1
|
Deshmukh RS, Sanadi RM, Tepan M. Estimation of Tyrosinase-Related Protein 1 (TRP-1) Gene Expression in Human Gingiva and Its Correlation With Gingival Melanin Hyperpigmentation: A Pilot Study. Cureus 2025; 17:e76843. [PMID: 39897280 PMCID: PMC11787718 DOI: 10.7759/cureus.76843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/02/2025] [Indexed: 02/04/2025] Open
Abstract
Background Melanin synthesis in humans relies on the activity of the tyrosinase enzyme, along with tyrosinase-related proteins 1 and 2 (TRP-1 and TRP-2). TRP-1 functions as a 5,6-dihydroxyindole-2-carboxylic acid oxidase and plays a crucial role in activating and stabilizing tyrosinase, as well as in melanosome synthesis. However, TRP-1 gene expression in human gingiva has not been explored. Therefore, this study aimed to estimate TRP-1 gene expression in human gingiva. Aim The aim of the study was to estimate TRP-1 gene expression in human gingiva and examine its correlation with the degree of gingival melanin hyperpigmentation. Materials and methods Gingival tissue samples were collected from individuals undergoing gingival depigmentation surgery due to concerns about blackish-looking gums. The gingival epithelial tissue was excised under local anesthesia using a surgical scalpel blade. The excised tissue, including a thin layer of underlying connective tissue, was sent to the laboratory for TRP-1 gene expression analysis using the RT-PCR technique. Results The levels of TRP-1 gene expression in human gingiva ranged from 0.459 to 0.973. TRP-1 gene expression in the gingival tissues showed a correlation with the degree of gingival melanin hyperpigmentation, with lower expression levels observed at sites with mild to moderate pigmentation and higher levels at sites with severe pigmentation. Conclusions TRP-1 gene expression in human gingiva was positively correlated with the degree of gingival melanin hyperpigmentation, suggesting its potential role in the regulation of gingival melanin pigmentation.
Collapse
Affiliation(s)
- Revati S Deshmukh
- Oral Pathology and Microbiology, Bharati Vidyapeeth Dental College and Hospital, Pune, IND
| | - Rizwan M Sanadi
- Periodontology and Oral Implantology, Dr. G.D. Pol Foundation's Y.M.T. Dental College and Hospital, Navi Mumbai, IND
| | - Meenal Tepan
- Oral Medicine and Radiology, Bharati Vidyapeeth Dental College and Hospital, Pune, IND
| |
Collapse
|
2
|
Liu J, Bitsue HK, Yang Z. Skin colour: A window into human phenotypic evolution and environmental adaptation. Mol Ecol 2024; 33:e17369. [PMID: 38713101 DOI: 10.1111/mec.17369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
As modern humans ventured out of Africa and dispersed around the world, they faced novel environmental challenges that led to geographic adaptations including skin colour. Over the long history of human evolution, skin colour has changed dramatically, showing tremendous diversity across different geographical regions, for example, the majority of individuals from the expansive lands of Africa have darker skin, whereas the majority of people from Eurasia exhibit lighter skin. What adaptations did lighter skin confer upon modern humans as they migrated from Africa to Eurasia? What genetic mechanisms underlie the diversity of skin colour observed in different populations? In recent years, scientists have gradually gained a deeper understanding of the interactions between pigmentation gene and skin colour through population-based genomic studies of different groups around the world, particularly in East Asia and Africa. In this review, we summarize our current understanding of 26 skin colour-related pigmentation genes and 48 SNPs that influence skin colour. Important pigmentation genes across three major populations are described in detail: MFSD12, SLC24A5, PDPK1 and DDB1/CYB561A3/TMEM138 influence skin colour in African populations; OCA2, KITLG, SLC24A2, GNPAT and PAH are key to the evolution of skin pigmentation in East Asian populations; and SLC24A5, SLC45A2, TYR, TYRP1, ASIP, MC1R and IRF4 significantly contribute to the lightening of skin colour in European populations. We summarized recent findings in genomic studies of skin colour in populations that implicate diverse geographic environments, local adaptation among populations, gene flow and multi-gene interactions as factors influencing skin colour diversity.
Collapse
Affiliation(s)
- Jiuming Liu
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Habtom K Bitsue
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhaohui Yang
- Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Montero P, Sanz C, Pérez-Fidalgo JA, Pérez-Leal M, Milara J, Cortijo J. Paclitaxel alters melanogenesis and causes pigmentation in the skin of gynecological cancer patients. Fundam Clin Pharmacol 2024; 38:183-191. [PMID: 37483143 DOI: 10.1111/fcp.12943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/09/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
BACKGROUND Paclitaxel (PTX) is a microtubule-stabilizing antineoplastic that has been shown to damage healthy tissues like the skin. Hyperpigmentation can be found among the adverse effects caused by PTX, but the literature is limited and the mechanisms driving PTX-induced pigmentary alterations are unknown. OBJECTIVES This study aimed to describe the pigmentary alterations caused by PTX and to determine the effects of PTX on melanocytes. METHODS Pigmentary skin alterations were measured in 20 gynecological cancer patients under PTX treatment by using specific probes, which determine the melanin index and the pigmentation level. Melanocytes were incubated with paclitaxel to analyze melanogenesis markers gene expression, melanin content, and transcription factors activation. RESULTS Paclitaxel induced alterations in the skin pigmentation with no visible clinical manifestations. Gynecological cancer patients under paclitaxel treatment had an increase in the melanin index and pigmentation levels. In vitro, PTX exposure to melanocytes increased the expression of melanogenesis markers, melanin content, and induced activation of ERK and MITF. CONCLUSIONS The results suggest that PTX alters pigmentation in patients with no clinically visible manifestations, and these alterations might be driven by its capacity to stimulate melanogenesis on melanocytes through the MITF activation pathway.
Collapse
Affiliation(s)
- Paula Montero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Celia Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Jose Alejandro Pérez-Fidalgo
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Cancer (CIBERONC), Health Institute Carlos III, Madrid, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Martín Pérez-Leal
- Faculty of Health Sciences, Universidad Europea de Valencia, Valencia, Spain
| | - Javier Milara
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Pharmacy Unit, University General Hospital Consortium, Valencia, Spain
| | - Julio Cortijo
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES), Health Institute Carlos III, Madrid, Spain
- Research and Teaching Unit, University General Hospital Consortium, Valencia, Spain
| |
Collapse
|
4
|
Ueda R, Hashimoto R, Fujii Y, Menezes JCJMDS, Takahashi H, Takeda H, Sawasaki T, Motokawa T, Tokunaga K, Fujita H. Membrane-Associated Ubiquitin Ligase RING Finger Protein 152 Orchestrates Melanogenesis via Tyrosinase Ubiquitination. MEMBRANES 2024; 14:43. [PMID: 38392670 PMCID: PMC10890620 DOI: 10.3390/membranes14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/24/2024]
Abstract
Lysosomal degradation of tyrosinase, a pivotal enzyme in melanin synthesis, negatively impacts melanogenesis in melanocytes. Nevertheless, the precise molecular mechanisms by which lysosomes target tyrosinase have remained elusive. Here, we identify RING (Really Interesting New Gene) finger protein 152 (RNF152) as a membrane-associated ubiquitin ligase specifically targeting tyrosinase for the first time, utilizing AlphaScreen technology. We observed that modulating RNF152 levels in B16 cells, either via overexpression or siRNA knockdown, resulted in decreased or increased levels of both tyrosinase and melanin, respectively. Notably, RNF152 and tyrosinase co-localized at the trans-Golgi network (TGN). However, upon treatment with lysosomal inhibitors, both proteins appeared in the lysosomes, indicating that tyrosinase undergoes RNF152-mediated lysosomal degradation. Through ubiquitination assays, we found the indispensable roles of both the RING and transmembrane (TM) domains of RNF152 in facilitating tyrosinase ubiquitination. In summary, our findings underscore RNF152 as a tyrosinase-specific ubiquitin ligase essential for regulating melanogenesis in melanocytes.
Collapse
Affiliation(s)
- Ryota Ueda
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| | - Rina Hashimoto
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| | - Yuki Fujii
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| | - José C J M D S Menezes
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
- Esteem Industries Pvt Ltd., Bicholim 403529, Goa, India
| | | | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama 790-8577, Japan
| | - Tomonori Motokawa
- Frontier Research Center, POLA Chemical Industries, Inc., Yokohama 244-0812, Japan
| | - Kenzo Tokunaga
- Department of Pathology, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Hideaki Fujita
- Faculty of Pharmaceutical Sciences, Nagasaki International University, Sasebo 859-3298, Japan
| |
Collapse
|
5
|
Wagatsuma T, Suzuki E, Shiotsu M, Sogo A, Nishito Y, Ando H, Hashimoto H, Petris MJ, Kinoshita M, Kambe T. Pigmentation and TYRP1 expression are mediated by zinc through the early secretory pathway-resident ZNT proteins. Commun Biol 2023; 6:403. [PMID: 37072620 PMCID: PMC10113262 DOI: 10.1038/s42003-023-04640-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/28/2023] [Indexed: 04/20/2023] Open
Abstract
Tyrosinase (TYR) and tyrosinase-related proteins 1 and 2 (TYRP1 and TYRP2) are essential for pigmentation. They are generally classified as type-3 copper proteins, with binuclear copper active sites. Although there is experimental evidence for a copper cofactor in TYR, delivered via the copper transporter, ATP7A, the presence of copper in TYRP1 and TYRP2 has not been demonstrated. Here, we report that the expression and function of TYRP1 requires zinc, mediated by ZNT5-ZNT6 heterodimers (ZNT5-6) or ZNT7-ZNT7 homodimers (ZNT7). Loss of ZNT5-6 and ZNT7 function results in hypopigmentation in medaka fish and human melanoma cells, and is accompanied by immature melanosomes and reduced melanin content, as observed in TYRP1 dysfunction. The requirement of ZNT5-6 and ZNT7 for TYRP1 expression is conserved in human, mouse, and chicken orthologs. Our results provide novel insights into the pigmentation process and address questions regarding metalation in tyrosinase protein family.
Collapse
Affiliation(s)
- Takumi Wagatsuma
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Eisuke Suzuki
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Miku Shiotsu
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Akiko Sogo
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yukina Nishito
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideya Ando
- Department of Applied Chemistry and Biotechnology, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hisashi Hashimoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
| | - Michael J Petris
- Departments of Ophthalmology, University of Missouri, Columbia, MO, 65211, USA
- Biochemistry, University of Missouri, Columbia, MO, 65211, USA
- Bond Life Sciences Center, Columbia, MO, 65211, USA
| | - Masato Kinoshita
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
6
|
The retinal pigmentation pathway in human albinism: Not so black and white. Prog Retin Eye Res 2022; 91:101091. [PMID: 35729001 DOI: 10.1016/j.preteyeres.2022.101091] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/16/2022]
Abstract
Albinism is a pigment disorder affecting eye, skin and/or hair. Patients usually have decreased melanin in affected tissues and suffer from severe visual abnormalities, including foveal hypoplasia and chiasmal misrouting. Combining our data with those of the literature, we propose a single functional genetic retinal signalling pathway that includes all 22 currently known human albinism disease genes. We hypothesise that defects affecting the genesis or function of different intra-cellular organelles, including melanosomes, cause syndromic forms of albinism (Hermansky-Pudlak (HPS) and Chediak-Higashi syndrome (CHS)). We put forward that specific melanosome impairments cause different forms of oculocutaneous albinism (OCA1-8). Further, we incorporate GPR143 that has been implicated in ocular albinism (OA1), characterised by a phenotype limited to the eye. Finally, we include the SLC38A8-associated disorder FHONDA that causes an even more restricted "albinism-related" ocular phenotype with foveal hypoplasia and chiasmal misrouting but without pigmentation defects. We propose the following retinal pigmentation pathway, with increasingly specific genetic and cellular defects causing an increasingly specific ocular phenotype: (HPS1-11/CHS: syndromic forms of albinism)-(OCA1-8: OCA)-(GPR143: OA1)-(SLC38A8: FHONDA). Beyond disease genes involvement, we also evaluate a range of (candidate) regulatory and signalling mechanisms affecting the activity of the pathway in retinal development, retinal pigmentation and albinism. We further suggest that the proposed pigmentation pathway is also involved in other retinal disorders, such as age-related macular degeneration. The hypotheses put forward in this report provide a framework for further systematic studies in albinism and melanin pigmentation disorders.
Collapse
|
7
|
Ghani U. Azole inhibitors of mushroom and human tyrosinases: Current advances and prospects of drug development for melanogenic dermatological disorders. Eur J Med Chem 2022; 239:114525. [PMID: 35717871 DOI: 10.1016/j.ejmech.2022.114525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/16/2022]
Abstract
Azoles are a famous and promising class of drugs for treatment of a range of ailments especially fungal infections. A wide variety of azole derivatives are also known to exhibit tyrosinase inhibition, some of which possess promising activity with potential for treatment of dermatological disorders such as post-inflammatory hyperpigmentation, nevus, flecks, melasma, and melanoma. Recently, thiazolyl-resorcinol derivatives have demonstrated potent human tyrosinase inhibition with a safe and effective therapeutic profile for treatment of skin hyperpigmentation in humans, which are currently under clinical trials. If approved these derivatives would be the first azole drugs to be used for treatment of skin hyperpigmentation. Although the scientific literature has been witnessing general reviews on tyrosinase inhibitors to date, there is none that specifically and comprehensively discusses azole inhibitors of tyrosinase. Appreciating such potential of azoles, this focused review highlights a wide range of their derivatives with promising mushroom and human tyrosinase inhibitory activities and clinical potential for treatment of melanogenic dermatological disorders. Presently, these disorders have been treated with kojic acid, hydroquinone and other drugs, the design and development of which are based on their ability to inhibit mushroom tyrosinase. The active sites of mushroom and human tyrosinases carry structural differences which affect substrate or inhibitor binding. For this reason, kojic acid and other drugs pose efficacy and safety issues since they were originally developed using mushroom tyrosinase and have been clinically used on human tyrosinase. Design and development of tyrosinase inhibitors should be based on human tyrosinase, however, there are challenges in obtaining the human enzyme and understanding its structure and function. The review discusses these challenges that encompass structural and functional differences between mushroom and human tyrosinases and the manner in which they are inhibited. The review also gauges promising azole derivatives with potential for development of drugs against skin hyperpigmentation by analyzing and comparing their tyrosinase inhibitory activities against mushroom and human tyrosinases, computational data, and clinical profile where available. It aims to lay groundwork for development of new azole drugs for treatment of skin hyperpigmentation, melanoma, and related dermatological disorders.
Collapse
Affiliation(s)
- Usman Ghani
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, Riyadh, 12372, Saudi Arabia.
| |
Collapse
|
8
|
Li Z, Li Q, Xu C, Yu H. Molecular characterization of Pax7 and its role in melanin synthesis in Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 2022; 260:110720. [PMID: 35176460 DOI: 10.1016/j.cbpb.2022.110720] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 10/19/2022]
Abstract
The paired-box 7 (Pax7) is a transcription factor crucial for skin color polymorphism. However, the mechanism underlying the pigmentation associated with Pax7 in mollusks have yet to be elucidated. In this study, the cDNA sequence of Pax7 in the Pacific oyster Crassostrea gigas (CgPax7) was characterized. Phylogenetically, the identity of deduced amino acid sequence was similar to that of other mollusks and contained 463 amino acids, with conserved features of paired domain (PRD), homeobox domain (HD) and octapeptide. Gene expression analysis revealed that CgPax7 was markedly increased at D-shaped larvae stage and ubiquitously expressed in six examined tissues in adult oyster. The result of whole-mount in situ hybridization (WMISH) showed a restricted pattern of CgPax7 expression on margins of shell valves at D-shaped and umbo larvae stages. Additionally, although CgPax7 silencing had no significant effect on CgMitf expression, it significantly inhibited the expressions of CgPax7, CgTyr, CgTyrp1, CgTyrp2 and CgCdk2, genes involved in Tyr-mediated melanin synthesis. Furthermore, CgPax7 knockdown obviously decreased the tyrosinase activity. Less brown-granules at mantle edge was detected by micrographic examination and melanosomes defect was observed by transmission electron microscopy. It was demonstrated that CgPax7 play a key role in melanin synthesis by regulating Tyr-pathway in C. gigas. These findings indicated the potential framework by which mollusks pigmentation.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
9
|
Lin S, Sanchez-Bretaño A, Leslie JS, Williams KB, Lee H, Thomas NS, Callaway J, Deline J, Ratnayaka JA, Baralle D, Schmitt MA, Norman CS, Hammond S, Harlalka GV, Ennis S, Cross HE, Wenger O, Crosby AH, Baple EL, Self JE. Evidence that the Ser192Tyr/Arg402Gln in cis Tyrosinase gene haplotype is a disease-causing allele in oculocutaneous albinism type 1B (OCA1B). NPJ Genom Med 2022; 7:2. [PMID: 35027574 PMCID: PMC8758782 DOI: 10.1038/s41525-021-00275-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/19/2021] [Indexed: 01/09/2023] Open
Abstract
Oculocutaneous albinism type 1 (OCA1) is caused by pathogenic variants in the TYR (tyrosinase) gene which encodes the critical and rate-limiting enzyme in melanin synthesis. It is the most common OCA subtype found in Caucasians, accounting for ~50% of cases worldwide. The apparent 'missing heritability' in OCA is well described, with ~25-30% of clinically diagnosed individuals lacking two clearly pathogenic variants. Here we undertook empowered genetic studies in an extensive multigenerational Amish family, alongside a review of previously published literature, a retrospective analysis of in-house datasets, and tyrosinase activity studies. Together this provides irrefutable evidence of the pathogenicity of two common TYR variants, p.(Ser192Tyr) and p.(Arg402Gln) when inherited in cis alongside a pathogenic TYR variant in trans. We also show that homozygosity for the p.(Ser192Tyr)/p.(Arg402Gln) TYR haplotype results in a very mild, but fully penetrant, albinism phenotype. Together these data underscore the importance of including the TYR p.(Ser192Tyr)/p.(Arg402Gln) in cis haplotype as a pathogenic allele causative of OCA, which would likely increase molecular diagnoses in this missing heritability albinism cohort by 25-50%.
Collapse
Affiliation(s)
- Siying Lin
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Aida Sanchez-Bretaño
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
| | - Katie B Williams
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Helena Lee
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - N Simon Thomas
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Jonathan Callaway
- Faculty of Medicine, University of Southampton, Southampton, UK
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - James Deline
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - J Arjuna Ratnayaka
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Melanie A Schmitt
- University of Wisconsin School of Medicine and Public Health, Department of Ophthalmology & Visual Sciences, Madison, WI, USA
| | - Chelsea S Norman
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- The Rosalind Franklin Institute, Rutherford Appleton Laboratories, Harwell Science and Innovation Campus, Didcot, UK
| | - Sheri Hammond
- Center for Special Children, Vernon Memorial Healthcare, La Farge, WI, USA
| | - Gaurav V Harlalka
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK
- Rajarshi Shahu College of Pharmacy, Malvihir, Buldana, India
| | - Sarah Ennis
- Department of Human Genetics and Genomic Medicine, University of Southampton, Southampton, UK
| | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Olivia Wenger
- New Leaf Clinic, PO Box 336, 16014 East Chestnut Street, Mount Eaton, OH, 44691, USA
- Department of Pediatrics, Akron Children's Hospital, 214 West Bowery Street, Akron, OH, 44308, USA
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, Royal Devon & Exeter NHS Foundation Trust, Barrack Road, Exeter, UK.
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital (Heavitree), Gladstone Road, Exeter, UK.
| | - Jay E Self
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
10
|
Bian C, Li R, Wen Z, Ge W, Shi Q. Phylogenetic Analysis of Core Melanin Synthesis Genes Provides Novel Insights Into the Molecular Basis of Albinism in Fish. Front Genet 2021; 12:707228. [PMID: 34422008 PMCID: PMC8371935 DOI: 10.3389/fgene.2021.707228] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Melanin is the most prevalent pigment in animals. Its synthesis involves a series of functional genes. Particularly, teleosts have more copies of these genes related to the melanin synthesis than tetrapods. Despite the increasing number of available vertebrate genomes, a few systematically genomic studies were reported to identify and compare these core genes for the melanin synthesis. Here, we performed a comparative genomic analysis on several core genes, including tyrosinase genes (tyr, tyrp1, and tyrp2), premelanosome protein (pmel), microphthalmia-associated transcription factor (mitf), and solute carrier family 24 member 5 (slc24a5), based on 90 representative vertebrate genomes. Gene number and mutation identification suggest that loss-of-function mutations in these core genes may interact to generate an albinism phenotype. We found nonsense mutations in tyrp1a and pmelb of an albino golden-line barbel fish, in pmelb of an albino deep-sea snailfish (Pseudoliparis swirei), in slc24a5 of cave-restricted Mexican tetra (Astyanax mexicanus, cavefish population), and in mitf of a transparent icefish (Protosalanx hyalocranius). Convergent evolution may explain this phenomenon since nonsense mutations in these core genes for melanin synthesis have been identified across diverse albino fishes. These newly identified nonsense mutations and gene loss will provide molecular guidance for ornamental fish breeding, further enhancing our in-depth understanding of human skin coloration.
Collapse
Affiliation(s)
- Chao Bian
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China.,Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ruihan Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyong Wen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Ge
- Faculty of Health Sciences, Centre of Reproduction, Development and Aging, University of Macau, Taipa, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, Beijing Genomics Institute, BGI Academy of Marine Sciences, BGI Marine, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Khoruddin NA, Noorizhab MN, Teh LK, Mohd Yusof FZ, Salleh MZ. Pathogenic nsSNPs that increase the risks of cancers among the Orang Asli and Malays. Sci Rep 2021; 11:16158. [PMID: 34373545 PMCID: PMC8352870 DOI: 10.1038/s41598-021-95618-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are the most common genetic variations for various complex human diseases, including cancers. Genome-wide association studies (GWAS) have identified numerous SNPs that increase cancer risks, such as breast cancer, colorectal cancer, and leukemia. These SNPs were cataloged for scientific use. However, GWAS are often conducted on certain populations in which the Orang Asli and Malays were not included. Therefore, we have developed a bioinformatic pipeline to mine the whole-genome sequence databases of the Orang Asli and Malays to determine the presence of pathogenic SNPs that might increase the risks of cancers among them. Five different in silico tools, SIFT, PROVEAN, Poly-Phen-2, Condel, and PANTHER, were used to predict and assess the functional impacts of the SNPs. Out of the 80 cancer-related nsSNPs from the GWAS dataset, 52 nsSNPs were found among the Orang Asli and Malays. They were further analyzed using the bioinformatic pipeline to identify the pathogenic variants. Three nsSNPs; rs1126809 (TYR), rs10936600 (LRRC34), and rs757978 (FARP2), were found as the most damaging cancer pathogenic variants. These mutations alter the protein interface and change the allosteric sites of the respective proteins. As TYR, LRRC34, and FARP2 genes play important roles in numerous cellular processes such as cell proliferation, differentiation, growth, and cell survival; therefore, any impairment on the protein function could be involved in the development of cancer. rs1126809, rs10936600, and rs757978 are the important pathogenic variants that increase the risks of cancers among the Orang Asli and Malays. The roles and impacts of these variants in cancers will require further investigations using in vitro cancer models.
Collapse
Affiliation(s)
- Nurul Ain Khoruddin
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, Selangor, Malaysia
| | - Mohd NurFakhruzzaman Noorizhab
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
| | - Farida Zuraina Mohd Yusof
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Shah Alam Campus, Selangor, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia.
- Faculty of Pharmacy, Universiti Teknologi MARA (UiTM), Selangor Branch, Puncak Alam Campus, 42300, Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
12
|
Enkhtaivan E, Lee CH. Role of Amine Neurotransmitters and Their Receptors in Skin Pigmentation: Therapeutic Implication. Int J Mol Sci 2021; 22:ijms22158071. [PMID: 34360837 PMCID: PMC8348573 DOI: 10.3390/ijms22158071] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/24/2021] [Indexed: 12/27/2022] Open
Abstract
Skin pigmentation can occur due to increased melanin, including melanocyte proliferation, melanin biosynthesis, or melanocyte migration. There are many factors that influence the melanin production process, but the role of neurotransmitters in this process is still unclear. We found that histamine and serotonin influence the different stages of melanogenesis and melanogenesis, which increase melanogenesis. Since then, several related papers have been published, and from these papers, it has been recognised that the role of neurotransmitters in skin-pigment-related diseases needs to be summarised. By introducing the role of neurotransmitters in the regulation of various pigment disorders, including vitiligo and melasma, through this review, many researchers can be expected to try to apply neurotransmitter-related agonists and antagonists as treatments for skin pigment disorders.
Collapse
|
13
|
Lavinda O, Manga P, Orlow SJ, Cardozo T. Biophysical Compatibility of a Heterotrimeric Tyrosinase-TYRP1-TYRP2 Metalloenzyme Complex. Front Pharmacol 2021; 12:602206. [PMID: 33995009 PMCID: PMC8114058 DOI: 10.3389/fphar.2021.602206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
Tyrosinase (TYR) is a copper-containing monooxygenase central to the function of melanocytes. Alterations in its expression or activity contribute to variations in skin, hair and eye color, and underlie a variety of pathogenic pigmentary phenotypes, including several forms of oculocutaneous albinism (OCA). Many of these phenotypes are linked to individual missense mutations causing single nucleotide variants and polymorphisms (SNVs) in TYR. We previously showed that two TYR homologues, TYRP1 and TYRP2, modulate TYR activity and stabilize the TYR protein. Accordingly, to investigate whether TYR, TYRP1, and TYRP2 are biophysically compatible with various heterocomplexes, we computationally docked a high-quality 3D model of TYR to the crystal structure of TYRP1 and to a high-quality 3D model of TYRP2. Remarkably, the resulting TYR-TYRP1 heterodimer was complementary in structure and energy with the TYR-TYRP2 heterodimer, with TYRP1 and TYRP2 docking to different adjacent surfaces on TYR that apposed a third realistic protein interface between TYRP1-TYRP2. Hence, the 3D models are compatible with a heterotrimeric TYR-TYRP1-TYRP2 complex. In addition, this heterotrimeric TYR-TYRP1-TYRP2 positioned the C-terminus of each folded enzymatic domain in an ideal position to allow their C-terminal transmembrane helices to form a putative membrane embedded three-helix bundle. Finally, pathogenic TYR mutations causing OCA1A, which also destabilize TYR biochemically, cluster on an unoccupied protein interface at the periphery of the heterotrimeric complex, suggesting that this may be a docking site for OCA2, an anion channel. Pathogenic OCA2 mutations result in similar phenotypes to those produced by OCA1A TYR mutations. While this complex may be difficult to detect in vitro, due to the complex environment of the vertebrate cellular membranous system, our results support the existence of a heterotrimeric complex in melanogenesis.
Collapse
Affiliation(s)
- Olga Lavinda
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| | - Prashiela Manga
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Seth J Orlow
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
14
|
Lin X, Tian C, Huang Y, Shi H, Li G. Comparative Transcriptome Analysis Identifies Candidate Genes Related to Black-Spotted Pattern Formation in Spotted Scat ( Scatophagus argus). Animals (Basel) 2021; 11:ani11030765. [PMID: 33802016 PMCID: PMC8001731 DOI: 10.3390/ani11030765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Spotted scat (Scatophagus argus) is a commercially important marine aquaculture and ornamental fish species in China and East Asian countries. There are dozens of black spots on each side of the body, and the caudal fin, which is yellow and black, is appreciated in ornamental fish markets. To explore the genetic mechanisms of its pattern formation, we found 2357 differentially expressed genes (DEGs) by comparing the transcriptome in the black-spotted skin, non-spotted skin and caudal fin in S. argus. The results will expand our knowledge about the molecular mechanism of important genes and pathways associated with pigment pattern formation and provide a certain theoretical basis for the molecular breeding in S. argus. Abstract Spotted scat (Scatophagus argus) is an economically important marine aquaculture and ornamental fish species in Asia, especially in southeast China. In this study, skin transcriptomes of S. argus were obtained for three types of skin, including black-spotted skin (A), non-spotted skin (B) and caudal fin (C). A total of nine complementary DNA (cDNA) libraries were obtained by Illumina sequencing. Bioinformatics analysis revealed that 1358, 2086 and 487 genes were differentially expressed between A and B, A and C, and B and C, respectively. The results revealed that there were 134 common significantly differentially expressed genes (DEGs) and several key genes related to pigment synthesis and pigmentation, including tyrp1, mitf, pmel, slc7a2, tjp1, hsp70 and mart-1. Of these, some DEGs were associated with pigmentation-related Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, such as tyrosine metabolism, melanogenesis, the Wnt signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway. The results will facilitate understanding the molecular mechanisms of skin pigmentation differentiation in S. argus and provide valuable information for skin coloration, especially the formation of spotted patterns on other marine fish species.
Collapse
Affiliation(s)
- Xiaozhan Lin
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
| | - Changxu Tian
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Yang Huang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Hongjuan Shi
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
| | - Guangli Li
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.L.); (C.T.); (Y.H.); (H.S.)
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang 524088, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Correspondence: ; Tel.: +86-759-2383124; Fax: +86-759-2382459
| |
Collapse
|
15
|
Gautron A, Migault M, Bachelot L, Corre S, Galibert MD, Gilot D. Human TYRP1: Two functions for a single gene? Pigment Cell Melanoma Res 2021; 34:836-852. [PMID: 33305505 DOI: 10.1111/pcmr.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
In the animal kingdom, skin pigmentation is highly variable between species, and it contributes to phenotypes. In humans, skin pigmentation plays a part in sun protection. Skin pigmentation depends on the ratio of the two pigments pheomelanin and eumelanin, both synthesized by a specialized cell population, the melanocytes. In this review, we explore one important factor in pigmentation: the tyrosinase-related protein 1 (TYRP1) gene which is involved in eumelanin synthesis via the TYRP1 protein. Counterintuitively, high TYRP1 mRNA expression is associated with a poor clinical outcome for patients with metastatic melanomas. Recently, we were able to explain this unexpected TYRP1 function by demonstrating that TYRP1 mRNA sequesters microRNA-16, a tumor suppressor miRNA. Here, we focus on actors influencing TYRP1 mRNA abundance, particularly transcription factors, single nucleotide polymorphisms (SNPs), and miRNAs, as they all dictate the indirect oncogenic activity of TYRP1.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Mélodie Migault
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Bachelot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Sébastien Corre
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,CHU Rennes, Génétique Moléculaire et Génomique, UMR 6290, F-35000, Rennes, France
| | - David Gilot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,INSERM U1242, Centre Eugène Marquis, Rennes, France
| |
Collapse
|
16
|
Monib KMED, Sabry HH, Hussein MS, El-Fallah AA, Salem RM. Factors affecting vitiligo response to treatment: do MiRNA 196a2C/T gene polymorphism and serum tyrosinase levels have any role? J DERMATOL TREAT 2020; 33:1351-1355. [PMID: 32838589 DOI: 10.1080/09546634.2020.1810202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Factors contributing to the pathogenesis of vitiligo and factors affecting its response to treatment are still a major area of debate. AIM OF THE WORK The study aimed to assess the serum levels of tyrosinase and Micro-RNAs (miRNAs) gene polymorphism in a sample of Egyptian vitiligo patients, and to determine factors affecting the response of vitiligo to treatment. SUBJECTS AND METHODS This prospective case-control interventional study included 212 non-segmental vitiligo patients and 96 control subjects. Before treatment, vitiligo was evaluated using Vitiligo Area Severity Index. Detection of miRNA 196a-2 polymorphism was done using PCR-REELP and serum tyrosinase was measured using ELISA. After treatment, patients were reevaluated clinically and serum tyrosinase levels were re-measured. RESULTS The tyrosinase levels were significantly elevated in patients. The TT genotype was the most prevalent one in the patients. The percentage of improvement showed a significant positive correlation with patients' ages and age of the disease onset and a negative correlation with disease duration, baseline VASI scores and serum tyrosinase levels. CONCLUSION MiRNA 196a-2 C/T (11614913) gene polymorphism and the elevated serum tyrosinase levels might be related to the pathogenesis of vitiligo and may affect its therapeutic response.
Collapse
Affiliation(s)
| | - Hanan Hassan Sabry
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Saber Hussein
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Asmaa Adel El-Fallah
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rehab Mohammed Salem
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
17
|
Protein Stability and Functional Characterization of Intra-Melanosomal Domain of Human Recombinant Tyrosinase-Related Protein 1. Int J Mol Sci 2020; 21:ijms21010331. [PMID: 31947795 PMCID: PMC6981619 DOI: 10.3390/ijms21010331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 12/19/2022] Open
Abstract
Pigmentation is the result of a complex process by which the biopolymer melanin is synthesized and packed into melanosomes of melanocytes. Various types of oculocutaneous albinism (OCA), a series of autosomal recessive disorders, are associated with reduced pigmentation in the skin, eyes, and hair due to genetic mutations of proteins involved in melanogenesis. Human tyrosinase (Tyr) and tyrosinase-related protein 1 (Tyrp1) drives the enzymatic process of pigment bio-polymerization. However, within the melanogenic pathway, Tyrp1 has catalytic functions not clearly defined and distinct from Tyr. Here, we characterize the biochemical and biophysical properties of recombinant human Tyrp1. For this purpose, we purified and analyzed the intra-melanosomal domain (Tyrp1tr) for protein stability and enzymatic function in conditions mimicking the environment within melanosomes and the endoplasmic reticulum. The study suggests that Tyrp1tr is a monomeric molecule at ambient temperatures and below (<25 °C). At higher temperatures, >31 °C, higher protein aggregates form with a concurrent decrease of monomers in solution. Also, Tyrp1tr diphenol oxidase activity at pH 5.5 rises as both the pre-incubation temperature and the higher molecular weight protein aggregates formation increases. The enhanced protein activity is consistent with the volume exclusion change caused by protein aggregates.
Collapse
|
18
|
Lee R, Ko HJ, Kim K, Sohn Y, Min SY, Kim JA, Na D, Yeon JH. Anti-melanogenic effects of extracellular vesicles derived from plant leaves and stems in mouse melanoma cells and human healthy skin. J Extracell Vesicles 2019; 9:1703480. [PMID: 32002169 PMCID: PMC6968621 DOI: 10.1080/20013078.2019.1703480] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 11/06/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022] Open
Abstract
Consumer interest in cosmetic industry products that produce whitening effects has increased demand for agents that decrease melanin production. Many such anti-melanogenic agents are associated with side effects, such as contact dermatitis and high toxicity, and also exhibit poor skin penetration. Considerable recent research has focused on plant-derived products as alternatives to chemotherapeutic agents that possess fewer side effects. In the current study, we investigated the anti-melanogenic effects of extracellular vesicles (EVs) extracted from leaves and stems of Dendropanax morbifera. Using spectrophotometric and biochemical approaches, we found that leaf-derived extracellular vesicles (LEVs) and stem-derived extracellular vesicles (SEVs) reduced melanin content and tyrosinase (TYR) activity in the B16BL6 mouse melanoma cell line in a concentration-dependent manner. An electron microscopy analysis further confirmed that LEVs and SEVs induce a concentration-dependent decrease in melanin content in melanoma cells. Both LEVs and SEVs exerted a greater whitening effect on melanoma cells than arbutin, used as a positive control, with LEVs producing the greater effect. Notably, neither LEVs nor SEVs induced significant cytotoxicity. We also examined the effects of plant-derived EVs on the expression of tyrosinase-related proteins (TRPs) in melanoma cells. LEVs inhibited expression of melanogenesis-related genes and proteins, including microphthalmia-associated transcription factor (MITF), TYR, TRP-1 and TRP-2. In a human epidermis model, LEVs exerted a stronger inhibitory effect on melanin production than arbutin. Collectively, our data suggest that LEVs from D. morbifera may be a novel candidate natural substance for use as an anti-melanogenic agent in cosmeceutical formulations.
Collapse
Affiliation(s)
- Ruri Lee
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Hae Ju Ko
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Kimin Kim
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Yehjoo Sohn
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Seo Yun Min
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jeong Ah Kim
- Biomedical Omics Group, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Dokyun Na
- School of Integrative Engineering, Chung-Ang University, Seoul, Republic of Korea
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
19
|
Dutta S, Panda S, Singh P, Tawde S, Mishra M, Andhale V, Athavale A, Keswani SM. Hypopigmentation in burns is associated with alterations in the architecture of the skin and the dendricity of the melanocytes. Burns 2019; 46:906-917. [PMID: 31685389 DOI: 10.1016/j.burns.2019.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 08/31/2019] [Accepted: 10/02/2019] [Indexed: 10/25/2022]
Abstract
Hypopigmentation is a major problem in deep dermal burns. To date, no standard treatment is available for the post burn hypopigmentation disorder. Therefore, understanding the molecular and cellular events are of benefit for therapeutic intervention. Hematoxylin and Eosin (H&E) and Fontana Masson (FM) staining of post burn hypopigmented skin (PBHS) showed an altered architectural pattern in cellular organization, cornified layer and melanin pigment as compared to the normal skin. This was confirmed by immunohistochemistry (IHC) analysis of PBHS samples using specific marker cytokeratin 5 (CK5) for keratinocytes and melanocortin 1 receptor (MCIR) for melanocytes. Validation of these observations was performed by IHC using proliferation and differentiation markers, Ki67 and Loricrin respectively and the melanocyte specific marker tyrosinase related protein 1 (TRP1). Taking a cue from the IHC study, the interaction of keratinocytes and melanocytes was studied by developing a co-culture model from PBHS and normal skin. Culture data exhibited a change of dendritic structure, reduced proliferation rate, faulty melanin synthesis and transfer of melanin from melanocytes to keratinocytes in PBHS samples. To the best of our knowledge, this is the first study showing structural and functional aberrations of melanocytes and keratinocytes, as a potential cause of hypopigmentation in burned patients. Our study, therefore, provides valuable insight for the basis of hypopigmentation in post burn patients, which may pave the way for clinical intervention in the future.
Collapse
Affiliation(s)
- Shruti Dutta
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Sangita Panda
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Prashant Singh
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Sumit Tawde
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Mamata Mishra
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Vikas Andhale
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | - Angira Athavale
- National Burns Centre, Sector 13, Plot no 1, Airoli, Navi Mumbai, India
| | | |
Collapse
|
20
|
Dolinska MB, Wingfield PT, Young KL, Sergeev YV. The TYRP1-mediated protection of human tyrosinase activity does not involve stable interactions of tyrosinase domains. Pigment Cell Melanoma Res 2019; 32:753-765. [PMID: 31077632 PMCID: PMC6777992 DOI: 10.1111/pcmr.12791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/15/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
Tyrosinases are melanocyte-specific enzymes involved in melanin biosynthesis. Mutations in their genes cause oculocutaneous albinism associated with reduced or altered pigmentation of skin, hair, and eyes. Here, the recombinant human intra-melanosomal domains of tyrosinase, TYRtr (19-469), and tyrosinase-related protein 1, TYRP1tr (25-472), were studied in vitro to define their functional relationship. Proteins were expressed or coexpressed in whole Trichoplusia ni larvae and purified. Their associations were studied using gel filtration and sedimentation equilibrium methods. Protection of TYRtr was studied by measuring the kinetics of tyrosinase diphenol oxidase activity in the presence (1:1 and 1:20 molar ratios) or the absence of TYRP1tr for 10 hr under conditions mimicking melanosomal and ER pH values. Our data indicate that TYRtr incubation with excess TYRP1tr protects TYR, increasing its stability over time. However, this mechanism does not appear to involve the formation of stable hetero-oligomeric complexes to maintain the protective function.
Collapse
Affiliation(s)
- Monika B Dolinska
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul T Wingfield
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kenneth L Young
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Yuri V Sergeev
- National Eye Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
21
|
Pei S, Chen J, Lu J, Hu S, Jiang L, Lei L, Ouyang Y, Fu C, Ding Y, Li S, Kang L, Huang L, Xiang H, Xiao R, Zeng Q, Huang J. The Long Noncoding RNA UCA1 Negatively Regulates Melanogenesis in Melanocytes. J Invest Dermatol 2019; 140:152-163.e5. [PMID: 31276678 DOI: 10.1016/j.jid.2019.04.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 02/09/2023]
Abstract
The long noncoding RNA UCA1 was first discovered in bladder cancer and is known to regulate the proliferation and migration of melanoma. However, its role in melanogenesis is unclear. In this study, we aimed to explore the role and mechanism of UCA1 in melanogenesis. Our findings showed that the expression of UCA1 was negatively correlated with melanin content in melanocytes and pigmented nevus. Overexpression of UCA1 in melanocytes decreased melanin content and the expression of melanogenesis-related genes, whereas knockdown of UCA1 in melanocytes had the opposite effect. High-throughput sequencing revealed that microphthalmia-associated transcription factor (MITF), an important transcription factor affecting melanogenesis, was also negatively correlated with the expression of UCA1. Furthermore, the transcription factor CRE-binding protein (CREB), which promotes MITF expression, was negatively regulated by UCA1. The cAMP/protein kinase A (PKA), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) signaling pathways, which are upstream of the CREB/MITF/melanogenesis axis, were activated or inhibited in response to silencing or enhancing UCA1 expression, respectively. In addition, enhanced UCA1 expression downregulates the expression of melanogenesis-related genes induced by UVB in melanocytes. In conclusion, UCA1 may negatively regulate the CREB/MITF/melanogenesis axis through inhibiting the cAMP/PKA, ERK, and JNK signaling pathways in melanocytes. UCA1 may be a potential therapeutic target for the treatment of pigmented skin diseases.
Collapse
Affiliation(s)
- Shiyao Pei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuanghai Hu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Lei
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yufang Ding
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Kang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Central Laboratory, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hong Xiang
- Central Laboratory, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Abstract
Human skin and hair color are visible traits that can vary dramatically within and across ethnic populations. The genetic makeup of these traits-including polymorphisms in the enzymes and signaling proteins involved in melanogenesis, and the vital role of ion transport mechanisms operating during the maturation and distribution of the melanosome-has provided new insights into the regulation of pigmentation. A large number of novel loci involved in the process have been recently discovered through four large-scale genome-wide association studies in Europeans, two large genetic studies of skin color in Africans, one study in Latin Americans, and functional testing in animal models. The responsible polymorphisms within these pigmentation genes appear at different population frequencies, can be used as ancestry-informative markers, and provide insight into the evolutionary selective forces that have acted to create this human diversity.
Collapse
Affiliation(s)
- William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland 4102, Australia;
| |
Collapse
|
23
|
Domyan ET, Hardy J, Wright T, Frazer C, Daniels J, Kirkpatrick J, Kirkpatrick J, Wakamatsu K, Hill JT. SOX10 regulates multiple genes to direct eumelanin versus pheomelanin production in domestic rock pigeon. Pigment Cell Melanoma Res 2019; 32:634-642. [PMID: 30838786 PMCID: PMC6850303 DOI: 10.1111/pcmr.12778] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 02/16/2019] [Accepted: 02/25/2019] [Indexed: 12/24/2022]
Abstract
The domesticated rock pigeon (Columba livia) has been bred for hundreds of years to display an immense variety of ornamental attributes such as feather color and color patterns. Color is influenced by multiple loci that impact the type and amount of melanin deposited on the feathers. Pigeons homozygous for the "recessive red" mutation, which causes downregulation of Sox10, display brilliant red feathers instead of blue/black feathers. Sox10 encodes a transcription factor important for melanocyte differentiation and function, but the genes that mediate its promotion of black versus red pigment are unknown. Here, we present a transcriptomic comparison of regenerating feathers from wild-type and recessive red pigeons to identify candidate SOX10 targets. Our results identify both known and novel targets, including many genes not previously implicated in pigmentation. These data highlight the value of using novel, emerging model organisms to gain insight into the genetic basis of pigment variation.
Collapse
Affiliation(s)
- Eric T Domyan
- Department of Biology, Utah Valley University, Orem, Utah
| | - Jeremy Hardy
- Department of Biology, Utah Valley University, Orem, Utah
| | - Tanner Wright
- Department of Biology, Utah Valley University, Orem, Utah
| | - Cody Frazer
- Department of Biology, Utah Valley University, Orem, Utah
| | - Jordan Daniels
- Department of Biology, Utah Valley University, Orem, Utah
| | | | | | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Japan
| | - Jonathon T Hill
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| |
Collapse
|
24
|
Gong Y, Hu M, Xu S, Wang B, Wang C, Mu X, Xu P, Jiang Y. Comparative transcriptome analysis reveals expression signatures of albino Russian sturgeon, Acipenseriformes gueldenstaedtii. Mar Genomics 2019; 46:1-7. [PMID: 30852186 DOI: 10.1016/j.margen.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/24/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Albinism is a genetically inherited condition that is caused by a series of genetic abnormalities leading to a reduction in melanin production. Russian sturgeon is one of the most valuable freshwater fish species worldwide, and albino individuals have been found in fish farms. Due to its complicated genome and scarce genome-wide genetic resources, the underlying molecular basis of albinism in Russian sturgeon is unknown. In the present study, we first generated transcriptome profile of Acipenser gueldenstaedtii using pooled tissues, which provided reliable reference sequences for future molecular genetic studies. A total of 369,441 contigs were assembled, corresponding to 32,965 unique genes. A comparative analysis of the transcripts from the skin of albino and wildtype individuals was conducted afterwards. A total of 785 unique genes were differentially expressed, including the upregulation of 385 genes and the downregulation of 400 genes in albino individuals. The expression pattern of 16 selected differentially expressed genes was validated using qRT-PCR. Additional annotation, GO enrichment analysis and gene pathway analysis indicated that the melanogenesis pathway may be interrupted in albinism. Eight potential causative genes that were highly likely to be responsible for sturgeon albinism were identified, including Dct, Tyrp1b, Slc45a2, Ctns, Pmela, Pmelb, Cd63, and Bloc1s3, which were found to be significantly down-regulated in albino Russian sturgeon. Moreover, a sliding window analysis of the ratio of nonsynonymous to synonymous nucleotide substitution rates (Ka/Ks) ratios indicated that seven out of the eight genes underwent positive selection during evolution. Our results provide a valuable basis for understanding the molecular mechanism of albinism in fish species and will facilitate future genetic selection and breeding of sturgeon with market-favored traits in aquaculture.
Collapse
Affiliation(s)
- Yiwen Gong
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Mou Hu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Shijian Xu
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Bin Wang
- Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China
| | - Chunlin Wang
- Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China
| | - Xidong Mu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Peng Xu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen University, Xiamen, China
| | - Yanliang Jiang
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, CAFS Key Laboratory of Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; Hangzhou Qiandaohu Xunlong Sci-Tech Development Company Limited, Quzhou, China; Key Laboratory of Applied Marine Biotechnology (Ningbo University), Ministry of Education, Ningbo, China.
| |
Collapse
|
25
|
Phytol suppresses melanogenesis through proteasomal degradation of MITF via the ROS-ERK signaling pathway. Chem Biol Interact 2018; 286:132-140. [DOI: 10.1016/j.cbi.2018.02.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 11/19/2022]
|
26
|
Lai X, Wichers HJ, Soler-Lopez M, Dijkstra BW. Structure and Function of Human Tyrosinase and Tyrosinase-Related Proteins. Chemistry 2017; 24:47-55. [PMID: 29052256 DOI: 10.1002/chem.201704410] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 12/22/2022]
Abstract
Melanin is the main pigment responsible for the color of human skin, hair and eye. Its biosynthesis requires three melanogenic enzymes, tyrosinase (TYR), and the tyrosinase-related proteins TYRP1 and TYRP2. The difficulty of isolating pure and homogeneous proteins from endogenous sources has hampered their study, and resulted in many contradictory findings regarding their physiological functions. In this review, we summarize recent advances on the structure and function of TYR and TYRPs by virtue of the crystal structure of human TYRP1, which is the first available structure of a mammalian melanogenic enzyme. This structure, combined with tyrosinase structures from other lower eukaryotes and mutagenesis studies of key active site residues, sheds light on the mechanism of TYR and TYRPs. Furthermore, a TYRP1-based homology model of TYR provides a high-quality platform to map and analyze albinism-related mutations, as well as the design of specific antimelanogenic compounds. Finally, we provide perspectives for future structure/function studies of TYR and TYRPs.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.,ESRF-The European Synchrotron, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Harry J Wichers
- Wageningen Food & Biobased Research, Bornse Weilanden 9, 6708 WG, Wageningen, The Netherlands
| | | | - Bauke W Dijkstra
- Laboratory of Biophysical Chemistry, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
27
|
Anti-Melanogenic Activity of Gagunin D, a Highly Oxygenated Diterpenoid from the Marine Sponge Phorbas sp., via Modulating Tyrosinase Expression and Degradation. Mar Drugs 2016; 14:md14110212. [PMID: 27869664 PMCID: PMC5128755 DOI: 10.3390/md14110212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/19/2022] Open
Abstract
Tyrosinase is the rate-limiting enzyme critical for melanin synthesis and controls pigmentation in the skin. The inhibition of tyrosinase is currently the most common approach for the development of skin-whitening cosmetics. Gagunin D (GD), a highly oxygenated diterpenoid isolated from the marine sponge Phorbas sp., has exhibited cytotoxicity toward human leukemia cells. However, the effect of GD on normal cells and the molecular mechanisms remain to be elucidated. In the present study, we identified for the first time the anti-melanogenic activity of GD and its precise underlying mechanisms in mouse melan-a cells. GD significantly inhibited melanin synthesis in the melan-a cells and a reconstructed human skin model. Further analysis revealed that GD suppressed the expression of tyrosinase and increased the rate of tyrosinase degradation. GD also inhibited tyrosinase enzymatic activity. In addition, GD effectively suppressed the expression of proteins associated with melanosome transfer. These findings suggest that GD is a potential candidate for cosmetic formulations due to its multi-functional properties.
Collapse
|
28
|
Cirera S, Markakis MN, Kristiansen T, Vissenberg K, Fredholm M, Christensen K, Anistoroaei R. A large insertion in intron 2 of the TYRP1 gene associated with American Palomino phenotype in American mink. Mamm Genome 2016; 27:135-43. [DOI: 10.1007/s00335-016-9620-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 01/31/2016] [Indexed: 02/03/2023]
|
29
|
|
30
|
miR-196a-2 rs11614913 polymorphism is associated with vitiligo by affecting heterodimeric molecular complexes of Tyr and Tyrp1. Arch Dermatol Res 2015; 307:683-92. [PMID: 25896941 DOI: 10.1007/s00403-015-1563-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/30/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
Tyrosinase and tyrosinase-related protein 1 (Tyr-Tyrp1) complex plays a critical role in the synthesis of melanin intermediates, which involves the production of reactive oxygen species (ROS) and contributes to the development of vitiligo. Based on our previous observation that rs11614913 single nucleotide polymorphism (SNP) in miR-196a-2 could affect the risk of vitiligo by influencing Tyrp1, we hypothesized that the same SNP could also regulate the level of Tyr in vitiligo. The aim of this study was to evaluate the potential association between rs11614913 SNP in miR-196a-2 and serum Tyr level in vitiligo and the regulatory role of miR-196a-2 in the expression of Tyr in melanocytes. The serum Tyr level was detected in 116 patients with vitiligo and 116 controls by ELISA plate assay. The expression level of Tyrp1 and Tyr in PIG1(normal melanocyte cell lines) cells was analyzed by western blotting. The ROS level and apoptosis rate in PIG1 cells transfected with si-Tyr or control siRNA were tested by flow cytometry. The results show that the individuals with TT+TC genotypes in miR-196a-2 and higher Tyr level in serum had an increased risk of vitiligo compared with those who had the CC genotype and lower Tyr level (P < 0.001). Furthermore, the rs11614913 C allele in miR-196a-2 enhanced its inhibitory regulation on the expression of Tyr, the down-regulation of which in melanocytes successfully reduced the intracellular ROS levels and the apoptosis rate. In conclusion, our findings suggest that miR-196a-2 polymorphisms can regulate the Tyr levels, which influences the susceptibility of vitiligo.
Collapse
|
31
|
Ito G, Kobayashi T, Takeda Y, Sokabe M. Proteoglycan from salmon nasal cartridge [corrected] promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor. Biochem Biophys Res Commun 2014; 456:792-8. [PMID: 25514035 DOI: 10.1016/j.bbrc.2014.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 01/02/2023]
Abstract
Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10μg/ml, but showed much less effect at higher concentrations (100-1000μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.
Collapse
Affiliation(s)
- Gen Ito
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Takeshi Kobayashi
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yoshie Takeda
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Masahiro Sokabe
- Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan; Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
32
|
Comparative transcriptome analysis reveals the genetic basis of skin color variation in common carp. PLoS One 2014; 9:e108200. [PMID: 25255374 PMCID: PMC4177847 DOI: 10.1371/journal.pone.0108200] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/18/2014] [Indexed: 01/03/2023] Open
Abstract
Background The common carp is an important aquaculture species that is widely distributed across the world. During the long history of carp domestication, numerous carp strains with diverse skin colors have been established. Skin color is used as a visual criterion to determine the market value of carp. However, the genetic basis of common carp skin color has not been extensively studied. Methodology/Principal Findings In this study, we performed Illumina sequencing on two common carp strains: the reddish Xingguo red carp and the brownish-black Yellow River carp. A total of 435,348,868 reads were generated, resulting in 198,781 assembled contigs that were used as reference sequences. Comparisons of skin transcriptome files revealed 2,012 unigenes with significantly different expression in the two common carp strains, including 874 genes that were up-regulated in Xingguo red carp and 1,138 genes that were up-regulated in Yellow River carp. The expression patterns of 20 randomly selected differentially expressed genes were validated using quantitative RT-PCR. Gene pathway analysis of the differentially expressed genes indicated that melanin biosynthesis, along with the Wnt and MAPK signaling pathways, is highly likely to affect the skin pigmentation process. Several key genes involved in the skin pigmentation process, including TYRP1, SILV, ASIP and xCT, showed significant differences in their expression patterns between the two strains. Conclusions In this study, we conducted a comparative transcriptome analysis of Xingguo red carp and Yellow River carp skins, and we detected key genes involved in the common carp skin pigmentation process. We propose that common carp skin pigmentation depends upon at least three pathways. Understanding fish skin color genetics will facilitate future molecular selection of the fish skin colors with high market values.
Collapse
|
33
|
Krauss J, Geiger-Rudolph S, Koch I, Nüsslein-Volhard C, Irion U. A dominant mutation in tyrp1A leads to melanophore death in zebrafish. Pigment Cell Melanoma Res 2014; 27:827-30. [PMID: 24891189 DOI: 10.1111/pcmr.12272] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 05/30/2014] [Indexed: 11/27/2022]
Abstract
Melanin biosynthesis in vertebrates depends on the function of three enzymes of the tyrosinase family, tyrosinase (Tyr), tyrosinase-related protein 1 (Tyrp1), and dopachrome tautomerase (Dct or Tyrp2). Tyrp1 might play an additional role in the survival and proliferation of melanocytes. Here, we describe a mutation in tyrp1A, one of the two tyrp1 paralogs in zebrafish, which causes melanophore death leading to a semi-dominant phenotype. The mutation, an Arg->Cys change in the amino-terminal part of the protein, is similar to mutations in humans and mice where they lead to blond hair (in melanesians) or dark hair with white bases, respectively. We demonstrate that the phenotype in zebrafish depends on the presence of the mutant protein and on melanin synthesis. Ultrastructural analysis shows that the melanosome morphology and pigment content are altered in the mutants. These structural changes might be the underlying cause for the observed cell death, which, surprisingly, does not result in patterning defects.
Collapse
Affiliation(s)
- Jana Krauss
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | |
Collapse
|
34
|
Cheung FK, Leung AWN, Liu WK, Che CT. Tyrosinase inhibitory activity of a glucosylated hydroxystilbene in mouse melan-a melanocytes. JOURNAL OF NATURAL PRODUCTS 2014; 77:1270-4. [PMID: 24933607 PMCID: PMC4076036 DOI: 10.1021/np4008798] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Indexed: 05/19/2023]
Abstract
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucopyranoside (1), isolated from Polygonum multiflorum, is a noncompetitive inhibitor of tyrosinase in cell-free kinetics; it reduced the Vmax values in a dose-dependent manner. Compound 1 inhibited PKA-induced melanogenesis, reduced the protein expression of tyrosinase and its transcription factor, the microphthalmia-associated transcription factor, and lowered the complex formation between tyrosinase and tyrosinase-related protein 1 (TRP-1). Immunofluorescence microscopy revealed no association of tyrosinase with the endoplasmic reticulum or lysosomes, implying the absence of a direct effect of 1 on the maturation process of the enzyme. The antimelanogenic activity of 1 is likely mediated through a noncompetitive inhibition on tyrosinase, down-regulation of the expression of melanogenic proteins, and reduction of tyrosinase/TRP-1 complex formation.
Collapse
Affiliation(s)
- Florence
Wing-Ki Cheung
- School
of Biomedical Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong
- School
of Chinese Medicine, The Chinese University
of Hong Kong, Shatin, Hong Kong
| | | | - Wing Keung Liu
- School
of Biomedical Sciences, The Chinese University
of Hong Kong, Shatin, Hong Kong
| | - Chun-Tao Che
- School
of Chinese Medicine, The Chinese University
of Hong Kong, Shatin, Hong Kong
- Department
of Medicinal Chemistry and Pharmacognosy and WHO Collaborating Center
for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
- Tel: +1 312 996 5234. Fax: +1 312 996 7107. E-mail:
| |
Collapse
|
35
|
Hirobe T, Ito S, Wakamatsu K, Kawa Y, Abe H. The mouse brown (b/Tyrp1(b) ) allele does not affect pheomelanin synthesis in mice. Zoolog Sci 2014; 31:53-63. [PMID: 24521313 DOI: 10.2108/zsj.31.53] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
B (Tyrp1 (+)), the wild type allele at the mouse brown locus, produces black eumelanin, while b (Tyrp1(b) ), the recessive allele, produces brown eumelanin and exhibits lower tyrosinase (Tyr)-related protein 1 (Tyrp1) activity. However, it is unknown whether melanocyte proliferation and differentiation are affected by the Tyrp1(b) mutation. The proliferation rate of brown (C57BL/10JHir (B10)-Tyrp1(b) / Tyrp1(b) ) melanocytes cultured in a serum-free melanocyte proliferation medium (MDMD) was similar to that of black (B10-Tyrp1(+)/Tyrp1(+) ) melanocytes. Although brown melanocytes exhibited normal morphology, their pigmentation was lower than that of black melanocytes. However, Tyr activity in brown melanocytes was increased both in vivo and in vitro. Melanosomes of cultured brown melanocytes were mostly spherical stage III melanosomes with granular depositions of pigments, whereas those of cultured black melanocytes were mostly stage IV ellipsoidal melanosomes with pigment depositions in intraluminal fibrils. Chemical analysis of melanin present in dorsal hairs of 5-week-old mice from the F2 generation between brown and recessive yellow (B10-Mc1r(e)/Mc1r(e) ) or agouti (B10-A/A) mice showed that eumelanin content was greatly decreased in brown and brown agouti (cinnamon) mice, whereas pheomelanin contents in brown recessive yellow and cinnamon mice did not differ from the corresponding Tyrp1(+)/- mice. These results suggest that the brown allele greatly inhibits eumelanin, but not pheomelanin synthesis.
Collapse
Affiliation(s)
- Tomohisa Hirobe
- 1 Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | | | |
Collapse
|
36
|
Epistatic and combinatorial effects of pigmentary gene mutations in the domestic pigeon. Curr Biol 2014; 24:459-64. [PMID: 24508169 DOI: 10.1016/j.cub.2014.01.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/07/2014] [Accepted: 01/09/2014] [Indexed: 01/10/2023]
Abstract
Understanding the molecular basis of phenotypic diversity is a critical challenge in biology, yet we know little about the mechanistic effects of different mutations and epistatic relationships among loci that contribute to complex traits. Pigmentation genetics offers a powerful model for identifying mutations underlying diversity and for determining how additional complexity emerges from interactions among loci. Centuries of artificial selection in domestic rock pigeons (Columba livia) have cultivated tremendous variation in plumage pigmentation through the combined effects of dozens of loci. The dominance and epistatic hierarchies of key loci governing this diversity are known through classical genetic studies, but their molecular identities and the mechanisms of their genetic interactions remain unknown. Here we identify protein-coding and cis-regulatory mutations in Tyrp1, Sox10, and Slc45a2 that underlie classical color phenotypes of pigeons and present a mechanistic explanation of their dominance and epistatic relationships. We also find unanticipated allelic heterogeneity at Tyrp1 and Sox10, indicating that color variants evolved repeatedly though mutations in the same genes. These results demonstrate how a spectrum of coding and regulatory mutations in a small number of genes can interact to generate substantial phenotypic diversity in a classic Darwinian model of evolution.
Collapse
|
37
|
Galvanic zinc–copper microparticles inhibit melanogenesis via multiple pigmentary pathways. Arch Dermatol Res 2013; 306:27-35. [DOI: 10.1007/s00403-013-1369-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
|
38
|
Simeonov DR, Wang X, Wang C, Sergeev Y, Dolinska M, Bower M, Fischer R, Winer D, Dubrovsky G, Balog JZ, Huizing M, Hart R, Zein WM, Gahl WA, Brooks BP, Adams DR. DNA variations in oculocutaneous albinism: an updated mutation list and current outstanding issues in molecular diagnostics. Hum Mutat 2013; 34:827-35. [PMID: 23504663 DOI: 10.1002/humu.22315] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 03/08/2013] [Indexed: 12/20/2022]
Abstract
Oculocutaneous albinism (OCA) is a rare genetic disorder of melanin synthesis that results in hypopigmented hair, skin, and eyes. There are four types of OCA caused by mutations in TYR (OCA-1), OCA2 (OCA-2), TYRP1 (OCA-3), or SLC45A2 (OCA-4). Here we report 22 novel mutations in the OCA genes; 14 from a cohort of 61 patients seen as part of the NIH OCA Natural History Study and eight from a prior study at the University of Minnesota. We also include a comprehensive list of almost 600 previously reported OCA mutations along with ethnicity information, carrier frequencies, and in silico pathogenicity predictions as a supplement. In addition to discussing the clinical and molecular features of OCA, we address the cases of apparent missing heritability. In our cohort, 26% of patients did not have two mutations in a single OCA gene. We demonstrate the utility of multiple detection methods to reveal mutations missed by Sanger sequencing. Finally, we review the TYR p.R402Q temperature-sensitive variant and confirm its association with cases of albinism with only one identifiable TYR mutation.
Collapse
Affiliation(s)
- Dimitre R Simeonov
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
George SP, Chen H, Conrad JC, Khurana S. Regulation of directional cell migration by membrane-induced actin bundling. J Cell Sci 2012; 126:312-26. [PMID: 23132923 DOI: 10.1242/jcs.116244] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During embryonic development and in metastatic cancers, cells detach from the epithelium and migrate with persistent directionality. Directional cell migration is also crucial for the regeneration and maintenance of the epithelium and impaired directional migration is linked to chronic inflammatory diseases. Despite its significance, the mechanisms controlling epithelial cell migration remain poorly understood. Villin is an epithelial-cell-specific actin modifying protein that regulates epithelial cell plasticity and motility. In motile cells villin is associated with the highly branched and the unbranched actin filaments of lamellipodia and filopodia, respectively. In this study we demonstrate for the first time that villin regulates directionally persistent epithelial cell migration. Functional characterization of wild-type and mutant villin proteins revealed that the ability of villin to self-associate and bundle actin as well as its direct interaction with phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] regulates villin-induced filopodial assembly and directional cell migration. Our findings suggest that convergence of different signaling cascades could spatially restrict villin activity to areas of high PtdIns(4,5)P(2) and F-actin concentration to assemble filopodia. Furthermore, our data reveal the ability of villin to undergo actin- and PtdIns(4,5)P(2)-induced self-association, which may be particularly suited to coalesce and reorganize actin bundles within the filopodia.
Collapse
Affiliation(s)
- Sudeep P George
- Department of Biology and Biochemistry, The University of Houston, Houston, TX 77204, USA
| | | | | | | |
Collapse
|
41
|
Bultema JJ, Ambrosio AL, Burek CL, Di Pietro SM. BLOC-2, AP-3, and AP-1 proteins function in concert with Rab38 and Rab32 proteins to mediate protein trafficking to lysosome-related organelles. J Biol Chem 2012; 287:19550-63. [PMID: 22511774 DOI: 10.1074/jbc.m112.351908] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosome-related organelles (LROs) are synthesized in specialized cell types where they largely coexist with conventional lysosomes. Most of the known cellular transport machinery involved in biogenesis are ubiquitously expressed and shared between lysosomes and LROs. Examples of common components are the adaptor protein complex-3 (AP-3) and biogenesis of lysosome-related organelle complex (BLOC)-2. These protein complexes control sorting and transport of newly synthesized integral membrane proteins from early endosomes to both lysosomes and LROs such as the melanosome. However, it is unknown what factors cooperate with the ubiquitous transport machinery to mediate transport to LROs in specialized cells. Focusing on the melanosome, we show that the ubiquitous machinery interacts with cell type-specific Rab proteins, Rab38 and Rab32, to facilitate transport to the maturing organelle. BLOC-2, AP-3, and AP-1 coimmunoprecipitated with Rab38 and Rab32 from MNT-1 melanocytic cell extracts. BLOC-2, AP-3, AP-1, and clathrin partially colocalized with Rab38 and Rab32 by confocal immunofluorescence microscopy in MNT-1 cells. Rab38- and Rab32-deficient MNT-1 cells displayed abnormal trafficking and steady state levels of known cargoes of the BLOC-2, AP-3, and AP-1 pathways, the melanin-synthesizing enzymes tyrosinase and tyrosinase-related protein-1. These observations support the idea that Rab38 and Rab32 are the specific factors that direct the ubiquitous machinery to mediate transport from early endosomes to maturing LROs. Additionally, analysis of tyrosinase-related protein-2 and total melanin production indicates that Rab32 has unique functions that cannot be carried out by Rab38 in melanosome biogenesis.
Collapse
Affiliation(s)
- Jarred J Bultema
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | |
Collapse
|
42
|
Computational prediction of protein-protein interactions of human tyrosinase. Enzyme Res 2012; 2012:192867. [PMID: 22577521 PMCID: PMC3335181 DOI: 10.1155/2012/192867] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 01/23/2012] [Indexed: 12/30/2022] Open
Abstract
The various studies on tyrosinase have recently gained the attention of researchers due to their potential application values and the biological functions. In this study, we predicted the 3D structure of human tyrosinase and simulated the protein-protein interactions between tyrosinase and three binding partners, four and half LIM domains 2 (FHL2), cytochrome b-245 alpha polypeptide (CYBA), and RNA-binding motif protein 9 (RBM9). Our interaction simulations showed significant binding energy scores of -595.3 kcal/mol for FHL2, -859.1 kcal/mol for CYBA, and -821.3 kcal/mol for RBM9. We also investigated the residues of each protein facing toward the predicted site of interaction with tyrosinase. Our computational predictions will be useful for elucidating the protein-protein interactions of tyrosinase and studying its binding mechanisms.
Collapse
|
43
|
Thanos A, Morizane Y, Murakami Y, Giani A, Mantopoulos D, Kayama M, Roh MI, Michaud N, Pawlyk B, Sandberg M, Young LH, Miller JW, Vavvas DG. Evidence for baseline retinal pigment epithelium pathology in the Trp1-Cre mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1917-27. [PMID: 22429967 DOI: 10.1016/j.ajpath.2012.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 12/28/2011] [Accepted: 01/20/2012] [Indexed: 01/14/2023]
Abstract
The increasing popularity of the Cre/loxP recombination system has led to the generation of numerous transgenic mouse lines in which Cre recombinase is expressed under the control of organ- or cell-specific promoters. Alterations in retinal pigment epithelium (RPE), a multifunctional cell monolayer that separates the retinal photoreceptors from the choroid, are prevalent in the pathogenesis of a number of ocular disorders, including age-related macular degeneration. To date, six transgenic mouse lines have been developed that target Cre to the RPE under the control of various gene promoters. However, multiple lines of evidence indicate that high levels of Cre expression can be toxic to mammalian cells. In this study, we report that in the Trp1-Cre mouse, a commonly used transgenic Cre strain for RPE gene function studies, Cre recombinase expression alone leads to RPE dysfunction and concomitant disorganization of RPE layer morphology, large areas of RPE atrophy, retinal photoreceptor dysfunction, and microglial cell activation in the affected areas. The phenotype described herein is similar to previously published reports of conditional gene knockouts that used the Trp1-Cre mouse, suggesting that Cre toxicity alone could account for some of the reported phenotypes and highlighting the importance of the inclusion of Cre-expressing mice as controls in conditional gene targeting studies.
Collapse
Affiliation(s)
- Aristomenis Thanos
- Retina Service, Angiogenesis Laboratory, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Loubéry S, Delevoye C, Louvard D, Raposo G, Coudrier E. Myosin VI regulates actin dynamics and melanosome biogenesis. Traffic 2012; 13:665-80. [PMID: 22321127 DOI: 10.1111/j.1600-0854.2012.01342.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/07/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022]
Abstract
Myosin VI has been implicated in various steps of organelle dynamics. However, the molecular mechanism by which this myosin contributes to membrane traffic is poorly understood. Here, we report that myosin VI is associated with a lysosome-related organelle, the melanosome. Using an actin-based motility assay and video microscopy, we observed that myosin VI does not contribute to melanosome movements. Myosin VI expression regulates instead the organization of actin networks in the cytoplasm. Using a cell-free assay, we showed that myosin VI recruited actin at the surface of isolated melanosomes. Myosin VI is involved in the endocytic-recycling pathway, and this pathway contributes to the transport of a melanogenic enzyme to maturing melanosomes. We showed that depletion of myosin VI accumulated a melanogenic enzyme in enlarged melanosomes and increased their melanin content. We confirmed the requirement of myosin VI to regulate melanosome biogenesis by analysing the morphology of melanosomes in choroid cells from of the Snell's waltzer mice that do not express myosin VI. Together, our results provide new evidence that myosin VI regulates the organization of actin dynamics at the surface of a specialized organelle and unravel a novel function of this myosin in regulating the biogenesis of this organelle.
Collapse
|
45
|
Anti-melanogenic property of geoditin A in murine B16 melanoma cells. Mar Drugs 2012; 10:465-476. [PMID: 22412813 PMCID: PMC3297009 DOI: 10.3390/md10020465] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 12/29/2011] [Accepted: 02/03/2012] [Indexed: 12/18/2022] Open
Abstract
Geoditin A, an isomalabaricane triterpene isolated from marine sponge Geodia japonica, has been demonstrated to induce apoptosis in leukemia HL60 cells and human colon HT29 cancer cells through an oxidative stress, a process also interfering with normal melanogenesis in pigment cells. Treatment of murine melanoma B16 cells with geoditin A decreased expression of melanogenic proteins and cell melanogenesis which was aggravated with adenylate cyclase inhibitor SQ22536, indicating melanogenic inhibition was mediated through a cAMP-dependent signaling pathway. Immunofluorescence microscopy and glycosylation studies revealed abnormal glycosylation patterns of melanogenic proteins (tyrosinase and tyrosinase-related protein 1), and a co-localization of tyrosinase with calnexin (CNX) and lysosome-associated membrane protein 1 (LAMP-1), implicating a post-translational modification in the ER and a degradation of tyrosinase in the lysosome. Taken together, potent anti-melanogenic property and the relatively low cytotoxicity of geoditin A have demonstrated its therapeutic potential as a skin lightening agent.
Collapse
|
46
|
Martínez-Fábregas J, Rubio S, Díaz-Quintana A, Díaz-Moreno I, De la Rosa MÁ. Proteomic tools for the analysis of transient interactions between metalloproteins. FEBS J 2011; 278:1401-10. [PMID: 21352492 DOI: 10.1111/j.1742-4658.2011.08061.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Metalloproteins play major roles in cell metabolism and signalling pathways. In many cases, they show moonlighting behaviour, acting in different processes, depending on the physiological state of the cell. To understand these multitasking proteins, we need to discover the partners with which they carry out such novel functions. Although many technological and methodological tools have recently been reported for the detection of protein interactions, specific approaches to studying the interactions involving metalloproteins are not yet well developed. The task is even more challenging for metalloproteins, because they often form short-lived complexes that are difficult to detect. In this review, we gather the different proteomic techniques and biointeractomic tools reported in the literature. All of them have shown their applicability to the study of transient and weak protein-protein interactions, and are therefore suitable for metalloprotein interactions.
Collapse
Affiliation(s)
- Jonathan Martínez-Fábregas
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla-CSIC, Centro de Investigaciones Científicas Isla de la Cartuja, Sevilla, Spain
| | | | | | | | | |
Collapse
|
47
|
Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol Oncol 2011; 5:150-5. [PMID: 21324755 DOI: 10.1016/j.molonc.2011.01.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
Melanoma prognosis is based on specific pathological features at the primary lesion. In metastatic patients, the extent of lymph node involvement is also an important prognosis indicator. Many progression markers both in tissues and serum, including circulating tumor cells, have been studied and new molecular markers are awaited from high-throughput screenings to discriminate between clinical stages and predict disease progression. The present review focuses on human tyrosinase related protein 1 also known as gp75 glycoprotein (Tyrp1/gp75), a melanosomal protein involved in the pigmentary machinery of the melanocyte and often used as differentiation marker, with a special emphasis on its emerging roles in the malignant melanocyte and melanoma progression.
Collapse
|
48
|
Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Arch Dermatol Res 2010; 303:161-70. [DOI: 10.1007/s00403-010-1089-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 11/27/2022]
|
49
|
Hida T, Sohma H, Kokai Y, Kawakami A, Hirosaki K, Okura M, Tosa N, Yamashita T, Jimbow K. Rab7 is a critical mediator in vesicular transport of tyrosinase-related protein 1 in melanocytes. J Dermatol 2010; 38:432-41. [PMID: 21352276 DOI: 10.1111/j.1346-8138.2010.01004.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
How melanosomal proteins such as enzymic proteins (tyrosinase and tyrosinase-related proteins, Tyrps) and structural protein (gp100) are transported from Golgi to melanosomal compartments is not yet fully understood. A number of small GTPases have been found to be associated with melanosomes and we have identified one of them, Rab7, a regulator of vesicular transport, organelle motility, phospholipid signaling and cytosolic degradative machinery, as being involved in the transport of Tyrp1 from Golgi to stage I melanosomes. This study further characterizes the role of Rab7 as a regulator of differential sorting of melanosomal proteins in this process. Murine melanocytes were transiently transfected with a plasmid encoding either wild-type (Rab7WT), constitutively active (Rab7Q67L) or dominant-negative (Rab7N125I and Rab7T22N) Rab7. Through immunocytostaining and confocal laser scanning microscopy, we quantitatively compared the bio-distribution of melanosomal proteins between Rab7WT-expressing cells and mutant Rab7-expressing cells. We also characterized their differential elimination from melanosomal compartments by Rab7 by utilizing a proteasome inhibitor, MG132. Our findings indicate that Rab7 plays an important role in differential sorting of tyrosinase, Tyrp1 and gp100 in early melanogenesis cascade, and that it is more specifically involved with Tyrp1 than tyrosinase and gp100 in the trafficking from Golgi to melanosomes and the specific exit from the degradative process.
Collapse
Affiliation(s)
- Tokimasa Hida
- Department of Dermatology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Beaumont KA, Liu YY, Sturm RA. The melanocortin-1 receptor gene polymorphism and association with human skin cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 88:85-153. [PMID: 20374726 DOI: 10.1016/s1877-1173(09)88004-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The melanocortin-1 receptor (MC1R) is a key gene involved in the regulation of melanin synthesis and encodes a G-protein coupled receptor expressed on the surface of the melanocyte in the skin and hair follicles. MC1R activation after ultraviolet radiation exposure results in the production of the dark eumelanin pigment and the tanning process in humans, providing physical protection against DNA damage. The MC1R gene is highly polymorphic in Caucasian populations with a number of MC1R variant alleles associated with red hair, fair skin, freckling, poor tanning, and increased risk of melanoma and nonmelanoma skin cancer. Variant receptors have shown alterations in biochemical function, largely due to intracellular retention or impaired G-protein coupling, but retain some signaling ability. The association of MC1R variant alleles with skin cancer risk remains after correction for pigmentation phenotype, indicating regulation of nonpigmentary pathways. Notably, MC1R activation has been linked to DNA repair and may also contribute to the regulation of immune responses.
Collapse
Affiliation(s)
- Kimberley A Beaumont
- Melanogenix Group, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|