1
|
Totland MZ, Omori Y, Sørensen V, Kryeziu K, Aasen T, Brech A, Leithe E. Endocytic trafficking of connexins in cancer pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023:166812. [PMID: 37454772 DOI: 10.1016/j.bbadis.2023.166812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Gap junctions are specialized regions of the plasma membrane containing clusters of channels that provide for the diffusion of ions and small molecules between adjacent cells. A fundamental role of gap junctions is to coordinate the functions of cells in tissues. Cancer pathogenesis is usually associated with loss of intercellular communication mediated by gap junctions, which may affect tumor growth and the response to radio- and chemotherapy. Gap junction channels consist of integral membrane proteins termed connexins. In addition to their canonical roles in cell-cell communication, connexins modulate a range of signal transduction pathways via interactions with proteins such as β-catenin, c-Src, and PTEN. Consequently, connexins can regulate cellular processes such as cell growth, migration, and differentiation through both channel-dependent and independent mechanisms. Gap junctions are dynamic plasma membrane entities, and by modulating the rate at which connexins undergo endocytosis and sorting to lysosomes for degradation, cells rapidly adjust the level of gap junctions in response to alterations in the intracellular or extracellular milieu. Current experimental evidence indicates that aberrant trafficking of connexins in the endocytic system is intrinsically involved in mediating the loss of gap junctions during carcinogenesis. This review highlights the role played by the endocytic system in controlling connexin degradation, and consequently gap junction levels, and discusses how dysregulation of these processes contributes to the loss of gap junctions during cancer development. We also discuss the therapeutic implications of aberrant endocytic trafficking of connexins in cancer cells.
Collapse
Affiliation(s)
| | - Yasufumi Omori
- Department of Molecular and Tumour Pathology, Akita University Graduate School of Medicine, Akita, Japan
| | | | | | - Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron, Barcelona, Spain
| | - Andreas Brech
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway; Section for Physiology and Cell Biology, Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | | |
Collapse
|
2
|
Huang MN, Nicholson LT, Batich KA, Swartz AM, Kopin D, Wellford S, Prabhakar VK, Woroniecka K, Nair SK, Fecci PE, Sampson JH, Gunn MD. Antigen-loaded monocyte administration induces potent therapeutic antitumor T cell responses. J Clin Invest 2020; 130:774-788. [PMID: 31661470 DOI: 10.1172/jci128267] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022] Open
Abstract
Efficacy of dendritic cell (DC) cancer vaccines is classically thought to depend on their antigen-presenting cell (APC) activity. Studies show, however, that DC vaccine priming of cytotoxic T lymphocytes (CTLs) requires the activity of endogenous DCs, suggesting that exogenous DCs stimulate antitumor immunity by transferring antigens (Ags) to endogenous DCs. Such Ag transfer functions are most commonly ascribed to monocytes, implying that undifferentiated monocytes would function equally well as a vaccine modality and need not be differentiated to DCs to be effective. Here, we used several murine cancer models to test the antitumor efficacy of undifferentiated monocytes loaded with protein or peptide Ag. Intravenously injected monocytes displayed antitumor activity superior to DC vaccines in several cancer models, including aggressive intracranial glioblastoma. Ag-loaded monocytes induced robust CTL responses via Ag transfer to splenic CD8+ DCs in a manner independent of monocyte APC activity. Ag transfer required cell-cell contact and the formation of connexin 43-containing gap junctions between monocytes and DCs. These findings demonstrate the existence of an efficient gap junction-mediated Ag transfer pathway between monocytes and CD8+ DCs and suggest that administration of tumor Ag-loaded undifferentiated monocytes may serve as a simple and efficacious immunotherapy for the treatment of human cancers.
Collapse
Affiliation(s)
- Min-Nung Huang
- Department of Immunology.,Division of Cardiology, Department of Medicine
| | | | - Kristen A Batich
- School of Medicine.,Department of Pathology.,Preston Robert Tisch Brain Tumor Center
| | - Adam M Swartz
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center
| | | | | | | | - Karolina Woroniecka
- School of Medicine.,Department of Pathology.,Preston Robert Tisch Brain Tumor Center
| | - Smita K Nair
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center.,Department of Neurosurgery, and.,Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Peter E Fecci
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center.,Department of Neurosurgery, and
| | - John H Sampson
- Department of Pathology.,Preston Robert Tisch Brain Tumor Center.,Department of Neurosurgery, and
| | - Michael D Gunn
- Department of Immunology.,Division of Cardiology, Department of Medicine
| |
Collapse
|
3
|
Pelletier RM, Layeghkhavidaki H, Kumar NM, Vitale ML. Cx30.2 deletion causes imbalances in testicular Cx43, Cx46, and Cx50 and insulin receptors. Reciprocally, diabetes/obesity alters Cx30.2 in mouse testis. Am J Physiol Regul Integr Comp Physiol 2020; 318:R1078-R1090. [PMID: 32348681 PMCID: PMC7311678 DOI: 10.1152/ajpregu.00044.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/22/2022]
Abstract
Cx30.2 protein content and localization were assessed during development. An account of Cx30.2, Cx43, Cx46, and Cx50, and insulin receptor (IR) responses to Cx30.2, Cx46, or Cx50 deficiency in mouse interstitial tissue (ITf)- and seminiferous tubule-enriched fractions (STf) is given. The impact of high glucose/insulin on Cx30.2 was investigated in spontaneously diabetic and obese db/db and ob/ob mouse testis and anterior pituitary (AP). Cx30.2 labeled contacts in vascular endothelial and Leydig cells and Sertoli cell junctions in stage V-VII. Cx30.2 expression is regulated differently in the interstitium and tubules. Cx30.2 at 30-kDa levels peaked by 28 days in ITf and by 14 days in STf. In STf, deleting Cx30.2 decreased Cx43 and Cx50, whereas deleting Cx50 downregulated Cx30.2. The opposite occurred in ITf. In STf, deleting Cx30.2 upregulated Cx46 except the full-length reciprocally, deleting Cx46 upregulated Cx30.2. In ITf, Cx30.2 deficiency upregulated full-length and phosphorylated Cx46, whereas deleting Cx46 downregulated 48- to 50-kDa Cx30.2. The db/db and ob/ob mouse ITf, STf, and AP showed imbalanced Cx30.2 levels. IRα levels at 135 kDa declined in Cx30.2-/- and Cx50-/- mouse ITf and Cx46-/- and Cx50-/- STf. IRβ at 98 to 110 kDa dropped in Cx30.2-/- and Cx46-/- mice STf suggesting that Cx30.2 deficiency decreases active IR sites. The results show the connexins interdependence and interaction and that altering a single connexin changes the remaining connexins expression, which can modify gap junction-mediated glucose exchanges in contacting cells. Data suggest that glucose/insulin influences Cx30.2 turnover in testis and AP and, reciprocally, that connexins modulate testis glucose uptake and response to insulin.
Collapse
Affiliation(s)
- R-Marc Pelletier
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada
| | | | - Nalin M Kumar
- Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, Illinois
| | - María Leiza Vitale
- Department of Pathology and Cell Biology, Université de Montréal, Québec, Canada
| |
Collapse
|
4
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
5
|
Pézier AP, Jezzini SH, Bacon JP, Blagburn JM. Shaking B Mediates Synaptic Coupling between Auditory Sensory Neurons and the Giant Fiber of Drosophila melanogaster. PLoS One 2016; 11:e0152211. [PMID: 27043822 PMCID: PMC4833477 DOI: 10.1371/journal.pone.0152211] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 03/10/2016] [Indexed: 11/18/2022] Open
Abstract
The Johnston’s Organ neurons (JONs) form chemical and electrical synapses onto the giant fiber neuron (GF), as part of the neuronal circuit that mediates the GF escape response in Drosophila melanogaster. The purpose of this study was to identify which of the 8 Drosophila innexins (invertebrate gap junction proteins) mediates the electrical connection at this synapse. The GF is known to express Shaking B (ShakB), specifically the ShakB(N+16) isoform only, at its output synapses in the thorax. The shakB2 mutation disrupts these GF outputs and also abolishes JON-GF synaptic transmission. However, the identity of the innexin that forms the presynaptic hemichannels in the JONs remains unknown. We used electrophysiology, immunocytochemistry and dye injection, along with presynaptically-driven RNA interference, to investigate this question. The amplitude of the compound action potential recorded in response to sound from the base of the antenna (sound-evoked potential, or SEP) was reduced by RNAi of the innexins Ogre, Inx3, Inx6 and, to a lesser extent Inx2, suggesting that they could be required in JONs for proper development, excitability, or synchronization of action potentials. The strength of the JON-GF connection itself was reduced to background levels only by RNAi of shakB, not of the other seven innexins. ShakB knockdown prevented Neurobiotin coupling between GF and JONs and removed the plaques of ShakB protein immunoreactivity that are present at the region of contact. Specific shakB RNAi lines that are predicted to target the ShakB(L) or ShakB(N) isoforms alone did not reduce the synaptic strength, implying that it is ShakB(N+16) that is required in the presynaptic neurons. Overexpression of ShakB(N+16) in JONs caused the formation of ectopic dye coupling, whereas ShakB(N) prevented it altogether, supporting this conclusion and also suggesting that gap junction proteins may have an instructive role in synaptic target choice.
Collapse
Affiliation(s)
- Adeline P. Pézier
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Sami H. Jezzini
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
| | - Jonathan P. Bacon
- School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Jonathan M. Blagburn
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico, United States of America
- * E-mail:
| |
Collapse
|
6
|
Kidder GM, Cyr DG. Roles of connexins in testis development and spermatogenesis. Semin Cell Dev Biol 2016; 50:22-30. [PMID: 26780117 DOI: 10.1016/j.semcdb.2015.12.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023]
Abstract
The development and differentiation of cells involved in spermatogenesis requires highly regulated and coordinated interactions between cells. Intercellular communication, particularly via connexin43 (Cx43) gap junctions, plays a critical role in the development of germ cells during fetal development and during spermatogenesis in the adult. Loss of Cx43 in the fetus results in a decreased number of germ cells, while the loss of Cx43 in the adult Sertoli cells results in complete inhibition of spermatogenesis. Connexins 26, 32, 33, 36, 45, 46 and 50 have also been localized to specific compartments of the testis in various mammals. Loss of Cx46 is associated with an increase in germ cell apoptosis and loss of the integrity of the blood-testis barrier, while loss of other connexins appears to have more subtle effects within the seminiferous tubule. Outside the seminiferous tubule, the interstitial Leydig cells express connexins 36 and 45 along with Cx43; deletion of the latter connexin did not reveal it to be crucial for steroidogenesis or for the development and differentiation of Leydig cells. In contrast, loss of Cx43 from Sertoli cells results in Leydig cell hyperplasia, suggesting important cross-talk between Sertoli and Leydig cells. In the epididymis connexins 26, 30.3, Cx31.1, 32, and 43 have been identified and differentiation of the epithelium is associated with dramatic changes in their expression. Decreased expression of Cx43 results in decreased sperm motility, a function acquired by spermatozoa during epididymal transit. Clearly, intercellular gap junctional communication within the testis and epididymis represents a critical aspect of male reproductive function and fertility. The implications of this mode of intercellular communication for male fertility remains a poorly understood but important facet of male reproduction.
Collapse
Affiliation(s)
- Gerald M Kidder
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Daniel G Cyr
- INRS-Institut Armand-Frappier, University of Québec, 531 boul. des Prairies, Laval, Québec H7V 1B7, Canada
| |
Collapse
|
7
|
Kibschull M, Gellhaus A, Carette D, Segretain D, Pointis G, Gilleron J. Physiological roles of connexins and pannexins in reproductive organs. Cell Mol Life Sci 2015; 72:2879-98. [PMID: 26100514 PMCID: PMC11114083 DOI: 10.1007/s00018-015-1965-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/11/2015] [Indexed: 12/15/2022]
Abstract
Reproductive organs are complex and well-structured tissues essential to perpetuate the species. In mammals, the male and female reproductive organs vary on their organization, morphology and function. Connectivity between cells in such tissues plays pivotal roles in organogenesis and tissue functions through the regulation of cellular proliferation, migration, differentiation and apoptosis. Connexins and pannexins can be seen as major regulators of these physiological processes. In the present review, we assembled several lines of evidence demonstrating that these two families of proteins are essential for male and female reproduction.
Collapse
Affiliation(s)
- Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 25 Orde Street, Toronto, M5T 3H7 Canada
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | - Diane Carette
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Dominique Segretain
- UMR S1147, University Paris Descartes, 45 rue des Saints-Pères, 75006 Paris, France
- University of Versailles, 78035 Saint Quentin, France
| | - Georges Pointis
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | - Jerome Gilleron
- INSERM U 1065, University of Nice Sophia-Antipolis, 151 Route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| |
Collapse
|
8
|
Hervé JC, Derangeon M, Sarrouilhe D, Bourmeyster N. Influence of the scaffolding protein Zonula Occludens (ZOs) on membrane channels. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:595-604. [DOI: 10.1016/j.bbamem.2013.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/20/2023]
|
9
|
Li D, Sekhon P, Barr KJ, Márquez-Rosado L, Lampe PD, Kidder GM. Connexins and steroidogenesis in mouse Leydig cells. Can J Physiol Pharmacol 2013; 91:157-64. [PMID: 23458200 PMCID: PMC3624991 DOI: 10.1139/cjpp-2012-0385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Connexin43 has been recognized as forming gap junctions in Leydig cells. However, previous work has shown that mouse Leydig cells lacking this connexin do not suffer any limitation of their ability to produce testosterone when stimulated with luteinizing hormone. The objective of this study was to identify additional connexins in mouse Leydig cells that could be required for steroidogenesis. A reverse transcription - polymerase chain reaction screen involving isolated adult Leydig cells identified connexin36 and connexin45 as expressed along with connexin43. Treatment of dissociated testes with carbenoxolone, a nonspecific blocker of gap junctional coupling, significantly reduced testosterone output as did treatment with quinine, which disrupts coupling provided by connexin36 and connexin45 gap junctions but not those composed of connexin43, indicating that either or both of connexins 36 and 45 could be involved in supporting Leydig cell steroidogenesis. Immunolabeling of adult mouse testis sections confirmed the localization of connexin36 along with connexin43 in Leydig cell gap junctions but not connexin45, which is distributed throughout the cells. It was concluded that connexin36, connexin43, and connexin45 are coexpressed in Leydig cells with connexins 36 and 43 contributing to gap junctions. The role of connexin45 remains to be elucidated.
Collapse
Affiliation(s)
- Dan Li
- Depart of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1
- Children’s Health Research Institute, 800 Commissioners Road East, London, ON N6C 2V5
| | - Poonam Sekhon
- Depart of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1
| | - Kevin J. Barr
- Depart of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1
- Children’s Health Research Institute, 800 Commissioners Road East, London, ON N6C 2V5
| | - Lucrecia Márquez-Rosado
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5-C129, Seattle, WA 98109
| | - Paul D. Lampe
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, M5-C129, Seattle, WA 98109
| | - Gerald M. Kidder
- Depart of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON N6A 5C1
- Children’s Health Research Institute, 800 Commissioners Road East, London, ON N6C 2V5
| |
Collapse
|
10
|
Günther S, Fietz D, Weider K, Bergmann M, Brehm R. Effects of a murine germ cell-specific knockout of Connexin 43 on Connexin expression in testis and fertility. Transgenic Res 2012. [PMID: 23188169 DOI: 10.1007/s11248-012-9668-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Connexin 43 (Cx 43)--expressed by germ cells (GC), Sertoli cells (SC) and Leydig cells--is one of at least eleven Cx in the murine testis. A general knockout (KO) of Cx 43 in mice results in perinatal death and a SC-specific KO of Cx 43 (SCCx43KO) causes infertility of male mice by preventing the initiation of spermatogenesis. To further elucidate the role of Cx 43 in the testis, a new mouse model with a GC-specific KO of Cx 43 (GCCx43KO) was created by using the Cre/loxP recombination system. A transgenic mouse line expressing the Cre gene under the tissue non-specific alkaline phosphatase promoter and a transgenic floxed Cx 43-LacZ mouse line were mated. The resulting F1-generation was backcrossed with homozygous Cx 43 floxed mice, and offspring was genotyped. Immunohistochemical analysis of testes of different aged homozygous mice revealed normal spermatogenesis and reduced Cx 43 immunoreactions. RT-qPCR and Western blots showed a downregulation of Cx 43 mRNA and protein, and a nearly unchanged mRNA expression of Cx 26, Cx 33 and Cx 45 in pubertal and adult KO mice. Western blots revealed considerable immunoreactive bands for Cx 26 and Cx 45. Male and female homozygous GCCx43KO mice were viable and fertile. Our data suggest, in contrast to inter SC and inter SC-GC cross talk in SCCx43KO mice which depends selectively on Cx 43 expression, that Cx 43 in GC seems not to be essential in GC-SC communication, when other Cx persist to be expressed.
Collapse
Affiliation(s)
- Sabine Günther
- Institute for Veterinary Anatomy, Histology and Embryology, Justus Liebig University Giessen, Frankfurter Str. 98, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
11
|
Gilleron J, Carette D, Chevallier D, Segretain D, Pointis G. Molecular connexin partner remodeling orchestrates connexin traffic: from physiology to pathophysiology. Crit Rev Biochem Mol Biol 2012; 47:407-23. [PMID: 22551357 DOI: 10.3109/10409238.2012.683482] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Connexins, through gap junctional intercellular communication, are known to regulate many physiological functions involved in developmental processes such as cell proliferation, differentiation, migration and apoptosis. Strikingly, alterations of connexin expression and trafficking are often, if not always, associated with human developmental diseases and carcinogenesis. In this respect, disrupted trafficking dynamics and aberrant intracytoplasmic localization of connexins are considered as typical features of functionality failure leading to the pathological state. Recent findings demonstrate that interactions of connexins with numerous protein partners, which take place throughout connexin trafficking, are essential for gap junction formation, membranous stabilization and degradation. In the present study, we give an overview of the physiological molecular machinery and of the specific interactions between connexins and their partners, which are involved in connexin trafficking, and we highlight their changes in pathological situations.
Collapse
Affiliation(s)
- Jérôme Gilleron
- INSERM U 1065, University Nice Sophia Antipolis, Team 5, C3M, 151 route Saint-Antoine de Ginestière, France
| | | | | | | | | |
Collapse
|
12
|
Hervé JC, Derangeon M, Sarrouilhe D, Giepmans BNG, Bourmeyster N. Gap junctional channels are parts of multiprotein complexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:1844-65. [PMID: 22197781 DOI: 10.1016/j.bbamem.2011.12.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 11/28/2011] [Accepted: 12/06/2011] [Indexed: 12/16/2022]
Abstract
Gap junctional channels are a class of membrane channels composed of transmembrane channel-forming integral membrane proteins termed connexins, innexins or pannexins that mediate direct cell-to-cell or cell-to extracellular medium communication in almost all animal tissues. The activity of these channels is tightly regulated, particularly by intramolecular modifications as phosphorylations of proteins and via the formation of multiprotein complexes where pore-forming subunits bind to auxiliary channel subunits and associate with scaffolding proteins that play essential roles in channel localization and activity. Scaffolding proteins link signaling enzymes, substrates, and potential effectors (such as channels) into multiprotein signaling complexes that may be anchored to the cytoskeleton. Protein-protein interactions play essential roles in channel localization and activity and, besides their cell-to-cell channel-forming functions, gap junctional proteins now appear involved in different cellular functions (e.g. transcriptional and cytoskeletal regulations). The present review summarizes the recent progress regarding the proteins capable of interacting with junctional proteins and highlights the function of these protein-protein interactions in cell physiology and aberrant function in diseases. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and functions.
Collapse
Affiliation(s)
- Jean-Claude Hervé
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, Poitiers, France.
| | | | | | | | | |
Collapse
|
13
|
Gilleron J, Carette D, Fiorini C, Dompierre J, Macia E, Denizot JP, Segretain D, Pointis G. The large GTPase dynamin2: A new player in connexin 43 gap junction endocytosis, recycling and degradation. Int J Biochem Cell Biol 2011; 43:1208-17. [DOI: 10.1016/j.biocel.2011.04.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 10/18/2022]
|
14
|
Pointis G, Gilleron J, Carette D, Segretain D. Physiological and physiopathological aspects of connexins and communicating gap junctions in spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1607-20. [PMID: 20403873 DOI: 10.1098/rstb.2009.0114] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Spermatogenesis is a highly regulated process of germ cell proliferation and differentiation, starting from spermatogonia to spermatocytes and giving rise to spermatids, the future spermatozoa. In addition to endocrine regulation, testicular cell-cell interactions are essential for spermatogenesis. This precise control is mediated through paracrine/autocrine pathways, direct intercellular contacts and through intercellular communication channels, consisting of gap junctions and their constitutive proteins, the connexins. Gap junctions are localized between adjacent Leydig cells, between Sertoli cells and between Sertoli cells and specific germ cells. This review focuses on the distribution of connexins within the seminiferous epithelium, their participation in gap junction channel formation, the control of their expression and the physiological relevance of these junctions in both the Sertoli-Sertoli cell functional synchronization and the Sertoli-germ cell dialogue. In this review, we also discuss the potential implication of disrupted connexin in testis cancer, since impaired expression of connexin has been described as a typical feature of tumoral proliferation.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 895, Team 5 Physiopathology of Germ Cell Control: Genomic and Non-genomic Mechanisms, Bâtiment Universitaire ARCHIMED, C3M, 151 route Saint-Antoine de Ginestière, BP 2 3194, 06204 Nice Cedex 3, France
| | | | | | | |
Collapse
|
15
|
Carette D, Gilleron J, Segretain D, Pointis G. Heteromeric connexin 43/connexin 33 complex endocytosis: A connexin phosphorylation independent mechanism. Biochimie 2010; 92:555-9. [DOI: 10.1016/j.biochi.2010.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
|
16
|
Li MWM, Mruk DD, Lee WM, Cheng CY. Cytokines and junction restructuring events during spermatogenesis in the testis: an emerging concept of regulation. Cytokine Growth Factor Rev 2009; 20:329-38. [PMID: 19651533 PMCID: PMC2758296 DOI: 10.1016/j.cytogfr.2009.07.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During spermatogenesis in mammalian testes, junction restructuring takes place at the Sertoli-Sertoli and Sertoli-germ cell interface, which is coupled with germ cell development, such as cell cycle progression, and translocation of the germ cell within the seminiferous epithelium. In the rat testis, restructuring of the blood-testis barrier (BTB) formed between Sertoli cells near the basement membrane and disruption of the apical ectoplasmic specialization (apical ES) between Sertoli cells and fully developed spermatids (spermatozoa) at the luminal edge of the seminiferous epithelium occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis. These two processes are essential for the translocation of primary spermatocytes from the basal to the apical compartment to prepare for meiosis, and the release of spermatozoa into the lumen of the seminiferous epithelium at spermiation, respectively. Cytokines, such as TNFalpha and TGFbeta3, are present at high levels in the microenvironment of the epithelium at this stage of the epithelial cycle. Since these cytokines were shown to disrupt the BTB integrity and germ cell adhesion, it was proposed that some cytokines released from germ cells, particularly primary spermatocytes, and Sertoli cells, would induce restructuring of the BTB and apical ES at stage VIII of the seminiferous epithelial cycle. In this review, the intricate role of cytokines and testosterone to regulate the transit of primary spermatocytes at the BTB and spermiation will be discussed. Possible regulators that mediate cytokine-induced junction restructuring, including gap junction and extracellular matrix, and the role of testosterone on junction dynamics in the testis will also be discussed.
Collapse
Affiliation(s)
- Michelle W. M. Li
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065
| | - Dolores D. Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065
| | - Will M. Lee
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | - C. Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
17
|
Carette D, Gilleron J, Decrouy X, Fiorini C, Diry M, Segretain D, Pointis G. Connexin 33 impairs gap junction functionality by accelerating connexin 43 gap junction plaque endocytosis. Traffic 2009; 10:1272-85. [PMID: 19548984 DOI: 10.1111/j.1600-0854.2009.00949.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Connexin 33 (Cx33) is a testis-specific gap junction protein. We previously reported that Cx33 exerts dominant-negative effect on gap junction intercellular communication by sequestering Cx43 within early endosomes in Sertoli cells. However, the molecular mechanisms that drive this process are unknown. The present study analyzed: (i) the trafficking of Cx33 and Cx43 in wild-type Sertoli cells transfected with Cx33-DsRed2 and Cx43-green fluorescent protein vectors; (ii) the formation of heteromeric Cx33/Cx43 hemi-channels and their incorporation into gap junction plaques. Fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer and videomicroscopy studies demonstrated that Cx33 and Cx43 associated to form heteromeric oligomers that trafficked along microtubules to the plasma membrane. However, the plaques containing Cx33 were not functional. Immunoprecipitation experiments revealed that zonula occludens-1 (ZO-1), a scaffold protein proposed to secure Cx in gap junction plaques at the cell-cell boundary, associated with Cx33 in testis extracts. In cells expressing Cx33, Cx33 and ZO-1 specifically interacted with P(1) phosphorylated and P(0) unphosphorylated isoforms of Cx43, and the ZO-1 membranous signal level was reduced. It is suggested that alteration of Cx43/ZO-1 association by Cx33 could be one mechanism by which Cx33 exerts its dominant-negative effect on gap junction plaque.
Collapse
Affiliation(s)
- Diane Carette
- INSERM U 895, Team 5 "Physiopathology of germ cell control: genomic and non genomic mechanisms", Centre Méditerranéen Moléculaire (C3M), Université Sophia Antipolis, F-06204 Nice Cedex 3, France
| | | | | | | | | | | | | |
Collapse
|
18
|
Gilleron J, Fiorini C, Carette D, Avondet C, Falk MM, Segretain D, Pointis G. Molecular reorganization of Cx43, Zo-1 and Src complexes during the endocytosis of gap junction plaques in response to a non-genomic carcinogen. J Cell Sci 2008; 121:4069-78. [PMID: 19033388 DOI: 10.1242/jcs.033373] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gap junction protein connexin 43 (Cx43) exhibits dynamic trafficking that is altered in most tumor cells and in response to carcinogen exposure. A number of connexin (Cx)-binding proteins are known to be involved in endocytic internalization of gap junctions. Here, we analyzed the discrete molecular interactions that occur between Src, ZO-1 and Cx43 during Cx43 internalization in response to the non-genomic carcinogen gamma-hexachlorocyclohexane (HCH). Internalization of the Cx43 gap junction plaque was significantly accelerated in Cx43-GFP transfected 42GPA9 Sertoli cells that were exposed to the carcinogen. HCH induced the rapid recruitment of Src to the plasma membrane, activation of Src within 3 minutes and the efficient inhibition of gap junctional coupling, but had no effect in the presence of the Src inhibitor PP2. Immunoprecipitation experiments demonstrated that HCH increased Cx43-Src interaction and concomitantly decreased Cx43-ZO-1 association. ZO-1 was detected on both sides of the gap junction plaques in untreated cells, but appeared to be mainly localized on one side during HCH-induced internalization. The dissociation of ZO-1 from Cx43 appears to occur specifically on the side of the plaque to which Src was recruited. These findings provide mechanistic evidence by which internalization of the Cx43 gap junction plaque might be initiated, suggesting that Src-mediated dissociation of ZO-1 from one side of the plaque initiates endocytic internalization of gap junctions and that this process is amplified in response to exposure to HCH.
Collapse
Affiliation(s)
- Jérome Gilleron
- INSERM U 895, Team 5 Physiopathologic control of germ cell proliferation: genomic and non genomic mechanisms, Université Paris Descartes, 45 rue des Saint-Pères, 75006, Paris, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Ahn M, Lee J, Gustafsson A, Enriquez A, Lancaster E, Sul JY, Haydon PG, Paul DL, Huang Y, Abrams CK, Scherer SS. Cx29 and Cx32, two connexins expressed by myelinating glia, do not interact and are functionally distinct. J Neurosci Res 2008; 86:992-1006. [PMID: 17972320 PMCID: PMC2663799 DOI: 10.1002/jnr.21561] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In rodents, oligodendrocytes and myelinating Schwann cells express connexin32 (Cx32) and Cx29, which have different localizations in the two cell types. We show here that, in contrast to Cx32, Cx29 does not form gap junction plaques or functional gap junctions in transfected cells. Furthermore, when expressed together, Cx29 and Cx32 are not colocalized and do not coimmunoprecipitate. To determine the structural basis of their divergent behavior, we generated a series of chimeric Cx32-Cx29 proteins by exchanging their intracellular loops and/or their C-terminal cytoplasmic tails. Although some chimerae reach the cell membrane, others appear to be largely localized intracellularly; none form gap junction plaques or functional gap junctions. Substituting the C-terminus or the intracellular loop and the C-terminus of Cx32 with those of Cx29 does not disrupt their colocalization or coimmunoprecipitation with Cx32. Substituting the C-terminus of Cx29 with that of Cx32 does not disrupt the coimmunoprecipitation or the colocalization with Cx29, whereas substituting both the intracellular loop and the C-terminus of Cx32 with those of Cx29 diminishes the coimmunoprecipitation with Cx29. Conversely, the Cx32 chimera that contains the intracellular loop of Cx29 coimmunoprecipitates with Cx29, indicating that the intracellular loop participates in Cx29-Cx29 interactions. These data indicate that homomeric interactions of Cx29 and especially Cx32 largely require other domains: the N-terminus, transmembrane domains, and extracellular loops. Substituting the intracellular loop and/or tail of Cx32 with those of Cx29 appears to prevent Cx32 from forming functional gap junctions.
Collapse
Affiliation(s)
- Meejin Ahn
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jonathan Lee
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Andreas Gustafsson
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Alan Enriquez
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Eric Lancaster
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Jai-Yoon Sul
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Philip G. Haydon
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - David L. Paul
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Yan Huang
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Charles K. Abrams
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, New York
| | - Steven S. Scherer
- Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Gong XQ, Shao Q, Langlois S, Bai D, Laird DW. Differential potency of dominant negative connexin43 mutants in oculodentodigital dysplasia. J Biol Chem 2007; 282:19190-202. [PMID: 17420259 DOI: 10.1074/jbc.m609653200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oculodentodigital dysplasia (ODDD) is a congenital autosomal dominant disorder with phenotypic variability, which has been associated with mutations in the GJA1 gene encoding connexin43 (Cx43). Given that Cx43 mutants are thought to be equally co-expressed with wild-type Cx43 in ODDD patients, it is imperative to examine the consequence of these mutants in model systems that reflect this molar ratio. To that end, we used differential fluorescent protein tagging of mutant and wild-type Cx43 to quantitatively monitor the ratio of mutant/wild-type within the same putative gap junction plaques and co-immunoprecipitation to determine if the mutants interact with wild-type Cx43. Together the fluorescence-based assay was combined with patch clamp analysis to assess the dominant negative potency of Cx43 mutants. Our results revealed that the ODDD-linked Cx43 mutants, G21R and G138R, as well as amino terminus green fluorescent protein-tagged Cx43, were able to co-localize with wild-type Cx43 at the gap junction plaque-like structures and to co-immunoprecipitate with wild-type Cx43. All Cx43 mutants demonstrated dominant negative action on gap junctional conductance of wild-type Cx43 but not that of Cx32. More interestingly, these Cx43 mutants demonstrated different potencies in inhibiting the function of wild-type Cx43 with the G21R mutant being two times more potent than the G138R mutant. The potency difference in the dominant negative properties of ODDD-linked Cx43 mutants may have clinical implications for the various symptoms and disease severity observed in ODDD patients.
Collapse
Affiliation(s)
- Xiang-Qun Gong
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
21
|
Levin M. Gap junctional communication in morphogenesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2007; 94:186-206. [PMID: 17481700 PMCID: PMC2292839 DOI: 10.1016/j.pbiomolbio.2007.03.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gap junctions permit the direct passage of small molecules from the cytosol of one cell to that of its neighbor, and thus form a system of cell-cell communication that exists alongside familiar secretion/receptor signaling. Because of the rich potential for regulation of junctional conductance, and directional and molecular gating (specificity), gap junctional communication (GJC) plays a crucial role in many aspects of normal tissue physiology. However, the most exciting role for GJC is in the regulation of information flow that takes place during embryonic development, regeneration, and tumor progression. The molecular mechanisms by which GJC establishes local and long-range instructive morphogenetic cues are just beginning to be understood. This review summarizes the current knowledge of the involvement of GJC in the patterning of both vertebrate and invertebrate systems and discusses in detail several morphogenetic systems in which the properties of this signaling have been molecularly characterized. One model consistent with existing data in the fields of vertebrate left-right patterning and anterior-posterior polarity in flatworm regeneration postulates electrophoretically guided movement of small molecule morphogens through long-range GJC paths. The discovery of mechanisms controlling embryonic and regenerative GJC-mediated signaling, and identification of the downstream targets of GJC-permeable molecules, represent exciting next areas of research in this fascinating field.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Devlopmental Biology, Forsyth Institute, and Developmental Biology Department, Harvard School of Dental Medicine, Boston, MA 02115, USA.
| |
Collapse
|
22
|
Gilleron J, Nebout M, Scarabelli L, Senegas-Balas F, Palmero S, Segretain D, Pointis G. A potential novel mechanism involving connexin 43 gap junction for control of sertoli cell proliferation by thyroid hormones. J Cell Physiol 2006; 209:153-61. [PMID: 16823880 DOI: 10.1002/jcp.20716] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
There is strong evidence that thyroid hormones through triiodothyronine (T3) regulate Sertoli cell proliferation and differentiation in the neonatal testis. However, the mechanism(s) by which they are able to control Sertoli cell proliferation is unclear. In the present study in vivo approaches (PTU-induced neonatal hypothyroidism known to affect Sertoli cell proliferation) associated with in vitro experiments on a Sertoli cell line were developed to investigate this question. We demonstrated that the inhibitory effect of T3 on Sertoli cell growth, analyzed by evaluating DNA-incorporated [3H] thymidine, was associated with a time and dose-dependent increase in the levels of Cx43, a constitutive protein of gap junctions, known to participate in the control of cell proliferation and the most predominant Cx in the testis. These Cx43 changes were associated with increased gap junction communication measured by gap FRAP. Consistent with these results two specific inhibitors of gap junction coupling, AGA and oleamide, were able to significantly reverse the T3 inhibitory effect on Sertoli cell proliferation. The present data also revealed a nongenomic effect of T3 on Cx43 Sertoli cells that was evidenced by a rapid up-regulation of gap junction plaque number as identified in Cx43-GFP transfected cells exposed to the hormone. This process appears mediated through actin cytoskeleton since incubation of the cells with cytochalasin D totally reversed the T3 stimulatory effect on Cx43-GFP gap junction plaques. Based on these data, we propose a working hypothesis in which Cx43 could be an intermediate target for T3 inhibition of neonatal Sertoli cell proliferation.
Collapse
Affiliation(s)
- Jerome Gilleron
- INSERM U 670, Faculté de Médecine, Université de Paris V René Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Fiorini C, Decrouy X, Defamie N, Segretain D, Pointis G. Opposite regulation of connexin33 and connexin43 by LPS and IL-1α in spermatogenesis. Am J Physiol Cell Physiol 2006; 290:C733-40. [PMID: 16236818 DOI: 10.1152/ajpcell.00106.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The gap junction proteins, connexins (Cxs), are present in the testis, and among them, Cx43 play an essential role in spermatogenesis. In the present study, we investigated the testicular expression and regulation of another Cx, Cx33, previously described as a negative regulator of gap junction communication. Cx33 mRNA was present in testis and undetectable in heart, liver, ovary, and uterus. In the mature testis, Cx33 was specifically immunolocalized in the basal compartment of the seminiferous tubules, whereas Cx43 was present in both seminiferous tubule and interstitial compartments. During stages IX and X of spermatogenesis, characterized by Sertoli cell phagocytosis of residual bodies, Cx43 was poorly expressed within seminiferous tubules, while Cx33 signal was strong. To evaluate the role of phagocytosis in the control of Cx33 and Cx43 expression, the effect of LPS was analyzed in the Sertoli cell line 42GPA9. We show herein that phagocytosis activation by LPS concomitantly stimulated Cx33 and inhibited Cx43 mRNA levels. These effects appear to have been mediated through IL-1α, because the exposure of Sertoli cells to the IL-1 receptor antagonist partly reversed these effects. IL-1α enhanced and reduced, respectively, the levels of Cx33 and Cx43 mRNA in a time- and dose-dependent manner. These data reveal that Cx33 and Cx43 genes are controlled differently within the testis and suggest that these two Cxs may exert opposite and complementary effects on spermatogenesis.
Collapse
Affiliation(s)
- Celine Fiorini
- Faculté de Médecine, INSERM U 670, 28 Ave. de Valombrose, 06107 Nice cedex 2, France
| | | | | | | | | |
Collapse
|
24
|
Pointis G, Fiorini C, Defamie N, Segretain D. Gap junctional communication in the male reproductive system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1719:102-16. [PMID: 16259941 DOI: 10.1016/j.bbamem.2005.09.017] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 09/20/2005] [Accepted: 09/21/2005] [Indexed: 01/10/2023]
Abstract
Male fertility is a highly controlled process that allows proliferation, meiosis and differentiation of male germ cells in the testis, final maturation in the epididymis and also requires functional male accessory glands: seminal vesicles, prostate and corpus cavernosum. In addition to classical endocrine and paracrine controls, mainly by gonadotropins LH and FSH and steroids, there is now strong evidence that all these processes are dependent upon the presence of homocellular or heterocellular junctions, including gap junctions and their specific connexins (Cxs), between the different cell types that structure the male reproductive tract. The present review is focused on the identification of Cxs, their distribution in the testis and in different structures of the male genital tract (epididymis, seminal vesicle, prostate, corpus cavernosum), their crucial role in the control of spermatogenesis and their implication in the function of the male accessory glands, including functional smooth muscle tone. Their potential dysfunctions in some testis (spermatogenic arrest, seminoma) and prostate (benign hyperplasia, adenocarcinoma) diseases and in the physiopathology of the human erectile function are also discussed.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 670, Faculté de Médecine, 28 avenue de Valombrose, 06107 Nice cedex 02, France.
| | | | | | | |
Collapse
|
25
|
Wang M, Martínez AD, Berthoud VM, Seul KH, Gemel J, Valiunas V, Kumari S, Brink PR, Beyer EC. Connexin43 with a cytoplasmic loop deletion inhibits the function of several connexins. Biochem Biophys Res Commun 2005; 333:1185-93. [PMID: 15979566 PMCID: PMC2751629 DOI: 10.1016/j.bbrc.2005.05.201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Accepted: 05/31/2005] [Indexed: 11/24/2022]
Abstract
Connexins (Cx) form gap junction channels mediating direct intercellular communication. To study the role of amino acids within the cytoplasmic loop, we produced a recombinant adenovirus containing Cx43 with a deletion of amino acids 130-136 (Cx43del(130-136)). Cx43del(130-136) expressed alone in HeLa cells localized within the cytoplasm and did not allow transfer of ions, neurobiotin or Lucifer yellow. When co-expressed with wild type Cx43, Cx43del(130-136) blocked electrical coupling and transfer of neurobiotin or Lucifer yellow. Cx43del(130-136) and Cx43 co-localized by immunofluorescence and were co-purified from Triton X-100-solubilized cell extracts. Intercellular transfer mediated by Cx37 and Cx45 (but not Cx26 or Cx40) was inhibited when co-expressed with Cx43del(130-136). Cx43del(130-136) co-localized with Cx37, Cx40, or Cx45, but not Cx26. These data suggest that Cx43del(130-136) produces connexin-specific inhibition of intercellular communication through formation of heteromeric connexons that are non-functional and/or retained in the cytoplasm.
Collapse
Affiliation(s)
- Min Wang
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Agustín D. Martínez
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Viviana M. Berthoud
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Kyung H. Seul
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Joanna Gemel
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
| | - Virginijus Valiunas
- Department of Physiology and Biophysics, State University of New York, Stony Brook, NY, USA
| | - Sindhu Kumari
- Department of Physiology and Biophysics, State University of New York, Stony Brook, NY, USA
| | - Peter R. Brink
- Department of Physiology and Biophysics, State University of New York, Stony Brook, NY, USA
| | - Eric C. Beyer
- Department of Pediatrics, Section of Hematology/Oncology and Stem Cell Transplantation, University of Chicago, Chicago, IL, USA
- Corresponding author. Fax: +1 773 702 9881. (E.C. Beyer)
| |
Collapse
|
26
|
Pointis G, Segretain D. Role of connexin-based gap junction channels in testis. Trends Endocrinol Metab 2005; 16:300-6. [PMID: 16054834 DOI: 10.1016/j.tem.2005.07.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 05/05/2005] [Accepted: 07/20/2005] [Indexed: 11/23/2022]
Abstract
Spermatogenesis is a highly controlled process that allows proliferation and differentiation of male germ cells. This is under classical endocrine and paracrine controls. There is also evidence that gap junctions between Leydig cells, between Sertoli cells and between Sertoli and germ cells participate in the local regulation of spermatogenesis. Recent studies reveal that connexin 43 (Cx43), the predominant gap junction protein in the testis, is essential for the initiation and maintenance of spermatogenesis. In this review, we focus on the identification, distribution and control of connexins in the mammalian testis. The implication of connexin-based gap junctions in testicular physiology and in pathological disorders of spermatogenesis (spermatogenic arrest and testis cancer) is also discussed.
Collapse
Affiliation(s)
- Georges Pointis
- INSERM U 670, Faculté de Médecine, IFR 50, Avenue de Valombrose, 06107 Nice cedex 02, France.
| | | |
Collapse
|