1
|
Amin N, Abbasi IN, Wu F, Shi Z, Sundus J, Badry A, Yuan X, Zhao BX, Pan J, Mi XD, Luo Y, Geng Y, Fang M. The Janus face of HIF-1α in ischemic stroke and the possible associated pathways. Neurochem Int 2024; 177:105747. [PMID: 38657682 DOI: 10.1016/j.neuint.2024.105747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Stroke is the most devastating disease, causing paralysis and eventually death. Many clinical and experimental trials have been done in search of a new safe and efficient medicine; nevertheless, scientists have yet to discover successful remedies that are also free of adverse effects. This is owing to the variability in intensity, localization, medication routes, and each patient's immune system reaction. HIF-1α represents the modern tool employed to treat stroke diseases due to its functions: downstream genes such as glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Its role can be achieved via two downstream EPO and VEGF strongly related to apoptosis and antioxidant processes. Recently, scientists paid more attention to drugs dealing with the HIF-1 pathway. This review focuses on medicines used for ischemia treatment and their potential HIF-1α pathways. Furthermore, we discussed the interaction between HIF-1α and other biological pathways such as oxidative stress; however, a spotlight has been focused on certain potential signalling contributed to the HIF-1α pathway. HIF-1α is an essential regulator of oxygen balance within cells which affects and controls the expression of thousands of genes related to sustaining homeostasis as oxygen levels fluctuate. HIF-1α's role in ischemic stroke strongly depends on the duration and severity of brain damage after onset. HIF-1α remains difficult to investigate, particularly in ischemic stroke, due to alterations in the acute and chronic phases of the disease, as well as discrepancies between the penumbra and ischemic core. This review emphasizes these contrasts and analyzes the future of this intriguing and demanding field.
Collapse
Affiliation(s)
- Nashwa Amin
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China; Department of Zoology, Faculty of Science, Aswan University, Egypt; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Irum Naz Abbasi
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Fei Wu
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongjie Shi
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Javaria Sundus
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Azhar Badry
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Yuan
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing-Xin Zhao
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jie Pan
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Xiao-Dan Mi
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Geng
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Marong Fang
- Institute of Systemic Medicine, Zhejiang University School of Medicine, Hangzhou, China; Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.
| |
Collapse
|
2
|
Slawski J, Jaśkiewicz M, Barton A, Kozioł S, Collawn JF, Bartoszewski R. Regulation of the HIF switch in human endothelial and cancer cells. Eur J Cell Biol 2024; 103:151386. [PMID: 38262137 DOI: 10.1016/j.ejcb.2024.151386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that reprogram the transcriptome for cells to survive hypoxic insults and oxidative stress. They are important during embryonic development and reprogram the cells to utilize glycolysis when the oxygen levels are extremely low. This metabolic change facilitates normal cell survival as well as cancer cell survival. The key feature in survival is the transition between acute hypoxia and chronic hypoxia, and this is regulated by the transition between HIF-1 expression and HIF-2/HIF-3 expression. This transition is observed in many human cancers and endothelial cells and referred to as the HIF Switch. Here we discuss the mechanisms involved in the HIF Switch in human endothelial and cancer cells which include mRNA and protein levels of the alpha chains of the HIFs. A major continuing effort in this field is directed towards determining the differences between normal and tumor cell utilization of this important pathway, and how this could lead to potential therapeutic approaches.
Collapse
Affiliation(s)
- Jakub Slawski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Maciej Jaśkiewicz
- International Research Agenda 3P, Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland
| | - Anna Barton
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Sylwia Kozioł
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
3
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
4
|
Liao C, Liu Y, Lin Y, Wang J, Zhou T, Weng W. Mesenchymal Stem Cell-conditioned Medium Protecting Renal Tubular Epithelial Cells by Inhibiting Hypoxia-inducible Factor-1α and Nuclear Receptor Coactivator-1. Curr Stem Cell Res Ther 2024; 19:1369-1381. [PMID: 37817516 DOI: 10.2174/011574888x247652230928064627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is characterized by inflammatory infiltration and damage and death of renal tubular epithelial cells (RTECs), in which hypoxia plays an important role. Deferoxamine (DFO) is a well-accepted chemical hypoxia-mimetic agent. Mesenchymal stem cell-conditioned medium (MSC-CM) can reduce local inflammation and repair tissue. In this study, we explored the effect and molecular mechanism of MSC-CM-mediated protection of RTECs under DFO-induced hypoxia. METHODS Rat renal proximal tubule NRK-52E cells were treated with different concentrations of DFO for 24 hours, followed by evaluation of RTEC injury, using a Cell Counting Kit-8 (CCK-8) to detect cell viability and western blotting to evaluate the expression of transforming growth factor- beta 1 (TGF-β1), α-smooth muscle actin (α-SMA), and hypoxia-inducible factor-1 alpha (HIF-1α) in NRK-52E cells. Then, three groups of NRK-52E cells were used in experiments, including normal control (NC), 25 μM DFO, and 25 μM DFO + MSC-CM. MSC-CM was obtained from the human umbilical cord. MSC-CM was used to culture cells for 12 hours before DFO treatment, then fresh MSC-CM and 25 μM DFO were added, and cells were cultured for another 24 hours before analysis. RESULTS Western blotting and cellular immunofluorescence staining showed culture of NRK-52E cells in 25 μM DFO for 24 hours induced HIF-1α and nuclear receptor coactivator-1 (NCoA-1), simulating hypoxia. MSC-CM could inhibit the DFO-induced up-regulation of α-SMA, TGF-β1, HIF-1α and NCoA-1. CONCLUSION Our results suggest that MSC-CM has a protective effect on RTECs by down-regulating HIF-1α and NCoA-1, which may be the harmful factors in renal injury.
Collapse
Affiliation(s)
- Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yongda Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiali Wang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wenjuan Weng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
5
|
Burtscher J, Hohenauer E, Burtscher M, Millet GP, Egg M. Environmental and behavioral regulation of HIF-mitochondria crosstalk. Free Radic Biol Med 2023; 206:63-73. [PMID: 37385566 DOI: 10.1016/j.freeradbiomed.2023.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Reduced oxygen availability (hypoxia) can lead to cell and organ damage. Therefore, aerobic species depend on efficient mechanisms to counteract detrimental consequences of hypoxia. Hypoxia inducible factors (HIFs) and mitochondria are integral components of the cellular response to hypoxia and coordinate both distinct and highly intertwined adaptations. This leads to reduced dependence on oxygen, improved oxygen supply, maintained energy provision by metabolic remodeling and tapping into alternative pathways and increased resilience to hypoxic injuries. On one hand, many pathologies are associated with hypoxia and hypoxia can drive disease progression, for example in many cancer and neurological diseases. But on the other hand, controlled induction of hypoxia responses via HIFs and mitochondria can elicit profound health benefits and increase resilience. To tackle pathological hypoxia conditions or to apply health-promoting hypoxia exposures efficiently, cellular and systemic responses to hypoxia need to be well understood. Here we first summarize the well-established link between HIFs and mitochondria in orchestrating hypoxia-induced adaptations and then outline major environmental and behavioral modulators of their interaction that remain poorly understood.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Erich Hohenauer
- Rehabilitation and Exercise Science Laboratory (RES Lab), Department of Business Economics, Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, Landquart, Switzerland; International University of Applied Sciences THIM, Landquart, Switzerland; Department of Neurosciences and Movement Science, University of Fribourg, Fribourg, Switzerland; Department of Movement and Sport Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| | - Margit Egg
- Institute of Zoology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Stampone E, Bencivenga D, Capellupo MC, Roberti D, Tartaglione I, Perrotta S, Della Ragione F, Borriello A. Genome editing and cancer therapy: handling the hypoxia-responsive pathway as a promising strategy. Cell Mol Life Sci 2023; 80:220. [PMID: 37477829 PMCID: PMC10361942 DOI: 10.1007/s00018-023-04852-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023]
Abstract
The precise characterization of oxygen-sensing pathways and the identification of pO2-regulated gene expression are both issues of critical importance. The O2-sensing system plays crucial roles in almost all the pivotal human processes, including the stem cell specification, the growth and development of tissues (such as embryogenesis), the modulation of intermediate metabolism (including the shift of the glucose metabolism from oxidative to anaerobic ATP production and vice versa), and the control of blood pressure. The solid cancer microenvironment is characterized by low oxygen levels and by the consequent activation of the hypoxia response that, in turn, allows a complex adaptive response characterized mainly by neoangiogenesis and metabolic reprogramming. Recently, incredible advances in molecular genetic methodologies allowed the genome editing with high efficiency and, above all, the precise identification of target cells/tissues. These new possibilities and the knowledge of the mechanisms of adaptation to hypoxia suggest the effective development of new therapeutic approaches based on the manipulation, targeting, and exploitation of the oxygen-sensor system molecular mechanisms.
Collapse
Affiliation(s)
- Emanuela Stampone
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Debora Bencivenga
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Maria Chiara Capellupo
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy
| | - Domenico Roberti
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Immacolata Tartaglione
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Silverio Perrotta
- Department of the Woman, the Child and of the General and Specialty Surgery, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 2, 80138, Naples, Italy
| | - Fulvio Della Ragione
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| | - Adriana Borriello
- Department of Precision Medicine, University of Campania "L. Vanvitelli", Via Luigi De Crecchio, 7, 80138, Naples, Italy.
| |
Collapse
|
7
|
Gioukaki C, Georgiou A, Gkaralea LE, Kroupis C, Lazaris AC, Alamanis C, Thomopoulou GE. Unravelling the Role of P300 and TMPRSS2 in Prostate Cancer: A Literature Review. Int J Mol Sci 2023; 24:11299. [PMID: 37511059 PMCID: PMC10379122 DOI: 10.3390/ijms241411299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Prostate cancer is one of the most common malignant diseases in men, and it contributes significantly to the increased mortality rate in men worldwide. This study aimed to review the roles of p300 and TMPRSS2 (transmembrane protease, serine 2) in the AR (androgen receptor) pathway as they are closely related to the development and progression of prostate cancer. This paper represents a library-based study conducted by selecting the most suitable, up-to-date scientific published articles from online journals. We focused on articles that use similar techniques, particularly those that use prostate cancer cell lines and immunohistochemical staining to study the molecular impact of p300 and TMPRSS2 in prostate cancer specimens. The TMPRSS2:ERG fusion is considered relevant to prostate cancer, but its association with the development and progression as well as its clinical significance have not been fully elucidated. On the other hand, high p300 levels in prostate cancer biopsies predict larger tumor volumes, extraprostatic extension of disease, and seminal vesicle involvement at prostatectomy, and may be associated with prostate cancer progression after surgery. The inhibition of p300 has been shown to reduce the proliferation of prostate cancer cells with TMPRSS2:ETS (E26 transformation-specific) fusions, and combining p300 inhibitors with other targeted therapies may increase their efficacy. Overall, the interplay between the p300 and TMPRSS2 pathways is an active area of research.
Collapse
Affiliation(s)
- Charitomeni Gioukaki
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alexandros Georgiou
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| | - Andreas C Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Christos Alamanis
- 1st Urology Department, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Eleni Thomopoulou
- Cytopathology Department, Attikon University Hospital, National and Kapodistrian University of Athens, 12461 Athens, Greece
| |
Collapse
|
8
|
Yfantis A, Mylonis I, Chachami G, Nikolaidis M, Amoutzias GD, Paraskeva E, Simos G. Transcriptional Response to Hypoxia: The Role of HIF-1-Associated Co-Regulators. Cells 2023; 12:cells12050798. [PMID: 36899934 PMCID: PMC10001186 DOI: 10.3390/cells12050798] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
The Hypoxia Inducible Factor 1 (HIF-1) plays a major role in the cellular response to hypoxia by regulating the expression of many genes involved in adaptive processes that allow cell survival under low oxygen conditions. Adaptation to the hypoxic tumor micro-environment is also critical for cancer cell proliferation and therefore HIF-1 is also considered a valid therapeutical target. Despite the huge progress in understanding regulation of HIF-1 expression and activity by oxygen levels or oncogenic pathways, the way HIF-1 interacts with chromatin and the transcriptional machinery in order to activate its target genes is still a matter of intense investigation. Recent studies have identified several different HIF-1- and chromatin-associated co-regulators that play important roles in the general transcriptional activity of HIF-1, independent of its expression levels, as well as in the selection of binding sites, promoters and target genes, which, however, often depends on cellular context. We review here these co-regulators and examine their effect on the expression of a compilation of well-characterized HIF-1 direct target genes in order to assess the range of their involvement in the transcriptional response to hypoxia. Delineating the mode and the significance of the interaction between HIF-1 and its associated co-regulators may offer new attractive and specific targets for anticancer therapy.
Collapse
Affiliation(s)
- Angelos Yfantis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Georgia Chachami
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
| | - Marios Nikolaidis
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Grigorios D. Amoutzias
- Bioinformatics Laboratory, Department of Biochemistry and Biotechnology, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (M.N.); (G.D.A.)
| | - Efrosyni Paraskeva
- Laboratory of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece;
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, BIOPOLIS, 41500 Larissa, Greece; (A.Y.); (I.M.); (G.C.)
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H4A 3T2, Canada
- Correspondence:
| |
Collapse
|
9
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
10
|
Pharmacological targeting of CBP/p300 drives a redox/autophagy axis leading to senescence-induced growth arrest in non-small cell lung cancer cells. Cancer Gene Ther 2023; 30:124-136. [PMID: 36117234 PMCID: PMC9842509 DOI: 10.1038/s41417-022-00524-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
p300/CBP histone acetyltransferases (HAT) are critical transcription coactivators involved in multiple cellular activities. They act at multiple levels in non-small cell lung carcinoma (NSCLC) and appear, therefore, as promising druggable targets. Herein, we investigated the biological effects of A-485, the first selective (potent) drug-like HAT catalytic inhibitor of p300/CBP, in human NSCLC cell lines. A-485 treatment specifically reduced p300/CBP-mediated histone acetylation marks and caused growth arrest of lung cancer cells via activation of the autophagic pathway. Indeed, A-485 growth-arrested cells displayed phenotypic markers of cell senescence and failed to form colonies. Notably, disruption of autophagy by genetic and pharmacological approaches triggered apoptotic cell death. Mechanistically, A-485-induced senescence occurred through the accumulation of reactive oxygen species (ROS), which in turn resulted in DNA damage and activation of the autophagic pathway. Interestingly, ROS scavengers were able to revert senescence phenotype and restore cell viability, suggesting that ROS production had a key role in upstream events leading to growth arrest commitment. Altogether, our data provide new insights into the biological effects of the A-485 and uncover the importance of the autophagic/apoptotic response to design a new combinatorial anticancer strategy.
Collapse
|
11
|
Hypoxia promotes thyroid cancer progression through HIF1α/FGF11 feedback loop. Exp Cell Res 2022; 416:113159. [DOI: 10.1016/j.yexcr.2022.113159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/21/2022]
|
12
|
Mandic M, Flear K, Qiu P, Pan YK, Perry SF, Gilmour KM. Aquatic surface respiration improves survival during hypoxia in zebrafish ( Danio rerio) lacking hypoxia-inducible factor 1-α. Proc Biol Sci 2022; 289:20211863. [PMID: 35016541 PMCID: PMC8753152 DOI: 10.1098/rspb.2021.1863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/03/2021] [Indexed: 01/14/2023] Open
Abstract
Hypoxia-inducible factor 1-α (Hif-1α), an important transcription factor regulating cellular responses to reductions in O2, previously was shown to improve hypoxia tolerance in zebrafish (Danio rerio). Here, we examined the contribution of Hif-1α to hypoxic survival, focusing on the benefit of aquatic surface respiration (ASR). Wild-type and Hif-1α knockout lines of adult zebrafish were exposed to two levels (moderate or severe) of intermittent hypoxia. Survival was significantly compromised in Hif-1α knockout zebrafish prevented from accessing the surface during severe (16 mmHg) but not moderate (23 mmHg) hypoxia. When allowed access to the surface in severe hypoxia, survival times did not differ between wild-type and Hif-1α knockouts. Performing ASR mitigated the negative effects of the loss of Hif-1α with the knockouts initiating ASR at a higher PO2 threshold and performing ASR for longer than wild-types. The loss of Hif-1α had little impact on survival in fish between 1 and 5 days post-fertilization, but as the larvae aged, their reliance on Hif-1α increased. Similar to adult fish, ASR compensated for the loss of Hif-1α on survival. Together, these results demonstrate that age, hypoxia severity and, in particular, the ability to perform ASR significantly modulate the impact of Hif-1α on survival in hypoxic zebrafish.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, University of California Davis, 2251 Meyer Hall, Davis, CA 95616, USA
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kaitlyn Flear
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Pearl Qiu
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Yihang K. Pan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Steve F. Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| | - Kathleen M. Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N6N5
| |
Collapse
|
13
|
A reciprocal feedback loop between HIF-1α and HPIP controls phenotypic plasticity in breast cancer cells. Cancer Lett 2021; 526:12-28. [PMID: 34767928 DOI: 10.1016/j.canlet.2021.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022]
Abstract
While phenotypic plasticity is a critical factor contributing to tumor heterogeneity, molecular mechanisms underlying this process are largely unknown. Here we report that breast cancer cells display phenotypic diversity in response to hypoxia or normoxia microenvironments by operating a reciprocal positive feedback regulation of HPIP and HIF-1α. We show that under hypoxia, HIF-1α induces HPIP expression that establishes cell survival, and also promotes cell migration/invasion, EMT and metastatic phenotypes in breast cancer cells. Mechanistic studies revealed that HPIP interacts with SRP14, a component of signal recognition particle, and stimulates MMP9 synthesis under hypoxic stress. Whereas, in normoxia, HPIP stabilizes HIF-1α, causing the Warburg effect to support cell growth. Concurrently, mathematical modelling corroborates this reciprocal feedback loop in enabling cell-state transitions in cancer cells. Clinical data indicate that elevated levels of HPIP and HIF-1α correlate with unfavorable prognosis and shorter survival rates in breast cancer subjects. Together, this data shows a reciprocal positive feedback loop between HPIP and HIF-1α that was unknown hitherto. It unveils how the tumor microenvironment influences phenotypic plasticity that has an impact on tumor growth and metastasis and, further signifies considering this pathway as a potential therapeutic target in breast cancer.
Collapse
|
14
|
Mandic M, Joyce W, Perry SF. The evolutionary and physiological significance of the Hif pathway in teleost fishes. J Exp Biol 2021; 224:272213. [PMID: 34533194 DOI: 10.1242/jeb.231936] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The hypoxia-inducible factor (HIF) pathway is a key regulator of cellular O2 homeostasis and an important orchestrator of the physiological responses to hypoxia (low O2) in vertebrates. Fish can be exposed to significant and frequent changes in environmental O2, and increases in Hif-α (the hypoxia-sensitive subunit of the transcription factor Hif) have been documented in a number of species as a result of a decrease in O2. Here, we discuss the impact of the Hif pathway on the hypoxic response and the contribution to hypoxia tolerance, particularly in fishes of the cyprinid lineage, which includes the zebrafish (Danio rerio). The cyprinids are of specific interest because, unlike in most other fishes, duplicated paralogs of the Hif-α isoforms arising from a teleost-specific genome duplication event have been retained. Positive selection has acted on the duplicated paralogs of the Hif-α isoforms in some cyprinid sub-families, pointing to adaptive evolutionary change in the paralogs. Thus, cyprinids are valuable models for exploring the evolutionary significance and physiological impact of the Hif pathway on the hypoxic response. Knockout in zebrafish of either paralog of Hif-1α greatly reduces hypoxia tolerance, indicating the importance of both paralogs to the hypoxic response. Here, with an emphasis on the cardiorespiratory system, we focus on the role of Hif-1α in the hypoxic ventilatory response and the regulation of cardiac function. We explore the effects of the duration of the hypoxic exposure (acute, sustained or intermittent) on the impact of Hif-1α on cardiorespiratory function and compare relevant data with those from mammalian systems.
Collapse
Affiliation(s)
- Milica Mandic
- Department of Animal Science, 2251 Meyer Hall, University of California Davis, Davis, CA 95616, USA
| | - William Joyce
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5.,Department of Biology - Zoophysiology, Aarhus University, C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| |
Collapse
|
15
|
Koukoulas K, Giakountis A, Karagiota A, Samiotaki M, Panayotou G, Simos G, Mylonis I. ERK signalling controls productive HIF-1 binding to chromatin and cancer cell adaptation to hypoxia through HIF-1α interaction with NPM1. Mol Oncol 2021; 15:3468-3489. [PMID: 34388291 PMCID: PMC8637566 DOI: 10.1002/1878-0261.13080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 08/12/2021] [Indexed: 11/08/2022] Open
Abstract
The hypoxia-inducible factor HIF-1 is essential for oxygen homeostasis. Despite its well-understood oxygen-dependent expression, regulation of its transcriptional activity remains unclear. We show that phosphorylation by ERK1/2, in addition to promoting HIF-1α nuclear accumulation, also enhances its interaction with chromatin and stimulates direct binding to nucleophosmin (NPM1), a histone chaperone and chromatin remodeler. NPM1 is required for phosphorylation-dependent recruitment of HIF-1 to hypoxia-response elements (HREs), its interaction with acetylated histones and high expression of HIF-1 target genes under hypoxia. Transcriptome analysis revealed a significant number of hypoxia-related genes commonly regulated by NPM1 and HIF-1. These NPM1/HIF-1α co-upregulated genes are enriched in three different cancer types and their expression correlates with hypoxic tumor status and worse patient prognosis. In concert, silencing of NPM1 expression or disruption of its association with HIF-1α inhibits metabolic adaptation of cancer cells and triggers apoptotic death upon hypoxia. We suggest that ERK-mediated phosphorylation of HIF-1α regulates its physical interaction with NPM1, which is essential for productive association of HIF-1 with hypoxia target genes and their optimal transcriptional activation, required for survival under low oxygen or tumor growth.
Collapse
Affiliation(s)
- Kreon Koukoulas
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - Angeliki Karagiota
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| | - Martina Samiotaki
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Panayotou
- Institute for Bio-innovation, BSRC "Alexander Fleming", Vari, 16672, Greece
| | - George Simos
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis Larissa, 41500, Greece.,Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, H4A 3T2, Canada
| | - Ilias Mylonis
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, Biopolis Larissa, 41500, Greece
| |
Collapse
|
16
|
Weinhouse C. The roles of inducible chromatin and transcriptional memory in cellular defense system responses to redox-active pollutants. Free Radic Biol Med 2021; 170:85-108. [PMID: 33789123 PMCID: PMC8382302 DOI: 10.1016/j.freeradbiomed.2021.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022]
Abstract
People are exposed to wide range of redox-active environmental pollutants. Air pollution, heavy metals, pesticides, and endocrine disrupting chemicals can disrupt cellular redox status. Redox-active pollutants in our environment all trigger their own sets of specific cellular responses, but they also activate a common set of general stress responses that buffer the cell against homeostatic insults. These cellular defense system (CDS) pathways include the heat shock response, the oxidative stress response, the hypoxia response, the unfolded protein response, the DNA damage response, and the general stress response mediated by the stress-activated p38 mitogen-activated protein kinase. Over the past two decades, the field of environmental epigenetics has investigated epigenetic responses to environmental pollutants, including redox-active pollutants. Studies of these responses highlight the role of chromatin modifications in controlling the transcriptional response to pollutants and the role of transcriptional memory, often referred to as "epigenetic reprogramming", in predisposing previously exposed individuals to more potent transcriptional responses on secondary challenge. My central thesis in this review is that high dose or chronic exposure to redox-active pollutants leads to transcriptional memories at CDS target genes that influence the cell's ability to mount protective responses. To support this thesis, I will: (1) summarize the known chromatin features required for inducible gene activation; (2) review the known forms of transcriptional memory; (3) discuss the roles of inducible chromatin and transcriptional memory in CDS responses that are activated by redox-active environmental pollutants; and (4) propose a conceptual framework for CDS pathway responsiveness as a readout of total cellular exposure to redox-active pollutants.
Collapse
Affiliation(s)
- Caren Weinhouse
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, 97214, USA.
| |
Collapse
|
17
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
18
|
A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. Int J Mol Sci 2021; 22:ijms22020582. [PMID: 33430140 PMCID: PMC7826574 DOI: 10.3390/ijms22020582] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases are characterized by adverse cellular environments and pathological alterations causing neurodegeneration in distinct brain regions. This development is triggered or facilitated by conditions such as hypoxia, ischemia or inflammation and is associated with disruptions of fundamental cellular functions, including metabolic and ion homeostasis. Targeting intracellular downstream consequences to specifically reverse these pathological changes proved difficult to translate to clinical settings. Here, we discuss the potential of more holistic approaches with the purpose to re-establish a healthy cellular environment and to promote cellular resilience. We review the involvement of important molecular pathways (e.g., the sphingosine, δ-opioid receptor or N-Methyl-D-aspartate (NMDA) receptor pathways) in neuroprotective hypoxic conditioning effects and how these pathways can be targeted for chemical conditioning. Despite the present scarcity of knowledge on the efficacy of such approaches in neurodegeneration, the specific characteristics of Huntington’s disease may make it particularly amenable for such conditioning techniques. Not only do classical features of neurodegenerative diseases like mitochondrial dysfunction, oxidative stress and inflammation support this assumption, but also specific Huntington’s disease characteristics: a relatively young age of neurodegeneration, molecular overlap of related pathologies with hypoxic adaptations and sensitivity to brain hypoxia. The aim of this review is to discuss several molecular pathways in relation to hypoxic adaptations that have potential as drug targets in neurodegenerative diseases. We will extract the relevance for Huntington’s disease from this knowledge base.
Collapse
|
19
|
Cheng YC, Chiang HY, Cheng SJ, Chang HW, Li YJ, Shieh SY. Loss of the tumor suppressor BTG3 drives a pro-angiogenic tumor microenvironment through HIF-1 activation. Cell Death Dis 2020; 11:1046. [PMID: 33311481 PMCID: PMC7732837 DOI: 10.1038/s41419-020-03248-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/05/2022]
Abstract
B-cell translocation gene 3 (BTG3) is a member of the antiproliferative BTG gene family and is a downstream target of p53. Here, we show that senescence triggered by BTG3 depletion was accompanied by a secretome enriched with cytokines, growth factors, and matrix-remodeling enzymes, which could promote angiogenesis and cell scattering in vitro. We present evidence that at least part of these activities can be explained by elevated HIF-1α activity. Mechanistically, the BTG3 C-terminal domain competes with the coactivator p300 for binding the HIF-1α transactivation domain. The angiogenic promoting effect of BTG3 knockdown was largely diminished upon co-depletion of HIF-1α, indicating that HIF-1α is a major downstream target of BTG3 in the control of angiogenesis. In vivo, ectopic expression of BTG3 suppresses angiogenesis in xenograft tumors; and syngenic tumor growth and metastasis were enhanced in Btg3-null mice. Moreover, analysis of clinical datasets revealed that a higher BTG3/VEGFA expression ratio correlates with improved patient survival in a number of cancer types. Taken together, our findings highlight the non-autonomous regulation of tumor microenvironment by BTG3 while suppressing tumor progression.
Collapse
Affiliation(s)
- Yu-Che Cheng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Hsin-Yi Chiang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Shang-Jung Cheng
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Hung-Wei Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Yi-Ju Li
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei, 115, Taiwan
| | - Sheau-Yann Shieh
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Taipei, 115, Taiwan.
| |
Collapse
|
20
|
Kindrick JD, Mole DR. Hypoxic Regulation of Gene Transcription and Chromatin: Cause and Effect. Int J Mol Sci 2020; 21:E8320. [PMID: 33171917 PMCID: PMC7664190 DOI: 10.3390/ijms21218320] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cellular responses to low oxygen (hypoxia) are fundamental to normal physiology and to the pathology of many common diseases. Hypoxia-inducible factor (HIF) is central to this by enhancing the transcriptional activity of many hundreds of genes. The cellular response to HIF is cell-type-specific and is largely governed by the pre-existing epigenetic landscape. Prior to activation, HIF-binding sites and the promoters of HIF-target genes are already accessible, in contact with each other through chromatin looping and display markers of activity. However, hypoxia also modulates the epigenetic environment, both in parallel to and as a consequence of HIF activation. This occurs through a combination of oxygen-sensitive changes in enzyme activity, transcriptional activation of epigenetic modifiers, and localized recruitment to chromatin by HIF and activated RNApol2. These hypoxic changes in the chromatin environment may both contribute to and occur as a consequence of transcriptional regulation. Nevertheless, they have the capacity to both modulate and extend the transcriptional response to hypoxia.
Collapse
Affiliation(s)
| | - David R. Mole
- NDM Research Building, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7FZ, UK;
| |
Collapse
|
21
|
Lee HJ, Jung YH, Choi GE, Kim JS, Chae CW, Han HJ. Role of HIF1 α Regulatory Factors in Stem Cells. Int J Stem Cells 2019; 12:8-20. [PMID: 30836734 PMCID: PMC6457711 DOI: 10.15283/ijsc18109] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF1) is a master transcription factor that induces the transcription of genes involved in the metabolism and behavior of stem cells. HIF1-mediated adaptation to hypoxia is required to maintain the pluripotency and survival of stem cells under hypoxic conditions. HIF1 activity is well known to be tightly controlled by the alpha subunit of HIF1 (HIF1α). Understanding the regulatory mechanisms that control HIF1 activity in stem cells will provide novel insights into stem cell biology under hypoxia. Recent research has unraveled the mechanistic details of HIF1α regulating processes, suggesting new strategies for regulating stem cells. This review summarizes recent experimental studies on the role of several regulatory factors (including calcium, 2-oxoglutarate-dependent dioxygenase, microtubule network, importin, and coactivators) in regulating HIF1α activity in stem cells.
Collapse
Affiliation(s)
- Hyun Jik Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Gee Euhn Choi
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Chang Woo Chae
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, Seoul National Universit
| |
Collapse
|
22
|
Hou X, Gong R, Zhan J, Zhou T, Ma Y, Zhao Y, Zhang Y, Chen G, Zhang Z, Ma S, Chen X, Gao F, Hong S, Luo F, Fang W, Yang Y, Huang Y, Chen L, Yang H, Zhang L. p300 promotes proliferation, migration, and invasion via inducing epithelial-mesenchymal transition in non-small cell lung cancer cells. BMC Cancer 2018; 18:641. [PMID: 29879950 PMCID: PMC5992873 DOI: 10.1186/s12885-018-4559-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Histone acetyltransferase p300 is a crucial transcriptional coactivator and has been implicated as a poor prognostic factor in human cancers. However, little is known about the substantial functions and mechanisms of p300 in NSCLC proliferation and distant metastasis. Methods We constructed p300 down-regulated and up-regulated cell lines through RNAi and recombinant plasmid transfection. Cell Counting Kit-8 assays were used to test the cell proliferation and confirmed by colony formation assays. Wound healing assays and transwell chamber assays were used to test the migration and invasion ability. Based upon these results, we measured the epithelial markers and mesenchymal markers after regulating p300 expression to explore epithelial-mesenchymal transition as a potential mechanism of p300 promoting NSCLC metastasis. Results In NSCLC cells NCI-H1975 and NCI-H1993, down-regulation of p300 leads to inhibition of cell proliferation and colony formation. Cells with reduced p300 expression also demonstrate inhibited migration and invasion ability. Contrarily, up-regulation of p300 significantly enhanced the proliferation, colony formation, migration and invasion ability of NCI-H460. Importantly, further investigation shows that decreased p300 expression is associated with reduced expression of mesenchymal markers and increased expression of epithelial markers, while up-regulated p300 expression correlated with decreased expression of epithelial markers and increased expression of mesenchymal markers. Conclusions As a crucial tumor promoter, p300 promotes cell proliferation, migration, and invasion in NSCLC cells. Epithelial-mesenchymal transition is a potential mechanism of p300 promoting NSCLC metastasis.
Collapse
Affiliation(s)
- Xue Hou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Run Gong
- Department of Medical Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai City, Guangdong, People's Republic of China
| | - Jianhua Zhan
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Ting Zhou
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yuxiang Ma
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.,Department of Clinical Research, Sun Yat-sen University Cancer Center, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yuanyuan Zhao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yaxiong Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Gang Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Zhonghan Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Shuxiang Ma
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Xi Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Fangfang Gao
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Shaodong Hong
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Fan Luo
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Wenfeng Fang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yunpeng Yang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Yan Huang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Likun Chen
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China.,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China
| | - Haoxian Yang
- State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China. .,Department of Thoracic Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 637300, Guangzhou City, Guangdong, People's Republic of China.
| | - Li Zhang
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 651 East Dongfeng Road, 510060, Guangzhou City, Guangdong Province, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou City, Guangdong Province, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou City, Guangdong Province, People's Republic of China.
| |
Collapse
|
23
|
Serocki M, Bartoszewska S, Janaszak-Jasiecka A, Ochocka RJ, Collawn JF, Bartoszewski R. miRNAs regulate the HIF switch during hypoxia: a novel therapeutic target. Angiogenesis 2018; 21:183-202. [PMID: 29383635 PMCID: PMC5878208 DOI: 10.1007/s10456-018-9600-2] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
The decline of oxygen tension in the tissues below the physiological demand leads to the hypoxic adaptive response. This physiological consequence enables cells to recover from this cellular insult. Understanding the cellular pathways that mediate recovery from hypoxia is therefore critical for developing novel therapeutic approaches for cardiovascular diseases and cancer. The master regulators of oxygen homeostasis that control angiogenesis during hypoxia are hypoxia-inducible factors (HIFs). HIF-1 and HIF-2 function as transcriptional regulators and have both unique and overlapping target genes, whereas the role of HIF-3 is less clear. HIF-1 governs the acute adaptation to hypoxia, whereas HIF-2 and HIF-3 expressions begin during chronic hypoxia in human endothelium. When HIF-1 levels decline, HIF-2 and HIF-3 increase. This switch from HIF-1 to HIF-2 and HIF-3 signaling is required in order to adapt the endothelium to prolonged hypoxia. During prolonged hypoxia, the HIF-1 levels and activity are reduced, despite the lack of oxygen-dependent protein degradation. Although numerous protein factors have been proposed to modulate the HIF pathways, their application for HIF-targeted therapy is rather limited. Recently, the miRNAs that endogenously regulate gene expression via the RNA interference (RNAi) pathway have been shown to play critical roles in the hypoxia response pathways. Furthermore, these classes of RNAs provide therapeutic possibilities to selectively target HIFs and thus modulate the HIF switch. Here, we review the significance of the microRNAs on the relationship between the HIFs under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Marcin Serocki
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - Renata J Ochocka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416, Gdańsk, Poland.
| |
Collapse
|
24
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
25
|
Bhan A, Deb P, Shihabeddin N, Ansari KI, Brotto M, Mandal SS. Histone methylase MLL1 coordinates with HIF and regulate lncRNA HOTAIR expression under hypoxia. Gene 2017; 629:16-28. [DOI: 10.1016/j.gene.2017.07.069] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/11/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
|
26
|
Zhang J, Xu D, Li N, Li Y, He Y, Hu X, Lyu L, He L. Downregulation of microRNA-31 inhibits proliferation and induces apoptosis by targeting HIF1AN in human keloid. Oncotarget 2017; 8:74623-74634. [PMID: 29088812 PMCID: PMC5650367 DOI: 10.18632/oncotarget.20284] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022] Open
Abstract
microRNAs (miRNAs) play a pivotal role in the regulation of cell proliferation and apoptosis in keloid scarring. Integrative analysis of the previous miRNA microarray revealed miRNA-31 was among the most frequently altered miRNAs in keloid and hypertrophic scar. Using qRT-PCR, we further validated miRNA-31 was increased in keloid tissues and keloid-derived fibroblasts. Moreover, downregulation of miRNA-31 inhibited the cell proliferation, induced the cell apoptosis and disturbed the cell cycle progression by targeting HIF1AN, a negative modulator of hypoxia inducible factor 1. Through the luciferase reporter assay, HIF1AN was confirmed to be a target of miRNA-31. Further studies demonstrated that miRNA-31 regulated proliferation, apoptosis and cell cycle of keloid-derived fibroblasts by mediating HIF1AN/VEGF signaling pathway. Overall, our findings shed new light on miRNA-31 as a promising therapeutic target in keloid scarring.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Physiology, Kunming Medical University, Kunming, China
| | - Dan Xu
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Na Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Li
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yongjing He
- Department of Plastic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingbo Hu
- Department of Orthopedics, the First People's Hospital of Kunming, Kunming, China
| | - Lechun Lyu
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Physiology, Kunming Medical University, Kunming, China
| | - Li He
- Department of Dermatology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
27
|
Han J, Li J, Ho JC, Chia GS, Kato H, Jha S, Yang H, Poellinger L, Lee KL. Hypoxia is a Key Driver of Alternative Splicing in Human Breast Cancer Cells. Sci Rep 2017. [PMID: 28642487 PMCID: PMC5481333 DOI: 10.1038/s41598-017-04333-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Adaptation to hypoxia, a hallmark feature of many tumors, is an important driver of cancer cell survival, proliferation and the development of resistance to chemotherapy. Hypoxia-induced stabilization of hypoxia-inducible factors (HIFs) leads to transcriptional activation of a network of hypoxia target genes involved in angiogenesis, cell growth, glycolysis, DNA damage repair and apoptosis. Although the transcriptional targets of hypoxia have been characterized, the alternative splicing of transcripts that occurs during hypoxia and the roles they play in oncogenesis are much less understood. To identify and quantify hypoxia-induced alternative splicing events in human cancer cells, we performed whole transcriptome RNA-Seq in breast cancer cells that are known to provide robust transcriptional response to hypoxia. We found 2005 and 1684 alternative splicing events including intron retention, exon skipping and alternative first exon usage that were regulated by acute and chronic hypoxia where intron retention was the most dominant type of hypoxia-induced alternative splicing. Many of these genes are involved in cellular metabolism, transcriptional regulation, actin cytoskeleton organisation, cancer cell proliferation, migration and invasion, suggesting they may modulate or be involved in additional features of tumorigenic development that extend beyond the known functions of canonical full-length transcripts.
Collapse
Affiliation(s)
- Jian Han
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jia Li
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Jolene Caifeng Ho
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Grace Sushin Chia
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Hiroyuki Kato
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Sudhakar Jha
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore
| | - Lorenz Poellinger
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Kian Leong Lee
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore.
| |
Collapse
|
28
|
Ahmed M, de Winther MPJ, Van den Bossche J. Epigenetic mechanisms of macrophage activation in type 2 diabetes. Immunobiology 2016; 222:937-943. [PMID: 27613200 DOI: 10.1016/j.imbio.2016.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/29/2016] [Accepted: 08/29/2016] [Indexed: 12/18/2022]
Abstract
The alarming rise of obesity and type 2 diabetes (T2D) has put a tremendous strain on global healthcare systems. Over the past decade extensive research has focused on the role of macrophages as key mediators of inflammation in T2D. The inflammatory environment in the obese adipose tissue and pancreatic β-cell islets creates and perpetuates imbalanced inflammatory macrophage activation. Consequences of this chronic low-grade inflammation include insulin resistance in the adipose tissue and pancreatic β-cell dysfunction. Recently, the emerging field of epigenetics has provided new insights into the pathogenesis of T2D, while also affording potential new opportunities for treatment. In macrophages, epigenetic mechanisms are increasingly being recognized as crucial controllers of their phenotype. Here, we first describe the role of macrophages in T2D. Then we elaborate on epigenetic mechanisms that regulate macrophage activation, thereby focusing on T2D. Next, we highlight how diabetic conditions such as hyperlipidemia and hyperglycemia could induce epigenetic changes that promote an inflammatory macrophage phenotype. In conclusion we discuss possible therapeutic interventions by targeting macrophage epigenetics and speculate on future research directions.
Collapse
Affiliation(s)
- Mohamed Ahmed
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximillian's University, Munich, Germany.
| | - Jan Van den Bossche
- Experimental Vascular Biology, Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
29
|
Taylor SE, Bagnall J, Mason D, Levy R, Fernig DG, See V. Differential sub-nuclear distribution of hypoxia-inducible factors (HIF)-1 and -2 alpha impacts on their stability and mobility. Open Biol 2016; 6:160195. [PMID: 27655733 PMCID: PMC5043584 DOI: 10.1098/rsob.160195] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023] Open
Abstract
Cellular adaptation to hypoxia occurs via a complex programme of gene expression mediated by the hypoxia-inducible factor (HIF). The oxygen labile alpha subunits, HIF-1α/-2α, form a heterodimeric transcription factor with HIF-1β and modulate gene expression. HIF-1α and HIF-2α possess similar domain structure and bind to the same consensus sequence. However, they have different oxygen-dependent stability and activate distinct genes. To better understand these differences, we used fluorescent microscopy to determine precise localization and dynamics. We observed a homogeneous distribution of HIF-1α in the nucleus, while HIF-2α localized into speckles. We demonstrated that the number, size and mobility of HIF-2α speckles were independent of cellular oxygenation and that HIF-2α molecules were capable of exchanging between the speckles and nucleoplasm in an oxygen-independent manner. The concentration of HIF-2α into speckles may explain its increased stability compared with HIF-1α and its slower mobility may offer a mechanism for gene specificity.
Collapse
Affiliation(s)
- S E Taylor
- Department of Biochemistry, Centre for Cell Imaging, University of Liverpool, Institute of Integrated Biology, Liverpool L69 7ZB, UK
| | - J Bagnall
- Department of Biochemistry, Centre for Cell Imaging, University of Liverpool, Institute of Integrated Biology, Liverpool L69 7ZB, UK
| | - D Mason
- Department of Biochemistry, Centre for Cell Imaging, University of Liverpool, Institute of Integrated Biology, Liverpool L69 7ZB, UK
| | - R Levy
- Department of Biochemistry, Centre for Cell Imaging, University of Liverpool, Institute of Integrated Biology, Liverpool L69 7ZB, UK
| | - D G Fernig
- Department of Biochemistry, Centre for Cell Imaging, University of Liverpool, Institute of Integrated Biology, Liverpool L69 7ZB, UK
| | - V See
- Department of Biochemistry, Centre for Cell Imaging, University of Liverpool, Institute of Integrated Biology, Liverpool L69 7ZB, UK
| |
Collapse
|
30
|
The TIP60 Complex Is a Conserved Coactivator of HIF1A. Cell Rep 2016; 16:37-47. [PMID: 27320910 DOI: 10.1016/j.celrep.2016.05.082] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are critical regulators of the cellular response to hypoxia. Despite their established roles in normal physiology and numerous pathologies, the molecular mechanisms by which they control gene expression remain poorly understood. We report here a conserved role for the TIP60 complex as a HIF1 transcriptional cofactor in Drosophila and human cells. TIP60 (KAT5) is required for HIF1-dependent gene expression in fly cells and embryos and colorectal cancer cells. HIF1A interacts with and recruits TIP60 to chromatin. TIP60 is dispensable for HIF1A association with its target genes but is required for HIF1A-dependent chromatin modification and RNA polymerase II activation in hypoxia. In human cells, global analysis of HIF1A-dependent gene activity reveals that most HIF1A targets require either TIP60, the CDK8-Mediator complex, or both as coactivators for full expression in hypoxia. Thus, HIF1A employs functionally diverse cofactors to regulate different subsets of genes within its transcriptional program.
Collapse
|
31
|
Zhang Y, Liu J, Wang S, Luo X, Li Y, Lv Z, Zhu J, Lin J, Ding L, Ye Q. The DEK oncogene activates VEGF expression and promotes tumor angiogenesis and growth in HIF-1α-dependent and -independent manners. Oncotarget 2016; 7:23740-56. [PMID: 26988756 PMCID: PMC5029660 DOI: 10.18632/oncotarget.8060] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 11/25/2022] Open
Abstract
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor
- Breast Neoplasms/blood supply
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Proliferation
- Chick Embryo
- Chorioallantoic Membrane/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Mice
- Mice, Nude
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Poly-ADP-Ribose Binding Proteins/genetics
- Poly-ADP-Ribose Binding Proteins/metabolism
- Response Elements
- Signal Transduction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yanan Zhang
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| | - Jie Liu
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Shibin Wang
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Xiaoli Luo
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Yang Li
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Zhaohui Lv
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jie Zhu
- Department of Endocrinology, Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, People's Republic of China
| | - Jing Lin
- First Affiliated Hospital, Chinese PLA General Hospital, Beijing, People's Republic of China
| | - Lihua Ding
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
| | - Qinong Ye
- Department of Medical Molecular Biology, Beijing Institute of Biotechnology, Collaborative Innovation Center for Cancer Medicine, Beijing, People's Republic of China
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Liaoning, People's Republic of China
| |
Collapse
|
32
|
Hypoxia promotes 786-O cells invasiveness and resistance to sorafenib via HIF-2α/COX-2. Med Oncol 2014; 32:419. [PMID: 25487445 DOI: 10.1007/s12032-014-0419-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Accumulating evidences indicated that hypoxia-induced factors and COX-2 play a important role in tumorigenesis in various human cancer. Yet, the relationship between HIFs and COX-2 in human renal cancer remains unclear. The present study was to examine the role of HIFs and COX-2 in the invasiveness and the resistance to target agent in renal cancer cell line (786-O). In 786-O cells, hypoxia induced the increase in the protein expression of HIF1 and HIF2. We also demonstrate that hypoxia up-regulated the protein expression of COX-2 and Snail, but down-regulation of E-cadherin expression in 786-O cells promoted the invasiveness of 786-O cells and enhanced the resistance of 786-O cells to sorafenib. siRNA target to HIF1α, HIF2α and NS398, a selective inhibitor of COX-2, were used in this study. Only siRNA-HIF2α significantly suppressed the protein expression of HIF2 and COX-2, then decreased the invasive ability and resistance of 786-O cells to sorafenib under hypoxia. NS398 attenuated the increase in invasive cells number and the IC50 value of sorafenib induced by hypoxia. In conclusion, our results demonstrated that hypoxia promoted the invasiveness and resistance of 786-O cells to sorafenib via HIF2 and COX-2 and induced the activation of Snail/E-cadherin, suggesting that a signalling mechanism involving HIF2/COX2 modulates invasiveness and resistance to sorafenib in 786-O cells under hypoxia.
Collapse
|
33
|
Tong WW, Tong GH, Chen XX, Zheng HC, Wang YZ. HIF2α is associated with poor prognosis and affects the expression levels of survivin and cyclin D1 in gastric carcinoma. Int J Oncol 2014; 46:233-42. [PMID: 25338835 DOI: 10.3892/ijo.2014.2719] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/03/2014] [Indexed: 01/12/2023] Open
Abstract
Hypoxia-inducible factor-2α (HIF2α) is a major determinant factor of invasion and metastasis in various tumors. It has been reported that HIF2α is overexpressed in many tumors, including gastric cancer. However, the roles of HIF2α in the progression of gastric cancer are still not clear. In this study, we first examined the levels of HIF2α in gastric cancer by using immunohistochemistry, western blot and real-time PCR analysis. The results showed that HIF2α was highly expressed in gastric cancers compared to non-neoplastic mucosa and significantly correlated with histologic grade, TNM stages and peritoneal dissemination. MTT and colony formation assay revealed HIF2α overexpression induced high proliferation in BGC823 cells and HIF2α knockdown significantly inhibited proliferation in SGC7901 cells. Furthermore, we demonstrated that HIF2α could promote migration and invasion in gastric cancer cells. The results of western blot and RT-PCR analysis indicated that Survivin, Cyclin D1, MMP2 and MMP9 are upregulated with HIF2α overexpression. Finally, similar roles of HIF2α also in vivo were demonstrated. Taken together, the present study suggested that HIF-2α was involved in proliferation, metastasis and invasion of gastric cancer cells, with the induction of Survivin, Cyclin D1, MMP2 and MMP9 expression.
Collapse
Affiliation(s)
- Wei-Wei Tong
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang 110001, P.R. China
| | - Guang-Hui Tong
- Department of Laboratory Medicine, ShengJing Affiliated Hospital, China Medical University, Shenyang 110001, P.R. China
| | - Xie-Xiao Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, China Medical University, Shenyang 110001, P.R. China
| | - Hua-Chuan Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, China Medical University, Shenyang 110001, P.R. China
| | | |
Collapse
|
34
|
Brocato J, Chervona Y, Costa M. Molecular responses to hypoxia-inducible factor 1α and beyond. Mol Pharmacol 2014; 85:651-7. [PMID: 24569087 PMCID: PMC3990019 DOI: 10.1124/mol.113.089623] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/25/2014] [Indexed: 12/14/2022] Open
Abstract
Cellular response to changes in oxygen tension during normal development or pathologic processes is, in part, regulated by hypoxia-inducible factor (HIF), an oxygen-sensitive transcription factor. HIF activity is primarily controlled through post-translational modifications and stabilization of HIF-1α and HIF-2α proteins and is regulated by a number of cellular pathways involving both oxygen-dependent and -independent mechanisms. Stabilization of HIF-1α activates transcription of genes that participate in key pathways in carcinogenesis, such as angiogenesis, dedifferentiation, and invasion. Since its discovery more than two decades ago, HIF-1α has become a hot topic in molecular research and has been implicated not only in disease pathology but also in prognosis. In this review, we will focus on recent insights into HIF-1α regulation, function, and gene expression. We will also discuss emerging data on the involvement of HIF in cancer prognosis and therapeutic interventions.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | | | | |
Collapse
|
35
|
Aesoy R, Gradin K, Aasrud KS, Hoivik EA, Ruas JL, Poellinger L, Bakke M. Regulation of CDKN2B expression by interaction of Arnt with Miz-1--a basis for functional integration between the HIF and Myc gene regulatory pathways. Mol Cancer 2014; 13:54. [PMID: 24618291 PMCID: PMC3984710 DOI: 10.1186/1476-4598-13-54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 03/04/2014] [Indexed: 12/23/2022] Open
Abstract
Background Hypoxia- and Myc-dependent transcriptional regulatory pathways are frequently deregulated in cancer cells. These pathways converge in many cellular responses, but the underlying molecular mechanisms are unclear. Methods The ability of Miz-1 and Arnt to interact was identified in a yeast two-hybrid screen. The mode of interaction and the functional consequences of complex formation were analyzed by diverse molecular biology methods, in vitro. Statistical analyses were performed by Student’s t-test and ANOVA. Results In the present study we demonstrate that the aryl hydrocarbon receptor nuclear translocator (Arnt), which is central in hypoxia-induced signaling, forms a complex with Miz-1, an important transcriptional regulator in Myc-mediated transcriptional repression. Overexpression of Arnt induced reporter gene activity driven by the proximal promoter of the cyclin-dependent kinase inhibitor 2B gene (CDKN2B), which is an established target for the Myc/Miz-1 complex. In contrast, mutated forms of Arnt, that were unable to interact with Miz-1, had reduced capability to activate transcription. Moreover, repression of Arnt reduced endogenous CDKN2B expression, and chromatin immunoprecipitation demonstrated that Arnt interacts with the CDKN2B promoter. The transcriptional activity of Arnt was counteracted by Myc, but not by a mutated variant of Myc that is unable to interact with Miz-1, suggesting mutually exclusive interaction of Arnt and Myc with Miz-1. Our results also establish CDKN2B as a hypoxia regulated gene, as endogenous CDKN2B mRNA and protein levels were reduced by hypoxic treatment of U2OS cells. Conclusions Our data reveal a novel mode of regulation by protein-protein interaction that directly ties together, at the transcriptional level, the Myc- and hypoxia-dependent signaling pathways and expands our understanding of the roles of hypoxia and cell cycle alterations during tumorigenesis.
Collapse
Affiliation(s)
- Reidun Aesoy
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kim SY, Lee MJ, Na YR, Kim SY, Yang EG. Visualization of Hypoxia-Inducible Factor 1α-p300 Interactions in Live Cells by Fluorescence Resonance Energy Transfer. J Cell Biochem 2013; 115:271-80. [DOI: 10.1002/jcb.24659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- So Yeon Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 136-791 Republic of Korea
| | - Myong Jin Lee
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 136-791 Republic of Korea
| | - Yu-Ran Na
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 136-791 Republic of Korea
| | - Sang Yoon Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 136-791 Republic of Korea
| | - Eun Gyeong Yang
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul 136-791 Republic of Korea
| |
Collapse
|
37
|
Rajendran R, Krstic-Demonacos M, Demonacos C. Regulation of the cell fate by DNA damage and hypoxia. World J Med Genet 2013; 3:34-40. [DOI: 10.5496/wjmg.v3.i4.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/06/2013] [Accepted: 09/18/2013] [Indexed: 02/06/2023] Open
Abstract
In order to provide the means for the design of novel rational anti-cancer drug therapies research efforts are concentrated on unravelling the molecular circuits which induce programmed cell death and block proliferation of cancer cells. Modern therapeutic strategies are based on the understanding of the complexity of physiological functions such as differentiation, development, immune responses, cell-cycle arrest, DNA damage repair, apoptosis, autophagy, energy metabolism, and senescence. It has become evident that this knowledge will provide the means to target the components of the pathways involved in these processes in a specific and selective manner thus paving the way for the development of effective and personalised anti-cancer therapies. Transcription is a crucial cellular process that regulates a multitude of physiological functions, which are essential in disease progression and cellular response to therapy. Transcription factors such as the p53 tumor suppressor and the hypoxia-inducible factor-α (HIF-α) are key players in carcinogenesis and cellular response to cancer therapies. Both of these transcription factors regulate gene expression of genes involved in cell death and proliferation, in some cases cooperating towards producing the same outcome and in some others mediating opposing effects. It is thus apparent that fine tuning of the activity of these transcription factors is essential to determine the cellular response to therapeutic regimens, in other words whether tumor cells will commit to apoptosis or evade engagement with the anti-proliferative effects of drugs leading to drug resistance. Our observations support the notion that the functional crosstalk between HIF-1α and p53 pathways and thus the fine tuning of their transcriptional activity is mediated by cofactors shared between the two transcription factors such as components of the p300 co-activator multiprotein complex. In particular, there is evidence to suggest that differential composition of the co-modulatory protein complexes associated with p53 and HIF-1α under diverse types of stress conditions differentially regulate the expression of distinct subsets of p53 and HIF-1α target genes involved in processes such as cell cycle arrest, apoptosis, chronic inflammation, and cellular energy metabolism thereby determining the cellular fate under particular types of micro-environmental stress.
Collapse
|
38
|
Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70:3989-4008. [PMID: 23307074 PMCID: PMC11113169 DOI: 10.1007/s00018-012-1254-4] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
- Present Address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Christopher B. Marshall
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
39
|
Long-lasting changes in DNA methylation following short-term hypoxic exposure in primary hippocampal neuronal cultures. PLoS One 2013; 8:e77859. [PMID: 24205000 PMCID: PMC3808424 DOI: 10.1371/journal.pone.0077859] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Accepted: 09/04/2013] [Indexed: 12/14/2022] Open
Abstract
While the effects of hypoxia on gene expression have been investigated in the CNS to some extent, we currently do not know what role epigenetics plays in the transcription of many genes during such hypoxic stress. To start understanding the role of epigenetic changes during hypoxia, we investigated the long-term effect of hypoxia on gene expression and DNA methylation in hippocampal neuronal cells. Primary murine hippocampal neuronal cells were cultured for 7 days. Hypoxic stress of 1% O2, 5% CO2 for 24 hours was applied on Day 3, conditions we found to maximize cellular hypoxic stress response without inducing cell death. Cells were returned to normoxia for 4 days following the period of hypoxic stress. On Day 7, Methyl-Sensitive Cut Counting (MSCC) was used to identify a genome-wide methylation profile of the hippocampal cell lines to assess methylation changes resulting from hypoxia. RNA-Seq was also done on Day 7 to analyze changes in gene transcription. Phenotypic analysis showed that neuronal processes were significantly shorter after 1 day of hypoxia, but there was a catch-up growth of these processes after return to normoxia. Transcriptome profiling using RNA-Seq revealed 369 differentially expressed genes with 225 being upregulated, many of which form networks shown to affect CNS development and function. Importantly, the expression level of 59 genes could be correlated to the changes in DNA methylation in their promoter regions. CpG islands, in particular, had a strong tendency to remain hypomethylated long after hypoxic stress was removed. From this study, we conclude that short-term, sub-lethal hypoxia results in long-lasting changes to genome wide DNA methylation status and that some of these changes can be highly correlated with transcriptional modulation in a number of genes involved in functional pathways that have been previously implicated in neural growth and development.
Collapse
|
40
|
Dengler VL, Galbraith M, Espinosa JM. Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 2013; 49:1-15. [PMID: 24099156 DOI: 10.3109/10409238.2013.838205] [Citation(s) in RCA: 571] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The cellular response to oxygen deprivation is governed largely by a family of transcription factors known as Hypoxia Inducible Factors (HIFs). This review focuses on the molecular mechanisms by which HIFs regulate the transcriptional apparatus to enable the cellular and organismal response to hypoxia. We discuss here how the various HIF polypeptides, their posttranslational modifications, binding partners and transcriptional cofactors affect RNA polymerase II activity to drive context-dependent transcriptional programs during hypoxia.
Collapse
Affiliation(s)
- Veronica L Dengler
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Matthew Galbraith
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| | - Joaquín M Espinosa
- Howard Hughes Medical Institute & Department of Molecular, Cellular and Developmental Biology, The University of Colorado at Boulder, Boulder, CO 80309-0347, U.S.A
| |
Collapse
|
41
|
Tsai YP, Wu KJ. Epigenetic regulation of hypoxia-responsive gene expression: focusing on chromatin and DNA modifications. Int J Cancer 2013; 134:249-56. [PMID: 23564219 DOI: 10.1002/ijc.28190] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/28/2013] [Indexed: 12/20/2022]
Abstract
Mammalian cells constantly encounter hypoxia, which is a stress condition occurring during development and physiological processes. To adapt to this inevitable condition, cells develop various mechanisms to cope with this stress and survive. In addition to the activation/stabilization of transcriptional regulators (hypoxia-inducible factors), other epigenetic mechanisms of gene regulation are used. These mechanisms are mediated by various players including transcriptional coregulators, chromatin-modifying complexes, histone modification enzymes and changes in DNA methylation status. Recent progress in all the fields mentioned above has greatly improved the knowledge of how gene regulation contributes to the hypoxic response. This review should shed light on the molecular epigenetic mechanisms of hypoxia-induced gene regulation and help understand the processes adapted by cells to cope with hypoxia.
Collapse
Affiliation(s)
- Ya-Ping Tsai
- Institute of Biochemistry & Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | |
Collapse
|
42
|
Gundemir S, Colak G, Feola J, Blouin R, Johnson GVW. Transglutaminase 2 facilitates or ameliorates HIF signaling and ischemic cell death depending on its conformation and localization. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1-10. [PMID: 23085038 DOI: 10.1016/j.bbamcr.2012.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 12/26/2022]
Abstract
Transglutaminase 2 (TG2) is a widely expressed and multifunctional protein that modulates cell death/survival processes. We have previously shown that TG2 binds to hypoxia inducible factor 1β (HIF1β) and decreases the upregulation of HIF responsive genes; however, the relationship between these observations was not investigated. In this study, we investigated whether endogenous TG2 is sufficient to suppress HIF activity and whether the interaction between TG2 and HIF1β is required for this suppression. shRNA-mediated silencing of TG2 significantly enhanced HIF activation in response to hypoxia. In addition, nuclear localization of TG2 is required for its suppressive effect on HIF activity, with TG2 being recruited to HIF responsive promoters in hypoxic conditions. These observations suggest that TG2 directly regulates hypoxic transcriptional machinery; however, its interaction with HIF1β was not required for this regulation. We also examined whether TG2's effect on cell death/survival processes in ischemia is due to its effects on HIF signaling. Our results indicate that TG2 mediated HIF suppression can be separated from TG2's effect on cell survival in hypoxic/hypoglycemic conditions. Lastly, here we show that nuclear TG2 in the closed conformation and non-nuclear TG2 in the open conformation have opposing effects on hypoxic/hypoglycemic cell death, which could explain previous controversial results. Overall, our results further clarify the role of TG2 in mediating the cellular response to ischemia and suggest that manipulating the conformation of TG2 might be of pharmacological interest as a therapeutic strategy for the treatment of ischemia-related pathologies.
Collapse
Affiliation(s)
- Soner Gundemir
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
43
|
Andreou K, Rajendran R, Krstic-Demonacos M, Demonacos C. Regulation of CXCR4 gene expression in breast cancer cells under diverse stress conditions. Int J Oncol 2012; 41:2253-9. [PMID: 23023398 DOI: 10.3892/ijo.2012.1643] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 06/08/2012] [Indexed: 01/16/2023] Open
Abstract
Chronic inflammation is a critical component in breast cancer progression. Pro-inflammatory mediators along with growth/survival factors within the tumor microenvironment potentiate the expression of pro-inflammatory cytokines (IL-1, IL-6, TNF-α), chemotactic cytokines and their receptors (CXCR4, CXCL12, CXCL8) and angiogenic factors (VEGF) that often overcome the effect of anti-inflammatory molecules (IL-4, IL-10) thus evading the host's antitumor immunity. Detailed knowledge, therefore, of the regulatory mechanisms determining cytokine levels is essential to understand the pathogenesis of breast cancer. HIF-1α and NF-κB transcription factors are important players for the establishment of a pro-inflammatory and potentially oncogenic environment. HIF-1α is the key mediator of the cellular response to oxygen deprivation and induces the expression of genes involved in survival and angiogenesis within solid hypoxic tumors. The expression of these genes is often modulated by the p53 tumor suppressor protein that induces apoptosis or cell cycle arrest in neoplastic cells. Functional crosstalk between HIF-1α and p53 pathways mediated by modulators shared between the two transcription factors such as SRC-1 and SIRT-1 differentially regulate the expression of distinct subsets of their target genes under variable stress conditions. In an attempt to shed light on the complex regulatory mechanisms involved in cancer-related inflammation, we investigated the role of the two common p53 and HIF-1α co-regulators SRC-1 and SIRT-1, in the expression of the highly potent metastatic chemokine receptor CXCR4. Both SRC-1 and SIRT-1 overexpression in DSFX-treated MCF-7 cells reduced CXCR4 cellular levels implying that both co-regulators are crucial factors in the determination of the metastatic potential of breast cancer cells.
Collapse
Affiliation(s)
- Kleopatra Andreou
- School of Pharmacy and Pharmaceutical Sciences, Stopford Building, University of Manchester, Manchester, M13 9PT, UK
| | | | | | | |
Collapse
|
44
|
Chervona Y, Costa M. The control of histone methylation and gene expression by oxidative stress, hypoxia, and metals. Free Radic Biol Med 2012; 53:1041-7. [PMID: 22841757 PMCID: PMC3432141 DOI: 10.1016/j.freeradbiomed.2012.07.020] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/03/2012] [Accepted: 07/18/2012] [Indexed: 12/14/2022]
Abstract
The harmful consequences of carcinogenic metals, such as nickel, arsenic, and chromium, are thought to be in part due to their ability to induce oxidative stress. The ubiquity of oxidative stress in biological systems has made it a fairly obvious culprit in causing cellular damage and/or development of disease. However, the full extent of oxidative stress-induced damage is not limited to its direct effects on cellular components, such as lipids, proteins, and DNA, but may extend to its ability to alter gene expression. Gene expression regulation is an important component of cellular and/or tissue homeostasis, and its alteration can have detrimental consequences. Therefore, a growing amount of interest is being paid to understanding how oxidative stress can influence gene expression. Oxidative stress-induced epigenetic dysregulation in the form of posttranslational histone modifications, in particular, is a popular topic of research. This review will therefore primarily focus on discussing the role of oxidative stress and hypoxia on histone methylation and/or gene expression alterations. The sources of oxidative stress discussed here are carcinogenic metals, such as, nickel, arsenic, and chromium.
Collapse
Affiliation(s)
- Yana Chervona
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York 10987, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York 10987, USA
| |
Collapse
|
45
|
Chen R, Xu M, Hogg RT, Li J, Little B, Gerard RD, Garcia JA. The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signaling. J Biol Chem 2012; 287:30800-11. [PMID: 22807441 DOI: 10.1074/jbc.m111.244780] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) are oxygen-sensitive transcription factors. HIF-1α plays a prominent role in hypoxic gene induction. HIF-2α target genes are more restricted but include erythropoietin (Epo), one of the most highly hypoxia-inducible genes in mammals. We previously reported that HIF-2α is acetylated during hypoxia but is rapidly deacetylated by the stress-responsive deacetylase Sirtuin 1. We now demonstrate that the lysine acetyltransferases cAMP-response element-binding protein-binding protein (CBP) and p300 are required for efficient Epo induction during hypoxia. However, despite close structural similarity, the roles of CBP and p300 differ in HIF signaling. CBP acetylates HIF-2α, is a major coactivator for HIF-2-mediated Epo induction, and is required for Sirt1 augmentation of HIF-2 signaling during hypoxia in Hep3B cells. In comparison, p300 is a major contributor for HIF-1 signaling as indicated by induction of Pgk1. Whereas CBP can bind with HIF-2α independent of the HIF-2α C-terminal activation domain via enzyme/substrate interactions, p300 only complexes with HIF-2α through the C-terminal activation domain. Maximal CBP/HIF-2 signaling requires intact CBP acetyltransferase activity in both Hep3B cells as well as in mice.
Collapse
Affiliation(s)
- Rui Chen
- Department of Medicine, Veterans Affairs North Texas Health Care System, Dallas, TX 75216, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Jiang H, Chen SS, Yang J, Chen J, He B, Zhu LH, Wang L. CREB-binding protein silencing inhibits thrombin-induced endothelial progenitor cells angiogenesis. Mol Biol Rep 2012; 39:2773-2779. [PMID: 21670961 DOI: 10.1007/s11033-011-1035-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/03/2011] [Indexed: 02/04/2023]
Abstract
Endothelial progenitor cells (EPCs) are known to promote neovascularization in ischemic diseases. Recent evidence from our group suggested that CREB-binding protein (CBP) plays an important role in thrombin-induced EPCs migration. However, whether CBP could regulate EPCs angiogenic properties is unknown. In the present study, we investigated whether CBP silencing could inhibit thrombin-induced EPCs angiogenesis. EPCs isolated from the bone marrow of Sprague-Dawley rats were cultured and identified, and then were treated by thrombin alone or combined with CBP-shRNA lentivirus. The effect of CBP silencing on EPCs proliferation was assessed using BrdU incorporation assay. Cell adhesion and tube formation were detected to evaluate the angiogenic functions. Finally, mRNA and protein expression of relevant angiogenic genes were examined by real-time PCR, western-blot, and enzyme-linked immunoassay respectively. Luciferase reporter gene assay was performed to evaluate NF-κB activity. Administration of thrombin significantly promoted EPCs proliferation and adhesion. Thrombin also increased the tube formation in Matrigel assay. However, these effects of thrombin were abolished by CBP gene silencing. CBP silencing also abrogated thrombin-induced increases of integrin β2 expression. In thrombin-induced EPCs, CBP silencing significantly decreased the secretion of VEGF, IL-6 and suppressed NF-κB activity. In conclusion, thrombin-induced EPCs proliferation, adhesion, and tube formation were inhibited by CBP silencing, indicating that CBP plays an important role in thrombin-induced EPCs neovascularization.
Collapse
Affiliation(s)
- Hong Jiang
- Hong Jiang, Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road,Wuchang, Wuhan 430060, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
47
|
Melvin A, Rocha S. Chromatin as an oxygen sensor and active player in the hypoxia response. Cell Signal 2012; 24:35-43. [PMID: 21924352 PMCID: PMC3476533 DOI: 10.1016/j.cellsig.2011.08.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 08/29/2011] [Indexed: 12/28/2022]
Abstract
Changes in the availability or demand for oxygen induce dramatic changes at the cellular level. Primarily, activation of a family of oxygen labile transcription factors, Hypoxia Inducible Factor (HIF), initiates a variety of cellular processes required to re-instate oxygen homeostasis. Oxygen is sensed by molecular dioxygenases in cells, such as the prolyl-hydroxylases (PHDs), enzymes which are responsible for the oxygen-dependent regulation of HIF. As HIF is a transcription factor it must bind DNA sequences of its target genes possibly in the context of a complex chromatin structure. How chromatin structure changes in response to hypoxia is currently unknown. However, the identification of a novel class of histone demethylases as true dioxygenases suggests that chromatin can act as an oxygen sensor and plays an active role in the coordination of the cellular response to hypoxia. This review will discuss the current knowledge on how hypoxia engages with different proteins involved in chromatin organisation and dynamics.
Collapse
Key Words
- hif, hypoxia inducible factor
- arnt, aryl hydrocarbon nuclear translocator
- vhl, von hippel lindau
- phd, prolyl-hydroxylase
- fih, factor inhibiting hif
- chip, chromatin immunoprecipitation
- swi/snf, switch/sucrose nonfermentable
- iswi, imitation switch
- chd, chromodomain helicase dna-binding
- nurf, nucleosome remodelling factor
- chrac, chromatin remodelling and assembly complex
- acf, atp-utilising chromatin remodelling and assembly factor
- norc, nucleolar remodelling complex
- rsf, remodelling and spacing factor
- wich, wstf–iswi chromatin remodelling complex
- nurd, nucleosome remodelling and histone deacetylase
- srcap, snf2-related cbp activator protein
- trrap, transformation/transcription domain-associated protein/tip60
- hat, histone acetyl transferase
- hdac, histone deacetylase
- lsd1, lysine-specific demethylase-1
- jmjc, jumonji c domain
- hypoxia
- chromatin
- hif
- transcription
- chromatin remodellers
- jmjc demethylases
Collapse
Affiliation(s)
| | - Sonia Rocha
- Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, MSI/WTB/JBC Complex, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
48
|
Wollenick K, Hu J, Kristiansen G, Schraml P, Rehrauer H, Berchner-Pfannschmidt U, Fandrey J, Wenger RH, Stiehl DP. Synthetic transactivation screening reveals ETV4 as broad coactivator of hypoxia-inducible factor signaling. Nucleic Acids Res 2011; 40:1928-43. [PMID: 22075993 PMCID: PMC3300025 DOI: 10.1093/nar/gkr978] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human prolyl-4-hydroxylase domain (PHD) proteins 1–3 are known as cellular oxygen sensors, acting via the degradation of hypoxia-inducible factor (HIF) α-subunits. PHD2 and PHD3 genes are inducible by HIFs themselves, suggesting a negative feedback loop that involves PHD abundance. To identify novel regulators of the PHD2 gene, an expression array of 704 transcription factors was screened by a method that allows distinguishing between HIF-dependent and HIF-independent promoter regulation. Among others, the E-twenty six transcription factor ETS translocation variant 4 (ETV4) was found to contribute to PHD2 gene expression particularly under hypoxic conditions. Mechanistically, complex formation between ETV4 and HIF-1/2α was observed by mammalian two-hybrid and fluorescence resonance energy transfer analysis. HIF-1α domain mapping, CITED2 overexpression and factor inhibiting HIF depletion experiments provided evidence for cooperation between HIF-1α and p300/CBP in ETV4 binding. Chromatin immunoprecipitation confirmed ETV4 and HIF-1α corecruitment to the PHD2 promoter. Of 608 hypoxically induced transcripts found by genome-wide expression profiling, 7.7% required ETV4 for efficient hypoxic induction, suggesting a broad role of ETV4 in hypoxic gene regulation. Endogenous ETV4 highly correlated with PHD2, HIF-1/2α and several established markers of tissue hypoxia in 282 human breast cancer tissue samples, corroborating a functional interplay between the ETV4 and HIF pathways.
Collapse
Affiliation(s)
- Kristin Wollenick
- Institute of Physiology and Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, 8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Perez-Perri JI, Acevedo JM, Wappner P. Epigenetics: new questions on the response to hypoxia. Int J Mol Sci 2011; 12:4705-21. [PMID: 21845106 PMCID: PMC3155379 DOI: 10.3390/ijms12074705] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/16/2022] Open
Abstract
Reduction in oxygen levels below normal concentrations plays important roles in different normal and pathological conditions, such as development, tumorigenesis, chronic kidney disease and stroke. Organisms exposed to hypoxia trigger changes at both cellular and systemic levels to recover oxygen homeostasis. Most of these processes are mediated by Hypoxia Inducible Factors, HIFs, a family of transcription factors that directly induce the expression of several hundred genes in mammalian cells. Although different aspects of HIF regulation are well known, it is still unclear by which precise mechanism HIFs activate transcription of their target genes. Concomitantly, hypoxia provokes a dramatic decrease of general transcription that seems to rely in part on epigenetic changes through a poorly understood mechanism. In this review we discuss the current knowledge on chromatin changes involved in HIF dependent gene activation, as well as on other epigenetic changes, not necessarily linked to HIF that take place under hypoxic conditions.
Collapse
Affiliation(s)
- Joel I. Perez-Perri
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; E-Mails: (J.I.P.-P.); (J.M.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
| | - Julieta M. Acevedo
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; E-Mails: (J.I.P.-P.); (J.M.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
| | - Pablo Wappner
- Instituto Leloir, Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; E-Mails: (J.I.P.-P.); (J.M.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires C1033AAJ, Argentina
- Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +54-11-5238-7500 ext.3112; Fax: +54-11-5238-7501
| |
Collapse
|
50
|
Specific contribution of the erythropoietin gene 3' enhancer to hepatic erythropoiesis after late embryonic stages. Mol Cell Biol 2011; 31:3896-905. [PMID: 21746884 DOI: 10.1128/mcb.05463-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (Epo) is secreted from the liver and kidney, where Epo production is strictly regulated at the transcriptional level in a hypoxia- and/or anemia-inducible manner. Here, we examined the in vivo function of the enhancer located 3' to the Epo gene (EpoE-3'). Reporter transgenic-mouse analyses revealed that the EpoE-3' enhancer is necessary and sufficient for the liver-specific and hypoxia-responsive expression of the gene after embryonic day 14.5 (E14.5). However, the enhancer is dispensable for Epo gene expression in the kidney and early-stage embryonic liver. Genetic removal of EpoE-3' from the endogenous Epo gene resulted in mice with severe anemia at late embryonic and neonatal stages due to defects in hepatic erythropoiesis, but early hepatic and splenic erythropoiesis was not affected. The mutant mice recover from the anemia in the juvenile period when major Epo production switches from the liver to the kidney. These results demonstrate that EpoE-3' is necessary for late hepatic erythropoiesis by specifically supporting paracrine production of Epo in the liver. In contrast, Epo production in the kidney utilizes distinct regulatory machinery and supports erythropoiesis in the bone marrow and spleen in adult animals.
Collapse
|