1
|
Chagin VO, Reinhart B, Becker A, Mortusewicz O, Jost KL, Rapp A, Leonhardt H, Cardoso MC. Processive DNA synthesis is associated with localized decompaction of constitutive heterochromatin at the sites of DNA replication and repair. Nucleus 2019; 10:231-253. [PMID: 31744372 PMCID: PMC6949026 DOI: 10.1080/19491034.2019.1688932] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/01/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022] Open
Abstract
Constitutive heterochromatin is considered as a functionally inert genome compartment, important for its architecture and stability. How such stable structure is maintained is not well understood. Here, we apply four different visualization schemes to label it and investigate its dynamics during DNA replication and repair. We show that replisomes assemble over the heterochromatin in a temporally ordered manner. Furthermore, heterochromatin undergoes transient decompaction locally at the active sites of DNA synthesis. Using selective laser microirradiation conditions that lead to damage repaired via processive DNA synthesis, we measured similarly local decompaction of heterochromatin. In both cases, we could not observe large-scale movement of heterochromatin to the domain surface. Instead, the processive DNA synthesis machinery assembled at the replication/repair sites. Altogether, our data are compatible with a progression of DNA replication/repair along the chromatin in a dynamic mode with localized and transient decompaction that does not globally remodels the whole heterochromatin compartment.
Collapse
Affiliation(s)
- Vadim O. Chagin
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Britta Reinhart
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annette Becker
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - K. Laurence Jost
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Alexander Rapp
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | | | - M. Cristina Cardoso
- Cell Biology & Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| |
Collapse
|
2
|
Fukuma M, Ganmyo Y, Miura O, Ohyama T, Shimizu N. Cloning and Characterization of a Human Genomic Sequence that Alleviates Repeat-Induced Gene Silencing. PLoS One 2016; 11:e0153338. [PMID: 27078685 PMCID: PMC4831671 DOI: 10.1371/journal.pone.0153338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023] Open
Abstract
Plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) are spontaneously amplified in transfected mammalian cells, and such amplification generates chromosomal homogeneously staining regions (HSRs) or extrachromosomal double minutes (DMs). This method provides a novel, efficient, and rapid way to establish cells that stably produce high levels of recombinant proteins. However, because IR/MAR plasmids are amplified as repeats, they are frequently targeted by repeat-induced gene silencing (RIGS), which silences a variety of repeated sequences in transgenes and the genome. To address this problem, we developed a novel screening system using the IR/MAR plasmid to isolate human genome sequences that alleviate RIGS. The screen identified a 3,271 bp sequence (B-3-31) that elevated transgene expression without affecting the amplification process. Neither non-B structure (i.e., the inverted repeats or bending) nor known epigenetic modifier elements such as MARs, insulators, UCOEs, or STARs could explain the anti-silencing activity of B-3-31. Instead, the activity was distributed throughout the entire B-3-31 sequence, which was extremely A/T-rich and CpG-poor. Because B-3-31 effectively and reproducibly alleviated RIGS of repeated genes, it could be used to increase recombinant protein production.
Collapse
Affiliation(s)
- Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Yuto Ganmyo
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Osamu Miura
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
3
|
Okada N, Shimizu N. Dissection of the beta-globin replication-initiation region reveals specific requirements for replicator elements during gene amplification. PLoS One 2013; 8:e77350. [PMID: 24124615 PMCID: PMC3790722 DOI: 10.1371/journal.pone.0077350] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/06/2013] [Indexed: 11/18/2022] Open
Abstract
Gene amplification plays a pivotal role in malignant transformation of human cells. A plasmid with both a mammalian replication-initiation region (IR)/origin/replicator and a nuclear matrix-attachment region (MAR) is spontaneously amplified in transfected cells by a mechanism that involves amplification at the extrachromosomal site, followed by amplification at the chromosomal arm, ultimately generating a long homogeneously staining region (HSR). Several observations suggest that replication initiation from IR sequences might mediate amplification. To test this idea, we previously dissected c-myc and DHFR IRs to identify the minimum sequence required to support amplification. In this study, we applied an improved analysis that discriminates between two amplification steps to the ß-globin RepP IR, which contains separate elements already known to be essential for initiation on the chromosome arm. The IR sequence was required at least for the extrachromosomal amplification step. In addition to the vector-encoded MAR, amplification also required an AT-rich region and a MAR-like element, consistent with the results regarding replicator activity on the chromosome. However, amplification did not require the AG-rich tract necessary for replicator activity, but instead required a novel sequence containing another AG-rich tract. The differential sequence requirement might be a consequence of extrachromosomal replication.
Collapse
Affiliation(s)
- Naoya Okada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
4
|
Efficient recombinant production in mammalian cells using a novel IR/MAR gene amplification method. PLoS One 2012; 7:e41787. [PMID: 22844523 PMCID: PMC3402416 DOI: 10.1371/journal.pone.0041787] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/25/2012] [Indexed: 01/21/2023] Open
Abstract
We previously found that plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) efficiently initiate gene amplification and spontaneously increase their copy numbers in animal cells. In this study, this novel method was applied to the establishment of cells with high recombinant antibody production. The level of recombinant antibody expression was tightly correlated with the efficiency of plasmid amplification and the cytogenetic appearance of the amplified genes, and was strongly dependent on cell type. By using a widely used cell line for industrial protein production, CHO DG44, clones expressing very high levels of antibody were easily obtained. High-producer clones stably expressed the antibody over several months without eliciting changes in both the protein expression level and the cytogenetic appearance of the amplified genes. The integrity and reactivity of the protein produced by this method was fine. In serum-free suspension culture, the specific protein production rate in high-density cultures was 29.4 pg/cell/day. In conclusion, the IR/MAR gene amplification method is a novel and efficient platform for recombinant antibody production in mammalian cells, which rapidly and easily enables the establishment of stable high-producer cell clone.
Collapse
|
5
|
Okamoto A, Utani KI, Shimizu N. DNA replication occurs in all lamina positive micronuclei, but never in lamina negative micronuclei. Mutagenesis 2011; 27:323-7. [PMID: 22086909 DOI: 10.1093/mutage/ger082] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A micronucleus is a small nucleus-like structure found in the cytoplasm of dividing cells that suffered from genotoxic stress. It is generally hypothesised that micronuclei content is eventually lost from cells, though the mechanism of how this occurs is unknown. If DNA located within the micronucleus is not replicated, it may explain the loss of micronuclei content. Because there had been no compelling evidence for this issue, we have addressed whether DNA located within the micronucleus is replicated this issue. Pulse labelling of bromodeoxyuridine revealed that DNA synthesis takes place in a portion of micronuclei that contain nuclear lamin B protein. By using iodine 3'-deoxyuridine/chlorodeoxyuridine double labelling, we found that all micronuclei containing lamin B are replicated during one cell cycle, whereas micronuclei lacking lamin B are never replicated. This result suggests that the content of lamin B-negative micronuclei is lost during cell division. Furthermore, we simultaneously visualised sites of DNA synthesis, lamin B and the extrachromosomal double minutes chromatin, which contain amplified oncogenes. We found that although the replication timing of double minutes was generally preserved in micronuclei, at times it differed greatly from the timing in the nucleus, which may perturb the expression of the amplified oncogenes. Taken together, these findings uncovered the DNA replication occurring inside micronuclei.
Collapse
Affiliation(s)
- Atsushi Okamoto
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | | | | |
Collapse
|
6
|
Trencsenyi G, Nagy G, Bako F, Kertai P, Banfalvi G. Incomplete chromatin condensation in enlarged rat myelocytic leukemia cells. DNA Cell Biol 2011; 31:470-8. [PMID: 21942442 DOI: 10.1089/dna.2011.1374] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The distinguishable morphologic features of nuclei of acute myelogenous leukemia cells with enlarged size and finely distributed nuclear chromatin indicate incomplete chromosome condensation that can be related to elevated gene expression. To confirm this, interphase chromosome structures were studied in exponentially growing rat myelomonocytic leukemia 1 cells isolated at the University of Debrecen (My1/De cells). This cell line was established from primary rat leukemia chemically induced by 7,12-dimethylbenz[a]anthracene treatment. The enlarged nuclei of My1/De cells allowed improved fluorescent visualization of chromosomal structures. Increased resolution revealed major interphase intermediates consisting of (1) veil-like chromatin, (2) chromatin ribbon, (3) chromatin funnel, (4) chromatin bodies, (5) elongated prechromosomes, (6) seal-ring, spiral shaped, and circular chromosomal subunits, (7) elongated, bent, u- and v-shaped prechromosomes, and (8) metaphase chromosomes. Results confirmed the existence of the chromatin funnel, the first visible interphase chromosome generated by the supercoiling of the chromatin ribbon. Other intermediates not seen previously included the spiral subunits that are involved in the chromonemic folding of metaphase chromosomes. The existence of spiral subunits favors the helical coil model of chromosome condensation. Incomplete chromatin condensation in leukemia cells throughout the cell cycle is an indication of euchromatization contributing to enhanced gene expression and is regarded as a leukemic factor.
Collapse
Affiliation(s)
- Gyorgy Trencsenyi
- Department of Microbial Biotechnology and Cell Biology, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
7
|
Harada S, Sekiguchi N, Shimizu N. Amplification of a plasmid bearing a mammalian replication initiation region in chromosomal and extrachromosomal contexts. Nucleic Acids Res 2010; 39:958-69. [PMID: 20929873 PMCID: PMC3035466 DOI: 10.1093/nar/gkq882] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Amplified genes in cancer cells reside on extrachromosomal double minutes (DMs) or chromosomal homogeneously staining regions (HSRs). We used a plasmid bearing a mammalian replication initiation region to model gene amplification. Recombination junctions in the amplified region were comprehensively identified and sequenced. The junctions consisted of truncated direct repeats (type 1) or inverted repeats (type 2) with or without spacing. All of these junctions were frequently detected in HSRs, whereas there were few type 1 or a unique type 2 flanked by a short inverted repeat in DMs. The junction sequences suggested a model in which the inverted repeats were generated by sister chromatid fusion. We were consistently able to detect anaphase chromatin bridges connected by the plasmid repeat, which were severed in the middle during mitosis. De novo HSR generation was observed in live cells, and each HSR was lengthened more rapidly than expected from the classical breakage/fusion/bridge model. Importantly, we found massive DNA synthesis at the broken anaphase bridge during the G1 to S phase, which could explain the rapid lengthening of the HSR. This mechanism may not operate in acentric DMs, where most of the junctions are eliminated and only those junctions produced through stable intermediates remain.
Collapse
Affiliation(s)
- Seiyu Harada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | | | | |
Collapse
|
8
|
Harada S, Uchida M, Shimizu N. Episomal high copy number maintenance of hairpin-capped DNA bearing a replication initiation region in human cells. J Biol Chem 2009; 284:24320-7. [PMID: 19617622 DOI: 10.1074/jbc.m109.008128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We previously found that a plasmid bearing a replication initiation region efficiently initiates gene amplification in mammalian cells and that it generates extrachromosomal double minutes and/or chromosomal homogeneously staining regions. During analysis of the underlying mechanism, we serendipitously found that hairpin-capped linear DNA was stably maintained as numerous extrachromosomal tiny episomes for more than a few months in a human cancer cell line. Generation of such episomes depended on the presence of the replication initiation region in the original plasmid. Despite extrachromosomal maintenance, episomal gene expression was epigenetically suppressed. The Southern blot analysis of the DNA of cloned cells revealed that the region around the hairpin end was diversified between the clones. Furthermore, the bisulfite-modified PCR and the sequencing analyses revealed that the palindrome sequence that derived from the original hairpin end or its end-resected structure were well preserved during clonal long term growth. From these data, we propose a model that explains the formation and maintenance of these episomes, in which replication of the hairpin-capped DNA and cruciform formation and its resolution play central roles. Our findings may be relevant for the dissection of mammalian replicator sequences.
Collapse
Affiliation(s)
- Seiyu Harada
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima 739-8521, Japan
| | | | | |
Collapse
|
9
|
Utani KI, Shimizu N. How transcription proceeds in a large artificial heterochromatin in human cells. Nucleic Acids Res 2008; 37:393-404. [PMID: 19043073 PMCID: PMC2632932 DOI: 10.1093/nar/gkn970] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heterochromatin is critical for genome integrity, and recent studies have suggested the importance of transcription in heterochromatin for maintaining its silent state. We previously developed a method to generate a large homogeneously staining region (HSR) composed of tandem plasmid sequences in human cells that showed typical heterochromatin characteristics. In this study, we examined transcription in the HSR. We found that transcription of genes downstream to no-inducible SRα promoter was restricted to a few specific points inside the large HSR domain. Furthermore, the HSR localized to either to the surface or to the interior of the nucleolus, where it was more actively transcribed. The perinucleolar or intranucleolar locations were biased to late or early S-phase, and the location depended on either RNA polymerase II/III or I transcription, respectively. Strong activation of the inducible TRE promoter resulted in the reversible loosening of the HSR domain and the appearance of transcripts downstream of not only the TRE promoters, but also the SRα promoters. During this process, detection of HP1α or H3K9Me3 suggested that transcription was activated at many specific points dispersed inside large heterochromatin. The transcriptional rules obtained from studying artificial heterochromatin should be useful for understanding natural heterochromatin.
Collapse
Affiliation(s)
- Koh-ichi Utani
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1 Kagamiyama, Higashi-hiroshima, 739-8521, Japan
| | | |
Collapse
|
10
|
Shimizu N, Hanada N, Utani K, Sekiguchi N. Interconversion of intra- and extra-chromosomal sites of gene amplification by modulation of gene expression and DNA methylation. J Cell Biochem 2008; 102:515-29. [PMID: 17390337 DOI: 10.1002/jcb.21313] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We previously showed that plasmids containing a mammalian replication initiation region and a matrix attachment region were efficiently amplified to few thousand copies per cell, and that they formed extrachromosomal double minutes (DMs) or chromosomal homogeneously staining regions (HSRs). In these structures, the plasmid sequence was arranged as a tandem repeats, and we suggested a mechanism of plasmid amplification. Since amplification was very efficient, easy, and convenient, it might be adapted to a novel method for protein production. In the current study, we found that gene expression from the tandem plasmid repeat was suppressed. We identified several strategies to overcome this suppression, including: (1) use of higher concentrations of antibiotic during cell selection; (2) treatment of cells with agents that influence DNA methylation (5-azacytidine) or histone acetylation (butyrate); (3) co-amplification of an insulator sequence; and (4) co-amplification of sequences that encode a transcriptional activator. Expression from the plasmid repeat was always higher at DMs compared to HSRs. We found that continuous activation of a plasmid-encoded inducible promoter prevented the generation of long HSRs, and favored amplification at DMs. Consistent with this finding, there was a synergistic effect of transcriptional activation and inhibition of DNA methylation on the fragmentation of long HSRs and the generation of DMs and short HSRs. Our results indicate that both transcriptional activation and DNA methylation regulate the interconversion between extra- and intra-chromosomal gene amplification. These results have important implications for both protein production technology, and the generation of chromosomal abnormalities found in human cancer cells.
Collapse
Affiliation(s)
- Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima 739-8521, Japan.
| | | | | | | |
Collapse
|
11
|
Hashizume T, Shimizu N. Dissection of mammalian replicators by a novel plasmid stability assay. J Cell Biochem 2007; 101:552-65. [PMID: 17226771 DOI: 10.1002/jcb.21210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A plasmid, bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR) was previously shown to be efficiently amplified to high copy number in mammalian cells and to generate chromosomal homogeneously staining regions (HSRs). The amplification mechanism was suggested to entail a head-on collision at the MAR between the transcription machinery and the hypothetical replication fork arriving from the IR, leading to double strand breakage (DSB) that triggered HSR formation. The experiments described here show that such plasmids are stabilized if collisions involving not only promoter-driven transcription but also promoter-independent transcription are avoided, and stable plasmids appeared to persist as submicroscopic episomes. These findings suggest that the IR sequence that promotes HSR generation may correspond to the sequence that supports replication initiation (replicator). Thus, we developed a "plasmid stability assay" that sensitively detects the activity of HSR generation in a test sequence. The assay was used to dissect two replicator regions, derived from the c-myc and DHFR ori-beta loci. Consequently, minimum sequences that efficiently promoted HSR generation were identified. They included several sequence elements, most of which coincided with reported replicator elements. These data and this assay will benefit studies of replication initiation and applications that depend on plasmid amplification.
Collapse
Affiliation(s)
- Toshihiko Hashizume
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8521, Japan
| | | |
Collapse
|