1
|
Sun J, Yu X, Tang G, Chen M, Zheng Y, Hu Y, Li Q, Li X, Li N, Li Z, Li Y, Lu N, Tan W, Yang Y, Lyu X, Zhao G, Wang H, Dai L, Zhao GP, Ai L, Zhao W. A CRISPR-SpCas9M-reporting system for efficient and rapid genome editing in Caulobacter crescentus. Nucleic Acids Res 2025; 53:gkaf353. [PMID: 40298107 PMCID: PMC12038397 DOI: 10.1093/nar/gkaf353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
As members of the α-proteobacteria group, Caulobacter crescentus and its relatives are wildly studied for their unique asymmetric life cycle and versatile applications in industry, agriculture, and biomedicine. However, genetic manipulation in these bacteria remains challenging, typically requiring time-consuming and labor-intensive procedures. Here, we report a practical CRISPR-SpCas9M-reporting system that overcomes the limitations of SpCas9 expression and CRISPR escape, enabling efficient, markerless, and rapid genome editing in C. crescentus. Two genes encoding for a pair of scaffold proteins were knocked out individually or iteratively, demonstrating their direct involvements in cellular signaling asymmetry. Key components, including the Cas protein, Cas inducer, sgRNA, homologous arms, and reporter, were systematically analyzed and optimized in the system, finally achieving the apparent editing efficiency up to 80% in C. crescentus. Furthermore, we applied the CRISPR-SpCas9M-reporting system to two C. crescentus relatives, Agrobacterium fabrum and Sinorhizobium meliloti, establishing it as an efficient and general editing strategy. We anticipate that this system could be applied to other CRISPR-Cas-recalcitrant organisms, accelerating both basic and applied research in α-proteobacteria.
Collapse
Affiliation(s)
- Jingxian Sun
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Yu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guiyue Tang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mengqing Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yixin Zheng
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucan Hu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingmei Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoyang Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Ningning Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhongyue Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ning Lu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Tan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yujiao Yang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoye Lyu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guohong Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Lei Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guo-Ping Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Synthetic Biology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Lab of Genetic Engineering and Institutes of Biomedical Sciences, Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Lianzhong Ai
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Zhao
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Rijal A, Johnson ET, Curtis PD. Upstream CtrA-binding sites both induce and repress pilin gene expression in Caulobacter crescentus. BMC Genomics 2024; 25:703. [PMID: 39030481 PMCID: PMC11264516 DOI: 10.1186/s12864-024-10533-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/17/2024] [Indexed: 07/21/2024] Open
Abstract
Pili are bacterial surface structures important for surface adhesion. In the alphaproteobacterium Caulobacter crescentus, the global regulator CtrA activates transcription of roughly 100 genes, including pilA which codes for the pilin monomer that makes up the pilus filament. While most CtrA-activated promoters have a single CtrA-binding site at the - 35 position and are induced at the early to mid-predivisional cell stage, the pilA promoter has 3 additional upstream CtrA-binding sites and it is induced at the late predivisional cell stage. Reporter constructs where these additional sites were disrupted by deletion or mutation led to increased activity compared to the WT promoter. In synchronized cultures, these mutations caused pilA transcription to occur approximately 20 min earlier than WT. The results suggested that the site overlapping the - 35 position drives pilA gene expression while the other upstream CtrA-binding sites serve to reduce and delay expression. EMSA experiments showed that the - 35 Site has lower affinity for CtrA∼P compared to the other sites, suggesting binding site affinity may be involved in the delay mechanism. Mutating the upstream inhibitory CtrA-binding sites in the pilA promoter caused significantly higher numbers of pre-divisional cells to express pili, and phage survival assays showed this strain to be significantly more sensitive to pilitropic phage. These results suggest that pilA regulation evolved in C. crescentus to provide an ecological advantage within the context of phage infection.
Collapse
Affiliation(s)
- Anurag Rijal
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA
| | - Eli T Johnson
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA
| | - Patrick D Curtis
- Department of Biology, University of Mississippi, University, 402 Shoemaker Hall, Oxford, MS, 38677, USA.
| |
Collapse
|
3
|
Harnessing Innate Immunity to Treat Mycobacterium tuberculosis Infections: Heat-Killed Caulobacter crescentus as a Novel Biotherapeutic. Cells 2023; 12:cells12040560. [PMID: 36831226 PMCID: PMC9954702 DOI: 10.3390/cells12040560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is a serious and devastating infectious disease worldwide. Approximately a quarter of the world population harbors latent Mtb infection without pathological consequences. Exposure of immunocompetent healthy individuals with Mtb does not result in active disease in more than 90% individuals, suggesting a defining role of host immunity to prevent and/or clear early infection. However, innate immune stimulation strategies have been relatively underexplored for the treatment of tuberculosis. In this study, we used cell culture and mouse models to examine the role of a heat-killed form of a non-pathogenic microbe, Caulobacter crescentus (HKCC), in inducing innate immunity and limiting Mtb infection. We also examined the added benefits of a distinct chemo-immunotherapeutic strategy that incorporates concurrent treatments with low doses of a first-line drug isoniazid and HKCC. This therapeutic approach resulted in highly significant reductions in disseminated Mtb in the lungs, liver, and spleen of mice compared to either agent alone. Our studies demonstrate the potential of a novel innate immunotherapeutic strategy with or without antimycobacterial drugs in controlling Mtb infection in mice and open new avenues for the treatment of tuberculosis in humans.
Collapse
|
4
|
Ardissone S, Kint N, Petrignani B, Panis G, Viollier PH. Secretion Relieves Translational Co-repression by a Specialized Flagellin Paralog. Dev Cell 2020; 55:500-513.e4. [DOI: 10.1016/j.devcel.2020.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/28/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
|
5
|
Vieira S, Pascual J, Boedeker C, Geppert A, Riedel T, Rohde M, Overmann J. Terricaulis silvestris gen. nov., sp. nov., a novel prosthecate, budding member of the family Caulobacteraceae isolated from forest soil. Int J Syst Evol Microbiol 2020; 70:4966-4977. [DOI: 10.1099/ijsem.0.004367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The family
Caulobacteraceae
comprises prosthecate bacteria with a dimorphic cell cycle and also non-prosthecate bacteria. Cells of all described species divide by binary fission. Strain 0127_4T was isolated from forest soil in Baden Württemberg (Germany) and determined to be the first representative of the family
Caulobacteraceae
which divided by budding. Cells of strain 0127_4T were Gram-negative, rod-shaped, prosthecate, motile by means of a polar flagellum, non-spore-forming and non-capsulated. The strain formed small white colonies and grew aerobically and chemo-organotrophically utilizing organic acids, amino acids and proteinaceous substrates. 16S rRNA gene sequence analysis indicated that this bacterium was related to
Aquidulcibacter paucihalophilus
TH1-2T and
Asprobacter aquaticus
DRW22-8T with 91.3 and 89.7% sequence similarity, respectively. Four unidentified glycolipids were detected as the major polar lipids and, unlike all described members of the family
Caulobacteraceae
, phosphatidylglycerol was absent. The major fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c), summed feature 9 (iso-C17 : 1ω9c/C16 : 0 10-methyl), C16 : 0 and summed feature 3 (C16 : 1
ω6c/C16 : 1
ω7c). The major respiratory quinone was Q-10. The G+C content of the genomic DNA was 63.5 %. Based on the present taxonomic characterization, strain 0127_4T represents a novel species of a new genus, Terricaulis silvestris gen. nov., sp. nov. The type strain of Terricaulis silvestris is 0127_4T (=DSM 104635T=CECT 9243T).
Collapse
Affiliation(s)
- Selma Vieira
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Javier Pascual
- Present address: Darwin Bioprospecting, Parc Científic de la Universitat de València c/Catedrático Agustín Escardino 9, 46980 Paterna (Valencia), Spain
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Christian Boedeker
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Alicia Geppert
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Braunschweig University of Technology, Spielmanstraße 7, 38106 Braunschweig, Germany
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Bergé M, Pezzatti J, González-Ruiz V, Degeorges L, Mottet-Osman G, Rudaz S, Viollier PH. Bacterial cell cycle control by citrate synthase independent of enzymatic activity. eLife 2020; 9:52272. [PMID: 32149608 PMCID: PMC7083601 DOI: 10.7554/elife.52272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 03/04/2020] [Indexed: 11/17/2022] Open
Abstract
Proliferating cells must coordinate central metabolism with the cell cycle. How central energy metabolism regulates bacterial cell cycle functions is not well understood. Our forward genetic selection unearthed the Krebs cycle enzyme citrate synthase (CitA) as a checkpoint regulator controlling the G1→S transition in the polarized alpha-proteobacterium Caulobacter crescentus, a model for cell cycle regulation and asymmetric cell division. We find that loss of CitA promotes the accumulation of active CtrA, an essential cell cycle transcriptional regulator that maintains cells in G1-phase, provided that the (p)ppGpp alarmone is present. The enzymatic activity of CitA is dispensable for CtrA control, and functional citrate synthase paralogs cannot replace CitA in promoting S-phase entry. Our evidence suggests that CitA was appropriated specifically to function as a moonlighting enzyme to link central energy metabolism with S-phase entry. Control of the G1-phase by a central metabolic enzyme may be a common mechanism of cellular regulation.
Collapse
Affiliation(s)
- Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Julian Pezzatti
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Laurence Degeorges
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Geneviève Mottet-Osman
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
7
|
Analysis of Brevundimonas subvibrioides Developmental Signaling Systems Reveals Inconsistencies between Phenotypes and c-di-GMP Levels. J Bacteriol 2019; 201:JB.00447-19. [PMID: 31383736 DOI: 10.1128/jb.00447-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
The DivJ-DivK-PleC signaling system of Caulobacter crescentus is a signaling network that regulates polar development and the cell cycle. This system is conserved in related bacteria, including the sister genus Brevundimonas Previous studies had shown unexpected phenotypic differences between the C. crescentus divK mutant and the analogous mutant of Brevundimonas subvibrioides, but further characterization was not performed. Here, phenotypic assays analyzing motility, adhesion, and pilus production (the latter characterized by a newly discovered bacteriophage) revealed that divJ and pleC mutants have phenotypes mostly similar to their C. crescentus homologs, but divK mutants maintain largely opposite phenotypes than expected. Suppressor mutations of the B. subvibrioides divK motility defect were involved in cyclic di-GMP (c-di-GMP) signaling, including the diguanylate cyclase dgcB, and cleD which is hypothesized to affect flagellar function in a c-di-GMP dependent fashion. However, the screen did not identify the diguanylate cyclase pleD Disruption of pleD in B. subvibrioides caused no change in divK or pleC phenotypes, but did reduce adhesion and increase motility of the divJ strain. Analysis of c-di-GMP levels in these strains revealed incongruities between c-di-GMP levels and displayed phenotypes with a notable result that suppressor mutations altered phenotypes but had little impact on c-di-GMP levels in the divK background. Conversely, when c-di-GMP levels were artificially manipulated, alterations of c-di-GMP levels in the divK strain had minimal impact on phenotypes. These results suggest that DivK performs a critical function in the integration of c-di-GMP signaling into the B. subvibrioides cell cycle.IMPORTANCE Cyclic di-GMP and associated signaling proteins are widespread in bacteria, but their role in physiology is often complex and difficult to predict through genomic level analyses. In C. crescentus, c-di-GMP has been integrated into the developmental cell cycle, but there is increasing evidence that environmental factors can impact this system as well. The research presented here suggests that the integration of these signaling networks could be more complex than previously hypothesized, which could have a bearing on the larger field of c-di-GMP signaling. In addition, this work further reveals similarities and differences in a conserved regulatory network between organisms in the same taxonomic family, and the results show that gene conservation does not necessarily imply close functional conservation in genetic pathways.
Collapse
|
8
|
Yildirim A, Feig M. High-resolution 3D models of Caulobacter crescentus chromosome reveal genome structural variability and organization. Nucleic Acids Res 2019. [PMID: 29529244 PMCID: PMC5934669 DOI: 10.1093/nar/gky141] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
High-resolution three-dimensional models of Caulobacter crescentus nucleoid structures were generated via a multi-scale modeling protocol. Models were built as a plectonemically supercoiled circular DNA and by incorporating chromosome conformation capture based data to generate an ensemble of base pair resolution models consistent with the experimental data. Significant structural variability was found with different degrees of bending and twisting but with overall similar topologies and shapes that are consistent with C. crescentus cell dimensions. The models allowed a direct mapping of the genomic sequence onto the three-dimensional nucleoid structures. Distinct spatial distributions were found for several genomic elements such as AT-rich sequence elements where nucleoid associated proteins (NAPs) are likely to bind, promoter sites, and some genes with common cellular functions. These findings shed light on the correlation between the spatial organization of the genome and biological functions.
Collapse
Affiliation(s)
- Asli Yildirim
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry & Molecular Biology, Michigan State University, MI 48824, USA
| |
Collapse
|
9
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
10
|
Abstract
The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620;
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5132;
| |
Collapse
|
11
|
Subramanian K, Tyson JJ. Spatiotemporal Models of the Asymmetric Division Cycle of Caulobacter crescentus. Results Probl Cell Differ 2017; 61:23-48. [PMID: 28409299 DOI: 10.1007/978-3-319-53150-2_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The spatial localization of proteins within the cytoplasm of bacteria is an underappreciated but critical aspect of cell cycle regulation for many prokaryotes. In Caulobacter crescentus-a model organism for the study of asymmetric cell reproduction in prokaryotes-heterogeneous localization of proteins has been identified as the underlying cause of asymmetry in cell morphology, DNA replication, and cell division. However, significant questions remain. Firstly, the mechanisms by which proteins localize in the organelle-free prokaryotic cytoplasm remain obscure. Furthermore, how variations in the spatial and temporal dynamics of cell fate determinants regulate signaling pathways and orchestrate the complex programs of asymmetric cell division and differentiation are subjects of ongoing research. In this chapter, we review current efforts in investigating these two questions. We describe how mathematical models of spatiotemporal protein dynamics are being used to generate and test competing hypotheses and provide complementary insight about the control mechanisms that regulate asymmetry in protein localization and cell division.
Collapse
Affiliation(s)
- Kartik Subramanian
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - John J Tyson
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
12
|
Cytoskeletal Proteins in Caulobacter crescentus: Spatial Orchestrators of Cell Cycle Progression, Development, and Cell Shape. Subcell Biochem 2017; 84:103-137. [PMID: 28500524 DOI: 10.1007/978-3-319-53047-5_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Caulobacter crescentus, an aquatic Gram-negative α-proteobacterium, is dimorphic, as a result of asymmetric cell divisions that give rise to a free-swimming swarmer daughter cell and a stationary stalked daughter. Cell polarity of vibrioid C. crescentus cells is marked by the presence of a stalk at one end in the stationary form and a polar flagellum in the motile form. Progression through the cell cycle and execution of the associated morphogenetic events are tightly controlled through regulation of the abundance and activity of key proteins. In synergy with the regulation of protein abundance or activity, cytoskeletal elements are key contributors to cell cycle progression through spatial regulation of developmental processes. These include: polarity establishment and maintenance, DNA segregation, cytokinesis, and cell elongation. Cytoskeletal proteins in C. crescentus are additionally required to maintain its rod shape, curvature, and pole morphology. In this chapter, we explore the mechanisms through which cytoskeletal proteins in C. crescentus orchestrate developmental processes by acting as scaffolds for protein recruitment, generating force, and/or restricting or directing the motion of molecular machines. We discuss each cytoskeletal element in turn, beginning with those important for organization of molecules at the cell poles and chromosome segregation, then cytokinesis, and finally cell shape.
Collapse
|
13
|
Moerner WEWE. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). Angew Chem Int Ed Engl 2015. [PMID: 26088273 DOI: 10.1103/revmodphys.87.1183] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.
Collapse
Affiliation(s)
- W E William E Moerner
- Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
| |
Collapse
|
14
|
Moerner WEWE. Spektroskopie, Visualisierung und Photomanipulation einzelner Moleküle: die Grundlage für superhochauflösende Mikroskopie (Nobel-Aufsatz). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Moerner WEWE. Single-Molecule Spectroscopy, Imaging, and Photocontrol: Foundations for Super-Resolution Microscopy (Nobel Lecture). Angew Chem Int Ed Engl 2015; 54:8067-93. [PMID: 26088273 DOI: 10.1002/anie.201501949] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/10/2022]
Abstract
The initial steps toward optical detection and spectroscopy of single molecules in condensed matter arose out of the study of inhomogeneously broadened optical absorption profiles of molecular impurities in solids at low temperatures. Spectral signatures relating to the fluctuations of the number of molecules in resonance led to the attainment of the single-molecule limit in 1989 using frequency-modulation laser spectroscopy. In the early 90s, many fascinating physical effects were observed for individual molecules, and the imaging of single molecules as well as observations of spectral diffusion, optical switching and the ability to select different single molecules in the same focal volume simply by tuning the pumping laser frequency provided important forerunners of the later super-resolution microscopy with single molecules. In the room temperature regime, imaging of single copies of the green fluorescent protein also uncovered surprises, especially the blinking and photoinduced recovery of emitters, which stimulated further development of photoswitchable fluorescent protein labels. Because each single fluorophore acts a light source roughly 1 nm in size, microscopic observation and localization of individual fluorophores is a key ingredient to imaging beyond the optical diffraction limit. Combining this with active control of the number of emitting molecules in the pumped volume led to the super-resolution imaging of Eric Betzig and others, a new frontier for optical microscopy beyond the diffraction limit. The background leading up to these observations is described and current developments are summarized.
Collapse
Affiliation(s)
- W E William E Moerner
- Departments of Chemistry and (by Courtesy) of Applied Physics, Stanford University, Stanford, California 94305 (USA)
| |
Collapse
|
16
|
Robert L. Size sensors in bacteria, cell cycle control, and size control. Front Microbiol 2015; 6:515. [PMID: 26074903 PMCID: PMC4448035 DOI: 10.3389/fmicb.2015.00515] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/09/2015] [Indexed: 12/18/2022] Open
Abstract
Bacteria proliferate by repetitive cycles of cellular growth and division. The progression into the cell cycle is admitted to be under the control of cell size. However, the molecular basis of this regulation is still unclear. Here I will discuss which mechanisms could allow coupling growth and division by sensing size and transmitting this information to the division machinery. Size sensors could act at different stages of the cell cycle. During septum formation, mechanisms controlling the formation of the Z ring, such as MinCD inhibition or Nucleoid Occlusion (NO) could participate in the size-dependence of the division process. In addition or alternatively, the coupling of growth and division may occur indirectly through the control of DNA replication initiation. The relative importance of these different size-sensing mechanisms could depend on the environmental and genetic context. The recent demonstration of an incremental strategy of size control in bacteria, suggests that DnaA-dependent control of replication initiation could be the major size control mechanism limiting cell size variation.
Collapse
Affiliation(s)
- Lydia Robert
- UMR1319 Micalis, Institut National de la Recherche AgronomiqueJouy-en-Josas, France
- UMR Micalis, AgroParisTechJouy-en-Josas, France
- Laboratoire Jean Perrin (Université Pierre et Marie Curie-Centre National de la Recherche Scientifique UMR8237), Université Pierre et Marie CurieParis, France
| |
Collapse
|
17
|
Van der Henst C, de Barsy M, Zorreguieta A, Letesson JJ, De Bolle X. The Brucella pathogens are polarized bacteria. Microbes Infect 2013; 15:998-1004. [PMID: 24141086 DOI: 10.1016/j.micinf.2013.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/30/2022]
Abstract
Brucella pathogens are responsible for brucellosis, a worldwide zoonosis. They are facultative intracellular pathogens characterized by their asymmetric division and their unipolar growth. This growth modality generates poles with specialized functions (through polar recruitment of polar adhesins or of cell cycle regulators) and progeny cells with potentially different fates.
Collapse
Affiliation(s)
- Charles Van der Henst
- Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
18
|
Henry JT, Crosson S. Chromosome replication and segregation govern the biogenesis and inheritance of inorganic polyphosphate granules. Mol Biol Cell 2013; 24:3177-86. [PMID: 23985321 PMCID: PMC3806658 DOI: 10.1091/mbc.e13-04-0182] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 11/11/2022] Open
Abstract
Prokaryotes and eukaryotes synthesize long chains of orthophosphate, known as polyphosphate (polyP), which form dense granules within the cell. PolyP regulates myriad cellular functions and is often localized to specific subcellular addresses through mechanisms that remain undefined. In this study, we present a molecular-level analysis of polyP subcellular localization in the model bacterium Caulobacter crescentus. We demonstrate that biogenesis and localization of polyP is controlled as a function of the cell cycle, which ensures regular partitioning of granules between mother and daughter. The enzyme polyphosphate kinase 1 (Ppk1) is required for granule production, colocalizes with granules, and dynamically localizes to the sites of new granule synthesis in nascent daughter cells. Localization of Ppk1 within the cell requires an intact catalytic active site and a short, positively charged tail at the C-terminus of the protein. The processes of chromosome replication and segregation govern both the number and position of Ppk1/polyP complexes within the cell. We propose a multistep model in which the chromosome establishes sites of polyP coalescence, which recruit Ppk1 to promote the in situ synthesis of large granules. These findings underscore the importance of both chromosome dynamics and discrete protein localization as organizing factors in bacterial cell biology.
Collapse
Affiliation(s)
| | - Sean Crosson
- Committee on Microbiology, University of Chicago, Chicago, IL 60637
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
19
|
Kalinin YV, Murali A, Gracias DH. Chemistry with spatial control using particles and streams(). RSC Adv 2012; 2:9707-9726. [PMID: 23145348 PMCID: PMC3491979 DOI: 10.1039/c2ra20337e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Spatial control of chemical reactions, with micro- and nanometer scale resolution, has important consequences for one pot synthesis, engineering complex reactions, developmental biology, cellular biochemistry and emergent behavior. We review synthetic methods to engineer this spatial control using chemical diffusion from spherical particles, shells and polyhedra. We discuss systems that enable both isotropic and anisotropic chemical release from isolated and arrayed particles to create inhomogeneous and spatially patterned chemical fields. In addition to such finite chemical sources, we also discuss spatial control enabled with laminar flow in 2D and 3D microfluidic networks. Throughout the paper, we highlight applications of spatially controlled chemistry in chemical kinetics, reaction-diffusion systems, chemotaxis and morphogenesis.
Collapse
Affiliation(s)
- Yevgeniy V. Kalinin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Adithya Murali
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
20
|
Gill JJ, Berry JD, Russell WK, Lessor L, Escobar-Garcia DA, Hernandez D, Kane A, Keene J, Maddox M, Martin R, Mohan S, Thorn AM, Russell DH, Young R. The Caulobacter crescentus phage phiCbK: genomics of a canonical phage. BMC Genomics 2012; 13:542. [PMID: 23050599 PMCID: PMC3556154 DOI: 10.1186/1471-2164-13-542] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/01/2012] [Indexed: 11/30/2022] Open
Abstract
Background The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. Results Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK) to 280 kb encoding 448 proteins (CcrColossus), and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell’s replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. Conclusions Due to their lack of any apparent relationship to other described phages, this group is proposed as the founding cohort of a new phage type, the phiCbK-like phages. This work will serve as a foundation for future studies on morphogenesis, infection and phage-host interactions in C. crescentus.
Collapse
Affiliation(s)
- Jason J Gill
- Center for Phage Technology, 2128 TAMU, Texas A&M University, College Station, Texas, TX 77843, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Like eukaryotes, bacteria must coordinate division with growth to ensure cells are the appropriate size for a given environmental condition or developmental fate. As single-celled organisms, nutrient availability is one of the strongest influences on bacterial cell size. Classic physiological experiments conducted over four decades ago first demonstrated that cell size is directly correlated with nutrient source and growth rate in the Gram-negative bacterium Salmonella typhimurium. This observation subsequently served as the basis for studies revealing a role for cell size in cell cycle progression in a closely related organism, Escherichia coli. More recently, the development of powerful genetic, molecular, and imaging tools has allowed us to identify and characterize the nutrient-dependent pathway responsible for coordinating cell division and cell size with growth rate in the Gram-positive model organism Bacillus subtilis. Here, we discuss the role of cell size in bacterial growth and development and propose a broadly applicable model for cell size control in this important and highly divergent domain of life.
Collapse
Affiliation(s)
- An-Chun Chien
- Department of Biology, Box 1137, Washington University, 1 Brookings Dr., Saint Louis, MO, USA
| | | | | |
Collapse
|
22
|
Gaskell AA, Giovinazzo JA, Fonte V, Willey JM. Multi-tier regulation of the streptomycete morphogenetic peptide SapB. Mol Microbiol 2012; 84:501-15. [PMID: 22486809 DOI: 10.1111/j.1365-2958.2012.08041.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomyces coelicolor is a morphologically complex bacterium requiring the secretion of surface-active proteins to progress through its life cycle. SapB represents an important class of these biosurfactants, as illustrated by its ability to restore aerial hyphae formation when applied exogenously to developmental mutants. However, such aerial hyphae fail to sporulate, exemplifying the need to co-ordinate the timing of SapB production with other developmental events. SapB has an unusual lantibiotic structure. Its structural gene, ramS, is only 38 nucleotides downstream of the gene encoding its putative modification enzyme, RamC. Transient, co-ordinated expression of the operon was thought to be controlled by the response regulator RamR. However, we show that ramS is transcribed throughout the cell cycle with a dual expression profile dissimilar to the tightly controlled ramC expression. Surprisingly, post-translational modification relies on prior membrane localization of the precursor peptide, RamS, as demonstrated by the absence of RamS modification in S. coelicolor hyphae treated with the Bacillus subtilis lipoprotein surfactin. Our results demonstrate that interspecies interaction can also be mediated by interference of post-translational events. Further, temporal and spatial regulation of irreversible post-translational modification of a surface-active morphogenetic peptide suggests a new model for the control of key developmental events.
Collapse
Affiliation(s)
- Alisa A Gaskell
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA.
| | | | | | | |
Collapse
|
23
|
Donovan C, Sieger B, Krämer R, Bramkamp M. A synthetic Escherichia coli system identifies a conserved origin tethering factor in Actinobacteria. Mol Microbiol 2012; 84:105-16. [DOI: 10.1111/j.1365-2958.2012.08011.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Radhakrishnan SK, Viollier P. Two-in-one: bifunctional regulators synchronizing developmental events in bacteria. Trends Cell Biol 2012; 22:14-21. [DOI: 10.1016/j.tcb.2011.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
25
|
Dye NA, Pincus Z, Fisher IC, Shapiro L, Theriot JA. Mutations in the nucleotide binding pocket of MreB can alter cell curvature and polar morphology in Caulobacter. Mol Microbiol 2011; 81:368-94. [PMID: 21564339 PMCID: PMC3137890 DOI: 10.1111/j.1365-2958.2011.07698.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The maintenance of cell shape in Caulobacter crescentus requires the essential gene mreB, which encodes a member of the actin superfamily and the target of the antibiotic, A22. We isolated 35 unique A22-resistant Caulobacter strains with single amino acid substitutions near the nucleotide binding site of MreB. Mutations that alter cell curvature and mislocalize the intermediate filament crescentin cluster on the back surface of MreB's structure. Another subset have variable cell widths, with wide cell bodies and actively growing thin extensions of the cell poles that concentrate fluorescent MreB. We found that the extent to which MreB localization is perturbed is linearly correlated with the development of pointed cell poles and variable cell widths. Further, we find that a mutation to glycine of two conserved aspartic acid residues that are important for nucleotide hydrolysis in other members of the actin superfamily abolishes robust midcell recruitment of MreB but supports a normal rate of growth. These mutant strains provide novel insight into how MreB's protein structure, subcellular localization, and activity contribute to its function in bacterial cell shape.
Collapse
Affiliation(s)
- Natalie A Dye
- Department of Biochemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, Duan Y, Zhou L, Vahling CM. The complete genome sequence of 'Candidatus Liberibacter solanacearum', the bacterium associated with potato zebra chip disease. PLoS One 2011; 6:e19135. [PMID: 21552483 PMCID: PMC3084294 DOI: 10.1371/journal.pone.0019135] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Accepted: 03/17/2011] [Indexed: 12/21/2022] Open
Abstract
Zebra Chip (ZC) is an emerging plant disease that causes aboveground decline of potato shoots and generally results in unusable tubers. This disease has led to multi-million dollar losses for growers in the central and western United States over the past decade and impacts the livelihood of potato farmers in Mexico and New Zealand. ZC is associated with 'Candidatus Liberibacter solanacearum', a fastidious alpha-proteobacterium that is transmitted by a phloem-feeding psyllid vector, Bactericera cockerelli Sulc. Research on this disease has been hampered by a lack of robust culture methods and paucity of genome sequence information for 'Ca. L. solanacearum'. Here we present the sequence of the 1.26 Mbp metagenome of 'Ca. L. solanacearum', based on DNA isolated from potato psyllids. The coding inventory of the 'Ca. L. solanacearum' genome was analyzed and compared to related Rhizobiaceae to better understand 'Ca. L. solanacearum' physiology and identify potential targets to develop improved treatment strategies. This analysis revealed a number of unique transporters and pathways, all potentially contributing to ZC pathogenesis. Some of these factors may have been acquired through horizontal gene transfer. Taxonomically, 'Ca. L. solanacearum' is related to 'Ca. L. asiaticus', a suspected causative agent of citrus huanglongbing, yet many genome rearrangements and several gene gains/losses are evident when comparing these two Liberibacter. species. Relative to 'Ca. L. asiaticus', 'Ca. L. solanacearum' probably has reduced capacity for nucleic acid modification, increased amino acid and vitamin biosynthesis functionalities, and gained a high-affinity iron transport system characteristic of several pathogenic microbes.
Collapse
Affiliation(s)
- Hong Lin
- United States Department of Agriculture-Agricultural Research Service, CDPG, San Joaquin Valley Agricultural Sciences Center, Parlier, California, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One 2011; 6:e18179. [PMID: 21494595 PMCID: PMC3073932 DOI: 10.1371/journal.pone.0018179] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells.
Collapse
|
28
|
Bowman GR, Lyuksyutova AI, Shapiro L. Bacterial polarity. Curr Opin Cell Biol 2010; 23:71-7. [PMID: 21095111 DOI: 10.1016/j.ceb.2010.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 10/20/2010] [Accepted: 10/30/2010] [Indexed: 01/05/2023]
Abstract
Many recent studies have revealed exquisite subcellular localization of proteins, DNA, and other molecules within bacterial cells, giving credence to the concept of prokaryotic anatomy. Common sites for localized components are the poles of rod-shaped cells, which are dynamically modified in composition and function in order to control cellular physiology. An impressively diverse array of mechanisms underlies bacterial polarity, including oscillatory systems, phospho-signaling pathways, the sensing of membrane curvature, and the integration of cell cycle regulators with polar maturation.
Collapse
Affiliation(s)
- Grant R Bowman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
29
|
Sherrid AM, Rustad TR, Cangelosi GA, Sherman DR. Characterization of a Clp protease gene regulator and the reaeration response in Mycobacterium tuberculosis. PLoS One 2010; 5:e11622. [PMID: 20661284 PMCID: PMC2905415 DOI: 10.1371/journal.pone.0011622] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/19/2010] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) enters a non-replicating state when exposed to low oxygen tension, a condition the bacillus encounters in granulomas during infection. Determining how mycobacteria enter and maintain this state is a major focus of research. However, from a public health standpoint the importance of latent TB is its ability to reactivate. The mechanism by which mycobacteria return to a replicating state upon re-exposure to favorable conditions is not understood. In this study, we utilized reaeration from a defined hypoxia model to characterize the adaptive response of MTB following a return to favorable growth conditions. Global transcriptional analysis identified the approximately 100 gene Reaeration Response, induced relative to both log-phase and hypoxic MTB. This response includes chaperones and proteases, as well as the transcription factor Rv2745c, which we characterize as a Clp protease gene regulator (ClgR) orthologue. During reaeration, genes repressed during hypoxia are also upregulated in a wave of transcription that includes genes crucial to transcription, translation and oxidative phosphorylation and culminates in bacterial replication. In sum, this study defines a new transcriptional response of MTB with potential relevance to disease, and implicates ClgR as a regulator involved in resumption of replication following hypoxia.
Collapse
Affiliation(s)
- Ashley M. Sherrid
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Tige R. Rustad
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Gerard A. Cangelosi
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Pathobiology Program and Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - David R. Sherman
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Pathobiology Program and Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
30
|
Mycobacterium tuberculosis ClpX interacts with FtsZ and interferes with FtsZ assembly. PLoS One 2010; 5:e11058. [PMID: 20625433 PMCID: PMC2897852 DOI: 10.1371/journal.pone.0011058] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/14/2010] [Indexed: 11/19/2022] Open
Abstract
FtsZ assembly at the midcell division site in the form of a Z-ring is crucial for initiation of the cell division process in eubacteria. It is largely unknown how this process is regulated in the human pathogen Mycobacterium tuberculosis. Here we show that the expression of clpX was upregulated upon macrophage infection and exposure to cephalexin antibiotic, the conditions where FtsZ-ring assembly is delayed. Independently, we show using pull-down, solid-phase binding, bacterial two-hybrid and mycobacterial protein fragment complementation assays, that M. tuberculosis FtsZ interacts with ClpX, the substrate recognition domain of the ClpXP protease. Incubation of FtsZ with ClpX increased the critical concentration of GTP-dependent polymerization of FtsZ. Immunoblotting revealed that the intracellular ratio of ClpX to FtsZ in wild type M. tuberculosis is approximately 1:2. Overproduction of ClpX increased cell length and modulated the localization of FtsZ at midcell sites; however, intracellular FtsZ levels were unaffected. A ClpX-CFP fusion protein localized to the cell poles and midcell sites and colocalized with the FtsZ-YFP protein. ClpX also interacted with FtsZ mutant proteins defective for binding to and hydrolyzing GTP and possibly for interactions with other proteins. Taken together, our results suggest that M. tuberculosis ClpX interacts stoichiometrically with FtsZ protomers, independent of its nucleotide-bound state and negatively regulates FtsZ activities, hence cell division.
Collapse
|
31
|
Radhakrishnan SK, Pritchard S, Viollier PH. Coupling prokaryotic cell fate and division control with a bifunctional and oscillating oxidoreductase homolog. Dev Cell 2010; 18:90-101. [PMID: 20152180 DOI: 10.1016/j.devcel.2009.10.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Revised: 08/31/2009] [Accepted: 10/27/2009] [Indexed: 10/19/2022]
Abstract
NAD(H)-binding proteins play important roles in cell-cycle and developmental signaling in eukaryotes. We identified a bifunctional NAD(H)-binding regulator (KidO) that integrates cell-fate signaling with cytokinesis in the bacterium Caulobacter crescentus. KidO stimulates the DivJ kinase and directly acts on the cytokinetic tubulin, FtsZ, to tune cytokinesis with the cell cycle. At the G1-->S transition, DivJ concomitantly signals the ClpXP-dependent degradation of KidO and CtrA, a cell-cycle transcriptional regulator/DNA replication inhibitor. This proteolytic event directs KidO and CtrA into oscillatory cell-cycle abundance patterns that coordinately license replication and cytokinesis. KidO resembles NAD(P)H-dependent oxidoreductases, and conserved residues in the KidO NAD(H)-binding pocket are critical for regulation of FtsZ, but not for DivJ. Since NADPH-dependent regulation by a KidO-like oxidoreductase also occurs in humans, organisms from two domains of life exploit the enzymatic fold of an ancestral oxidoreductase potentially to coordinate cellular or developmental activities with the availability of the metabolic currency, NAD(P)H.
Collapse
Affiliation(s)
- Sunish Kumar Radhakrishnan
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
32
|
Bowman GR, Comolli LR, Gaietta GM, Fero M, Hong SH, Jones Y, Lee JH, Downing KH, Ellisman MH, McAdams HH, Shapiro L. Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Mol Microbiol 2010; 76:173-89. [PMID: 20149103 DOI: 10.1111/j.1365-2958.2010.07088.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The bacterium Caulobacter crescentus has morphologically and functionally distinct cell poles that undergo sequential changes during the cell cycle. We show that the PopZ oligomeric network forms polar ribosome exclusion zones that change function during cell cycle progression. The parS/ParB chromosomal centromere is tethered to PopZ at one pole prior to the initiation of DNA replication. During polar maturation, the PopZ-centromere tether is broken, and the PopZ zone at that pole then switches function to act as a recruitment factor for the ordered addition of multiple proteins that promote the transformation of the flagellated pole into a stalked pole. Stalked pole assembly, in turn, triggers the initiation of chromosome replication, which signals the formation of a new PopZ zone at the opposite cell pole, where it functions to anchor the newly duplicated centromere that has traversed the long axis of the cell. We propose that pole-specific control of PopZ function co-ordinates polar development and cell cycle progression by enabling independent assembly and tethering activities at the two cell poles.
Collapse
Affiliation(s)
- Grant R Bowman
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
García Véscovi E, Sciara MI, Castelli ME. Two component systems in the spatial program of bacteria. Curr Opin Microbiol 2010; 13:210-8. [PMID: 20138002 DOI: 10.1016/j.mib.2009.12.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 12/29/2009] [Accepted: 12/31/2009] [Indexed: 11/26/2022]
Abstract
Despite being considered a relatively simple form of life, bacteria have revealed a high degree of structural organization, with the spatial destination of their components precisely regulated within the cell. Nevertheless, the primary signals that dictate differential distribution of cellular building blocks and physiological processes remain in most cases largely undisclosed. Signal transduction systems are no exception within this three-dimensional organization and two-component systems (TCS) involved in controlling cell division, differentiation, chemotaxis and virulence show specific and/or dynamic localization, engaging in the spatial program of the bacterial cell.
Collapse
Affiliation(s)
- Eleonora García Véscovi
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| | | | | |
Collapse
|
34
|
Moerner WE. Single-Molecule Optical Spectroscopy and Imaging: From Early Steps to Recent Advances. SINGLE MOLECULE SPECTROSCOPY IN CHEMISTRY, PHYSICS AND BIOLOGY 2010. [DOI: 10.1007/978-3-642-02597-6_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus. J Bacteriol 2009; 192:539-52. [PMID: 19897656 DOI: 10.1128/jb.00985-09] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphorylated form of the response regulator CtrA represses DNA replication initiation and regulates the transcription of about 100 cell cycle-regulated genes in Caulobacter crescentus. CtrA activity fluctuates during the cell cycle, and its periodicity is a key element of the engine that drives cell cycle progression. The histidine kinase CckA controls the phosphorylation not only of CtrA but also of CpdR, whose unphosphorylated form promotes CtrA proteolysis. Thus, CckA has a central role in establishing the cell cycle periodicity of CtrA activity by controlling both its phosphorylation and stability. Evidence suggests that the polar localization of CckA during the cell cycle plays a role in CckA function. However, the exact pattern of CckA localization remains controversial. Here, we describe a thorough, quantitative analysis of the spatiotemporal distribution of a functional and chromosomally produced CckA-monomeric green fluorescent protein fusion that affects current models of cell cycle regulation. We also identify two cis-acting regions in CckA that are important for its proper localization and function. The disruption of a PAS-like motif in the sensor domain affects the stability of CckA accumulation at the poles. This is accompanied by a partial loss in CckA function. Shortening an extended linker between beta-sheets within the CckA catalysis-assisting ATP-binding domain has a more severe effect on CckA polar localization and function. This mutant strain exhibits a dramatic cell-to-cell variability in CpdR levels and CtrA cell cycle periodicity, suggesting that the cell cycle-coordinated polar localization of CckA may be important for the robustness of signal transduction and cell cycle progression.
Collapse
|
36
|
Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLoS Comput Biol 2009; 5:e1000463. [PMID: 19680425 PMCID: PMC2714070 DOI: 10.1371/journal.pcbi.1000463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 07/09/2009] [Indexed: 01/20/2023] Open
Abstract
The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella).
Collapse
|
37
|
Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 2009; 73:310-47. [PMID: 19487730 DOI: 10.1128/mmbr.00041-08] [Citation(s) in RCA: 620] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biofilms are communities of microorganisms that live attached to surfaces. Biofilm formation has received much attention in the last decade, as it has become clear that virtually all types of bacteria can form biofilms and that this may be the preferred mode of bacterial existence in nature. Our current understanding of biofilm formation is based on numerous studies of myriad bacterial species. Here, we review a portion of this large body of work including the environmental signals and signaling pathways that regulate biofilm formation, the components of the biofilm matrix, and the mechanisms and regulation of biofilm dispersal.
Collapse
|
38
|
Abstract
Mycoplasmas that are known to exhibit gliding motility possess a differentiated tip structure. This polar organelle mediates cytadherence and gliding motor activity and contains a cytoskeleton-like component that provides structural support. Here, we describe gliding motility and a unique cytoskeleton in Mycoplasma insons, which lacks any obviously differentiated tip structure.
Collapse
|
39
|
Jenal U, Galperin MY. Single domain response regulators: molecular switches with emerging roles in cell organization and dynamics. Curr Opin Microbiol 2009; 12:152-60. [PMID: 19246239 DOI: 10.1016/j.mib.2009.01.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 11/18/2022]
Abstract
Single domain response regulators (SD-RRs) are signaling components of two-component phosphorylation pathways that harbor a phosphoryl receiver domain but lack a dedicated output domain. The Escherichia coli protein CheY, the paradigm member of this family, regulates chemotaxis by relaying information between chemoreceptors and the flagellar motor switch. New data provide a more complex picture of CheY-mediated motility control in several bacteria and suggest diverging mechanisms in control of cellular motors. Moreover, advances have been made in understanding cellular functions of SD-RRs beyond chemotaxis. We review recent reports indicating that SD-RRs constitute a family of versatile molecular switches that contribute to cellular organization and dynamics as spatial organizer and/or as allosteric regulators of histidine protein kinases.
Collapse
Affiliation(s)
- Urs Jenal
- Biozentrum, University of Basel, Switzerland.
| | | |
Collapse
|
40
|
A bacterial control circuit integrates polar localization and proteolysis of key regulatory proteins with a phospho-signaling cascade. Proc Natl Acad Sci U S A 2008; 105:16602-7. [PMID: 18946044 DOI: 10.1073/pnas.0808807105] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic protein localization is an integral component of the regulatory circuit that drives the Caulobacter cell cycle. The ClpXP protease is localized to the Caulobacter cell pole, where it catalyzes the degradation of the CtrA master regulator at specific times in the cell cycle. Clearance of active CtrA at the G1/S transition allows the initiation of DNA replication and cell-cycle progression. The polar localization of ClpXP is dependent on the polar positioning of the CpdR single-domain response regulator. Only the unphosphorylated form of CpdR localizes and activates ClpXP. We demonstrate that another single domain response regulator, DivK, promotes the polar accumulation of unphosphorylated CpdR and that CpdR is subsequently degraded at the cell pole by the localized ClpXP protease. Thus, CpdR function is regulated by a feedback loop that incorporates its differential phosphorylation, the transient polar localization and activity of the ClpXP protease, and the clearance of the CpdR by polar ClpXP that, in turn, releases ClpXP from the pole relieving the degradation of CtrA. CtrA approximately P then accumulates and activates the transcription of cpdR, completing the regulatory loop, establishing an integrated network that controls a robust cell-cycle transition.
Collapse
|
41
|
Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M, Downing KH, Moerner WE, Earnest T, Shapiro L. A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 2008; 134:945-55. [PMID: 18805088 DOI: 10.1016/j.cell.2008.07.015] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 04/15/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Bacterial replication origins move towards opposite ends of the cell during DNA segregation. We have identified a proline-rich polar protein, PopZ, required to anchor the separated Caulobacter crescentus chromosome origins at the cell poles, a function that is essential for maintaining chromosome organization and normal cell division. PopZ interacts directly with the ParB protein bound to specific DNA sequences near the replication origin. As the origin/ParB complex is being replicated and moved across the cell, PopZ accumulates at the cell pole and tethers the origin in place upon arrival. The polar accumulation of PopZ occurs by a diffusion/capture mechanism that requires the MreB cytoskeleton. High molecular weight oligomers of PopZ assemble in vitro into a filamentous network with trimer junctions, suggesting that the PopZ network and ParB-bound DNA interact in an adhesive complex, fixing the chromosome origin at the cell pole.
Collapse
Affiliation(s)
- Grant R Bowman
- Department of Developmental Biology, Stanford University School of Medicine, Beckman Center, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C. A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell 2008; 134:956-68. [PMID: 18805089 DOI: 10.1016/j.cell.2008.07.016] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 04/18/2008] [Accepted: 07/11/2008] [Indexed: 10/21/2022]
Abstract
Cell polarization is an integral part of many unrelated bacterial processes. How intrinsic cell polarization is achieved is poorly understood. Here, we provide evidence that Caulobacter crescentus uses a multimeric pole-organizing factor (PopZ) that serves as a hub to concurrently achieve several polarizing functions. During chromosome segregation, polar PopZ captures the ParB*ori complex and thereby anchors sister chromosomes at opposite poles. This step is essential for stabilizing bipolar gradients of a cell division inhibitor and setting up division near midcell. PopZ also affects polar stalk morphogenesis and mediates the polar localization of the morphogenetic and cell cycle signaling proteins CckA and DivJ. Polar accumulation of PopZ, which is central to its polarizing activity, can be achieved independently of division and does not appear to be dictated by the pole curvature. Instead, evidence suggests that localization of PopZ largely relies on PopZ multimerization in chromosome-free regions, consistent with a self-organizing mechanism.
Collapse
Affiliation(s)
- Gitte Ebersbach
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | | | | | |
Collapse
|
43
|
Sciara MI, Spagnuolo C, Jares-Erijman E, García Véscovi E. Cytolocalization of the PhoP response regulator in Salmonella enterica: modulation by extracellular Mg2+ and by the SCV environment. Mol Microbiol 2008; 70:479-93. [PMID: 18761685 DOI: 10.1111/j.1365-2958.2008.06427.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The PhoP/PhoQ two-component system plays an essential role regulating numerous virulence phenotypes in Salmonella enterica. Previous work showed that PhoQ, the sensor protein, switches between the kinase- and the phosphatase-dominant state in response to environmental Mg2+ availability. This switch defines the PhoP phosphorylation status and, as a result, the transcriptional activity of this regulator. In this work, using the FlAsH labelling technique, we examine PhoP cytolocalization in response to extracellular Mg2+ limitation in vitro and to the Salmonella-containing vacuole (SCV) environment in macrophage cells. We demonstrate that in these PhoP/PhoQ-inducing environments PhoP displays preferential localization to one cell pole, while being homogeneously distributed in the bacterial cytoplasm in repressing conditions. Polar localization is lost in the absence of PhoQ or when a non-phosphorylatable PhoP(D52A) mutant is expressed. However, when PhoP transcriptional activation is achieved in a Mg2+- and PhoQ-independent manner, PhoP regains asymmetric polar localization. In addition, we show that, in the analysed conditions, PhoQ cellular distribution does not parallel PhoP location pattern. These findings reveal that PhoP cellular location is dynamic and conditioned by its environmentally defined transcriptional status, showing a new insight in the PhoP/PhoQ system mechanism.
Collapse
Affiliation(s)
- Mariela I Sciara
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
| | | | | | | |
Collapse
|
44
|
Haeusser DP, Levin PA. The great divide: coordinating cell cycle events during bacterial growth and division. Curr Opin Microbiol 2008; 11:94-9. [PMID: 18396093 DOI: 10.1016/j.mib.2008.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
The relationship between events during the bacterial cell cycle has been the subject of frequent debate. While early models proposed a relatively rigid view in which DNA replication was inextricably coupled to attainment of a specific cell mass, and cell division was triggered by the completion of chromosome replication, more recent data suggest these models were oversimplified. Instead, an intricate set of intersecting, and at times opposing, forces coordinate DNA replication, cell division, and cell growth with one another, thereby ensuring the precise spatial and temporal control of cell cycle events.
Collapse
Affiliation(s)
- Daniel P Haeusser
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | |
Collapse
|
45
|
Abstract
The pathogenic bacteria Yersinia spp. contain a virulence plasmid that encodes a type III secretion system and effectors. During infection, four of the effectors target the actin cytoskeleton, crippling the phagocytic machinery in the infected cell. The remaining two effectors dampen the innate immune response by targeting important signalling pathways. Although the biochemical activity for each of these effectors is known, the mechanisms involved in their ordered secretion and delivery remain elusive.
Collapse
Affiliation(s)
- Jennifer E Trosky
- Department of Microbiology and Immunology, Stanford University School of Medicine, Fairchild Science Building, D300, 299 Campus Drive, Stanford, CA 94305-5124, USA
| | | | | |
Collapse
|
46
|
Li S, Brazhnik P, Sobral B, Tyson JJ. A quantitative study of the division cycle of Caulobacter crescentus stalked cells. PLoS Comput Biol 2007; 4:e9. [PMID: 18225942 PMCID: PMC2217572 DOI: 10.1371/journal.pcbi.0040009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 12/05/2007] [Indexed: 11/18/2022] Open
Abstract
Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three “master regulator” proteins (CtrA, GcrA, and DnaA), is converted into a quantitative model, in order to study the temporal dynamics of these and other cell cycle proteins. The model accounts for important details of the physiology, biochemistry, and genetics of cell cycle control in stalked C. crescentus cell. It reproduces protein time courses in wild-type cells, mimics correctly the phenotypes of many mutant strains, and predicts the phenotypes of currently uncharacterized mutants. Since many of the proteins involved in regulating the cell cycle of C. crescentus are conserved among many genera of α-proteobacteria, the proposed mechanism may be applicable to other species of importance in agriculture and medicine. The cell cycle is the sequence of events by which a growing cell replicates all its components and divides them more or less evenly between two daughter cells. The timing and spatial organization of these events are controlled by gene–protein interaction networks of great complexity. A challenge for computational biology is to build realistic, accurate, predictive mathematical models of these control systems in a variety of organisms, both eukaryotes and prokaryotes. To this end, we present a model of a portion of the molecular network controlling DNA synthesis, cell cycle–related gene expression, DNA methylation, and cell division in stalked cells of the α-proteobacterium Caulobacter crescentus. The model is formulated in terms of nonlinear ordinary differential equations for the major cell cycle regulatory proteins in Caulobacter: CtrA, GcrA, DnaA, CcrM, and DivK. Kinetic rate constants are estimated, and the model is tested against available experimental observations on wild-type and mutant cells. The model is viewed as a starting point for more comprehensive models of the future that will account, in addition, for the spatial asymmetry of Caulobacter reproduction (swarmer cells as well as stalked cells), the correlation of cell growth and division, and cell cycle checkpoints.
Collapse
Affiliation(s)
- Shenghua Li
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Paul Brazhnik
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Bruno Sobral
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|