibition of p110alpha, similar to the truncated p85ni-572(STOP). Conversely, wild-type p85ni poorly inhibits p110alphaN345K. Strikingly, the p110alphaN345K mutant is inhibited to the same extent by the wild-type or truncated p85ni, suggesting that mutation of p110alpha-N345 is not additive with the p85ni-572(STOP) mutation. Similarly, the D560K/N564K mutation is not additive with the p85ni-572(STOP) mutant for downstream signaling or cellular transformation. Thus, our data suggests that mutations at the C2-iSH2 domain contact and truncations of the iSH2 domain, which are found in human tumors, both act by disrupting the C2-iSH2 domain interface.
Collapse
|
41
|
Petrie RJ, Doyle AD, Yamada KM. Random versus directionally persistent cell migration. Nat Rev Mol Cell Biol 2009; 10:538-49. [PMID: 19603038 DOI: 10.1038/nrm2729] [Citation(s) in RCA: 706] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Directional migration is an important component of cell motility. Although the basic mechanisms of random cell movement are well characterized, no single model explains the complex regulation of directional migration. Multiple factors operate at each step of cell migration to stabilize lamellipodia and maintain directional migration. Factors such as the topography of the extracellular matrix, the cellular polarity machinery, receptor signalling, integrin trafficking, integrin co-receptors and actomyosin contraction converge on regulation of the Rho family of GTPases and the control of lamellipodial protrusions to promote directional migration.
Collapse
Affiliation(s)
- Ryan J Petrie
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA. e-mails:
| | | | | |
Collapse
|
42
|
Antonyak MA, Li B, Regan AD, Feng Q, Dusaban SS, Cerione RA. Tissue transglutaminase is an essential participant in the epidermal growth factor-stimulated signaling pathway leading to cancer cell migration and invasion. J Biol Chem 2009; 284:17914-25. [PMID: 19403524 DOI: 10.1074/jbc.m109.013037] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epidermal growth factor (EGF) exerts pleiotropic effects during oncogenesis, including the stimulation of cell migration and invasiveness. Although a number of traditional signaling proteins (e.g. Ras and Rho GTPases) have been implicated in EGF-stimulated cancer cell migration, less is known about the identity of those proteins functioning further downstream in this growth factor pathway. Here we have used HeLa carcinoma cells as a model system for investigating the role of tissue transglutaminase (TGase), a protein that has been linked to oncogenesis, in EGF-stimulated cancer cell migration and invasion. Treatment of HeLa cells with EGF resulted in TGase activation and its accumulation at their leading edges, whereas knocking down TGase expression, or treating cells with a TGase inhibitor, blocked EGF-stimulated cell migration and invasion. We show that EGF signaling through Ras and c-Jun N-terminal kinase is responsible for targeting TGase to the leading edges of cells and activating it. The requirement for EGF to properly localize and activate TGase can be circumvented by the expression of oncogenic Ras (G12V), whose ability to stimulate migration is also dependent on TGase. We further show that, in the highly aggressive breast cancer cell line MDAMB231, where EGF stimulation is unnecessary for migration and invasive activity, TGase is already at the leading edge and activated. These findings demonstrate that TGase plays a key role in cancer cell motility and invasiveness and represents a previously unappreciated participant in the EGF pathway that stimulates these processes in cancer cells.
Collapse
Affiliation(s)
- Marc A Antonyak
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The motility of cancer cells in 3D matrices is of two types: mesenchymal motility, in which the cells are elongated and amoeboid motility, in which the cells are round. Amoeboid motility is driven by an actomyosin-based contractile force, which is regulated by the Rho/ROCK pathway. However, the molecular mechanisms underlying the motility of elongated cells remain unknown. Here, we show that the motility of elongated cells is regulated by Rac signaling through the WAVE2/Arp2/3-dependent formation of elongated pseudopodia and cell-substrate adhesion in 3D substrates. The involvement of Rac signaling in cell motility was different in cell lines that displayed an elongated morphology in 3D substrates. In U87MG glioblastoma cells, most of which exhibit mesenchymal motility, inhibition of Rac signaling blocked the invasion of these cells in 3D substrates. In HT1080 fibrosarcoma cells, which display mixed cell motility involving both elongated and rounded cells, inhibition of Rac1 signaling not only blocked mesenchymal motility but also caused a mesenchymal-amoeboid transition. Additionally, Rac1 and RhoA signaling regulated the mesenchymal and amoeboid motility in these cells, respectively, and the inhibition of both pathways dramatically decreased cell invasion. Hence, we could conclude that Rac1 and RhoA signaling simultaneously regulate cell invasion in 3D matrices.
Collapse
|
44
|
Abstract
Cell migration is essential for many biological processes in animals and is a complex highly co-ordinated process that involves cell polarization, actin-driven protrusion and formation and turnover of cell adhesions. The PI3K (phosphoinositide 3-kinase) family of lipid kinases regulate cell migration in many different cell types, both through direct binding of proteins to their lipid products and indirectly through crosstalk with other pathways, such as Rho GTPase signalling. Emerging evidence suggests that the involvement of PI3Ks at different stages of migration varies even within one cell type, and is dependent on the combination of external stimuli, as well as on the signalling status of the cell. In addition, it appears that different PI3K isoforms have distinct roles in cell polarization and migration. This review describes how PI3K signalling is regulated by pro-migratory stimuli, and the diverse ways in which PI3K-mediated signal transduction contributes to different aspects of cell migration.
Collapse
|
45
|
Cross talk of signals between EGFR and IL-6R through JAK2/STAT3 mediate epithelial-mesenchymal transition in ovarian carcinomas. Br J Cancer 2008; 100:134-44. [PMID: 19088723 PMCID: PMC2634691 DOI: 10.1038/sj.bjc.6604794] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is overexpressed in ovarian carcinomas, with direct or indirect activation of EGFR able to trigger tumour growth. We demonstrate significant activation of both signal transducer and activator of transcription (STAT)3 and its upstream activator Janus kinase (JAK)2, in high-grade ovarian carcinomas compared with normal ovaries and benign tumours. The association between STAT3 activation and migratory phenotype of ovarian cancer cells was investigated by EGF-induced epithelial–mesenchymal transition (EMT) in OVCA 433 and SKOV3 ovarian cancer cell lines. Ligand activation of EGFR induced a fibroblast-like morphology and migratory phenotype, consistent with the upregulation of mesenchyme-associated N-cadherin, vimentin and nuclear translocation of β-catenin. This occurred concomitantly with activation of the downstream JAK2/STAT3 pathway. Both cell lines expressed interleukin-6 receptor (IL-6R), and treatment with EGF within 1 h resulted in a several-fold enhancement of mRNA expression of IL-6. Consistent with that, EGF treatment of both OVCA 433 and SKOV3 cell lines resulted in enhanced IL-6 production in the serum-free medium. Exogenous addition of IL-6 to OVCA 433 cells stimulated STAT3 activation and enhanced migration. Blocking antibodies against IL-6R inhibited IL-6 production and EGF- and IL-6-induced migration. Specific inhibition of STAT3 activation by JAK2-specific inhibitor AG490 blocked STAT3 phosphorylation, cell motility, induction of N-cadherin and vimentin expression and IL6 production. These data suggest that the activated status of STAT3 in high-grade ovarian carcinomas may occur directly through activation of EGFR or IL-6R or indirectly through induction of IL-6R signalling. Such activation of STAT3 suggests a rationale for a combination of anti-STAT3 and EGFR/IL-6R therapy to suppress the peritoneal spread of ovarian cancer.
Collapse
|
46
|
Johnston SA, Bramble JP, Yeung CL, Mendes PM, Machesky LM. Arp2/3 complex activity in filopodia of spreading cells. BMC Cell Biol 2008; 9:65. [PMID: 19068115 PMCID: PMC2639383 DOI: 10.1186/1471-2121-9-65] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/09/2008] [Indexed: 11/29/2022] Open
Abstract
Background Cells use filopodia to explore their environment and to form new adhesion contacts for motility and spreading. The Arp2/3 complex has been implicated in lamellipodial actin assembly as a major nucleator of new actin filaments in branched networks. The interplay between filopodial and lamellipodial protrusions is an area of much interest as it is thought to be a key determinant of how cells make motility choices. Results We find that Arp2/3 complex localises to dynamic puncta in filopodia as well as lamellipodia of spreading cells. Arp2/3 complex spots do not appear to depend on local adhesion or on microtubules for their localisation but their inclusion in filopodia or lamellipodia depends on the activity of the small GTPase Rac1. Arp2/3 complex spots in filopodia are capable of incorporating monomeric actin, suggesting the presence of available filament barbed ends for polymerisation. Arp2/3 complex in filopodia co-localises with lamellipodial proteins such as capping protein and cortactin. The dynamics of Arp2/3 complex puncta suggests that they are moving bi-directionally along the length of filopodia and that they may be regions of lamellipodial activity within the filopodia. Conclusion We suggest that filopodia of spreading cells have regions of lamellipodial activity and that this activity affects the morphology and movement of filopodia. Our work has implications for how we understand the interplay between lamellipodia and filopodia and for how actin networks are generated spatially in cells.
Collapse
Affiliation(s)
- Simon A Johnston
- University of Birmingham School of Biosciences, Edgbaston, Birmingham, UK.
| | | | | | | | | |
Collapse
|
47
|
The epithelial polarity program: machineries involved and their hijacking by cancer. Oncogene 2008; 27:6939-57. [DOI: 10.1038/onc.2008.345] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
48
|
Tsukada Y, Aoki K, Nakamura T, Sakumura Y, Matsuda M, Ishii S. Quantification of local morphodynamics and local GTPase activity by edge evolution tracking. PLoS Comput Biol 2008; 4:e1000223. [PMID: 19008941 PMCID: PMC2573959 DOI: 10.1371/journal.pcbi.1000223] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 10/07/2008] [Indexed: 01/13/2023] Open
Abstract
Advances in time-lapse fluorescence microscopy have enabled us to directly observe dynamic cellular phenomena. Although the techniques themselves have promoted the understanding of dynamic cellular functions, the vast number of images acquired has generated a need for automated processing tools to extract statistical information. A problem underlying the analysis of time-lapse cell images is the lack of rigorous methods to extract morphodynamic properties. Here, we propose an algorithm called edge evolution tracking (EET) to quantify the relationship between local morphological changes and local fluorescence intensities around a cell edge using time-lapse microscopy images. This algorithm enables us to trace the local edge extension and contraction by defining subdivided edges and their corresponding positions in successive frames. Thus, this algorithm enables the investigation of cross-correlations between local morphological changes and local intensity of fluorescent signals by considering the time shifts. By applying EET to fluorescence resonance energy transfer images of the Rho-family GTPases Rac1, Cdc42, and RhoA, we examined the cross-correlation between the local area difference and GTPase activity. The calculated correlations changed with time-shifts as expected, but surprisingly, the peak of the correlation coefficients appeared with a 6–8 min time shift of morphological changes and preceded the Rac1 or Cdc42 activities. Our method enables the quantification of the dynamics of local morphological change and local protein activity and statistical investigation of the relationship between them by considering time shifts in the relationship. Thus, this algorithm extends the value of time-lapse imaging data to better understand dynamics of cellular function. Morphological change is a key indicator of various cellular functions such as migration and construction of specific structures. Time-lapse image microscopy permits the visualization of changes in morphology and spatio-temporal protein activity related to dynamic cellular functions. However, an unsolved problem is the development of an automated analytical method to handle the vast amount of associated image data. This article describes a novel approach for analysis of time-lapse microscopy data. We automated the quantification of morphological change and cell edge protein activity and then performed statistical analysis to explore the relationship between local morphological change and spatio-temporal protein activity. Our results reveal that morphological change precedes specific protein activity by 6–8 min, which prompts a new hypothesis for cellular morphodynamics regulated by molecular signaling. Use of our method thus allows for detailed analysis of time-lapse images emphasizing the value of computer-assisted high-throughput analysis for time-lapse microscopy images and statistical analysis of morphological properties.
Collapse
Affiliation(s)
- Yuki Tsukada
- Laboratory for Systems Biology, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo, Japan
| | - Kazuhiro Aoki
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takeshi Nakamura
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yuichi Sakumura
- Laboratory for Systems Biology, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Shin Ishii
- Laboratory for Systems Biology, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan
- Institute for Bioinformatics Research and Development, Japan Science and Technology Agency, Tokyo, Japan
- Integrated Systems Biology Laboratory, Department of Systems Science, Graduate School of Informatics, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
49
|
Feigin ME, Muthuswamy SK. ErbB receptors and cell polarity: new pathways and paradigms for understanding cell migration and invasion. Exp Cell Res 2008; 315:707-16. [PMID: 19022245 DOI: 10.1016/j.yexcr.2008.10.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 10/19/2008] [Accepted: 10/20/2008] [Indexed: 12/25/2022]
Abstract
The ErbB family of receptor tyrosine kinases is involved in initiation and progression of a number of human cancers, and receptor activation or overexpression correlates with poor patient survival. Research over the past two decades has elucidated the molecular mechanisms underlying ErbB-induced tumorigenesis, which has resulted in the development of effective targeted therapies. ErbB-induced signal transduction cascades regulate a wide variety of cell processes, including cell proliferation, apoptosis, cell polarity, migration and invasion. Within tumors, disruption of these core processes, through cooperative oncogenic lesions, results in aggressive, metastatic disease. This review will focus on the ErbB signaling networks that regulate migration and invasion and identify a potential role for cell polarity pathways during cancer progression.
Collapse
Affiliation(s)
- Michael E Feigin
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
50
|
Kim HD, Guo TW, Wu AP, Wells A, Gertler FB, Lauffenburger DA. Epidermal growth factor-induced enhancement of glioblastoma cell migration in 3D arises from an intrinsic increase in speed but an extrinsic matrix- and proteolysis-dependent increase in persistence. Mol Biol Cell 2008; 19:4249-59. [PMID: 18632979 DOI: 10.1091/mbc.e08-05-0501] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Epidermal growth factor (EGF) receptor-mediated cell migration plays a vital role in invasion of many tumor types. EGF receptor ligands increase invasiveness in vivo, but it remains unclear how consequent effects on intrinsic cell motility behavior versus effects on extrinsic matrix properties integrate to result in net increase of translational speed and/or directional persistence of migration in a 3D environment. Understanding this convolution is important for therapeutic targeting of tumor invasion, as key regulatory pathways for intrinsic versus extrinsic effects may not be coincident. Accordingly, we have undertaken a quantitative single-cell imaging study of glioblastoma cell movement in 3D matrices and on 2D substrata across a range of collagen densities with systematic variation of protease-mediated matrix degradation. In 3D, EGF induced a mild increase in cell speed and a strong increase in directional persistence, the latter depending heavily on matrix density and EGF-stimulated protease activity. In contrast, in 2D, EGF induced a similarly mild increase in speed but conversely a decrease in directional persistence (both independent of protease activity). Thus, the EGF-enhanced 3D tumor cell migration results only partially from cell-intrinsic effects, with override of cell-intrinsic persistence decrease by protease-mediated cell-extrinsic reduction of matrix steric hindrance.
Collapse
Affiliation(s)
- Hyung-Do Kim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|