1
|
Kava E, Garbelotti CV, Lopes JLS, Costa-Filho AJ. Myristoylated GRASP55 dimerizes in the presence of model membranes. J Biomol Struct Dyn 2024:1-12. [PMID: 38361284 DOI: 10.1080/07391102.2024.2317973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 02/07/2024] [Indexed: 02/17/2024]
Abstract
The Golgi Reassembly and Stacking Proteins (GRASPs) are engaged in various functions within the cell, both in unconventional secretion mechanisms and structuring and organizing the Golgi apparatus. Understanding their specific role in each situation still requires more structural and functional data at the molecular level. GRASP55 is one of the GRASP members in mammals, anchored to the membrane via the myristoylation of a Gly residue at its N-terminus. Therefore, co-translational modifications, such as myristoylation, are fundamental when considering a strategy to obtain detailed information on the interactions between GRASP55 and membranes. Despite its functional relevance, the N-terminal myristoylation has been underappreciated in the studies reported to date, compromising the previously proposed models for GRASP-membrane interactions. Here, we investigated the synergy between the presence of the membrane and the formation of oligomeric structures of myristoylated GRASP55, using a series of biophysical techniques to perform the structural characterization of the lipidated GRASP55 and its interaction with biological lipid model membranes. Our data fulfill an unexplored gap: the adequate evaluation of the presence of lipidations and lipid membranes on the structure-function dyad of GRASPs.
Collapse
Affiliation(s)
- Emanuel Kava
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina V Garbelotti
- Laboratório de Fisiologia Ecológica de Plantas, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Luiz S Lopes
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio J Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Siddiqui AA, Saha D, Iqbal MS, Saha SJ, Sarkar S, Banerjee C, Nag S, Mazumder S, De R, Pramanik S, Debsharma S, Bandyopadhyay U. Rab7 of Plasmodium falciparum is involved in its retromer complex assembly near the digestive vacuole. Biochim Biophys Acta Gen Subj 2020; 1864:129656. [PMID: 32512169 DOI: 10.1016/j.bbagen.2020.129656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 06/02/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Intracellular protein trafficking is crucial for survival of cell and proper functioning of the organelles; however, these pathways are not well studied in the malaria parasite. Its unique cellular architecture and organellar composition raise an interesting question to investigate. METHODS The interaction of Plasmodium falciparum Rab7 (PfRab7) with vacuolar protein sorting-associated protein 26 (PfVPS26) of retromer complex was shown by coimmunoprecipitation (co-IP). Confocal microscopy was used to show the localization of the complex in the parasite with respect to different organelles. Further chemical tools were employed to explore the role of digestive vacuole (DV) in retromer trafficking in parasite and GTPase activity of PfRab7 was examined. RESULTS PfRab7 was found to be interacting with retromer complex that assembled mostly near DV and the Golgi in trophozoites. Chemical disruption of DV by chloroquine (CQ) led to its disassembly that was further validated by using compound 5f, a heme polymerization inhibitor in the DV. PfRab7 exhibited Mg2+ dependent weak GTPase activity that was inhibited by a specific Rab7 GTPase inhibitor, CID 1067700, which prevented the assembly of retromer complex in P. falciparum and inhibited its growth suggesting the role of GTPase activity of PfRab7 in retromer assembly. CONCLUSION Retromer complex was found to be interacting with PfRab7 and the functional integrity of the DV was found to be important for retromer assembly in P. falciparum. GENERAL SIGNIFICANCE This study explores the retromer trafficking in P. falciparum and describes amechanism to validate DV targeting antiplasmodial molecules.
Collapse
Affiliation(s)
- Asim Azhar Siddiqui
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debanjan Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Mohd Shameel Iqbal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shubhra Jyoti Saha
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Souvik Sarkar
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Somnath Mazumder
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Rudranil De
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saikat Pramanik
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Subhashis Debsharma
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
3
|
Anas M, Kumari V, Gupta N, Dube A, Kumar N. Protein quality control machinery in intracellular protozoan parasites: hopes and challenges for therapeutic targeting. Cell Stress Chaperones 2019; 24:891-904. [PMID: 31228085 PMCID: PMC6717229 DOI: 10.1007/s12192-019-01016-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 01/28/2023] Open
Abstract
Intracellular protozoan parasites have evolved an efficient protein quality control (PQC) network comprising protein folding and degradation machineries that protect the parasite's proteome from environmental perturbations and threats posed by host immune surveillance. Interestingly, the components of PQC machinery in parasites have acquired sequence insertions which may provide additional interaction interfaces and diversify the repertoire of their biological roles. However, the auxiliary functions of PQC machinery remain poorly explored in parasite. A comprehensive understanding of this critical machinery may help to identify robust biological targets for new drugs against acute or latent and drug-resistant infections. Here, we review the dynamic roles of PQC machinery in creating a safe haven for parasite survival in hostile environments, serving as a metabolic sensor to trigger transformation into phenotypically distinct stages, acting as a lynchpin for trafficking of parasite cargo across host membrane for immune evasion and serving as an evolutionary capacitor to buffer mutations and drug-induced proteotoxicity. Versatile roles of PQC machinery open avenues for exploration of new drug targets for anti-parasitic intervention and design of strategies for identification of potential biomarkers for point-of-care diagnosis.
Collapse
Affiliation(s)
- Mohammad Anas
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Varsha Kumari
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Niharika Gupta
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Anuradha Dube
- Department of Parasitology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Niti Kumar
- Academy of Scientific and Innovative Research (AcSIR), Delhi, India.
| |
Collapse
|
4
|
Mendes LFS, Fontana NA, Oliveira CG, Freire MCLC, Lopes JLS, Melo FA, Costa‐Filho AJ. The
GRASP
domain in golgi reassembly and stacking proteins: differences and similarities between lower and higher Eukaryotes. FEBS J 2019; 286:3340-3358. [DOI: 10.1111/febs.14869] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Luís F. S. Mendes
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | - Natália A. Fontana
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | - Carolina G. Oliveira
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| | | | - José L. S. Lopes
- Departamento de Física Aplicada Instituto de Física Universidade de São Paulo São Paulo Brazil
| | - Fernando A. Melo
- Departamento de Física Centro Multiusuário de Inovação Biomolecular IBILCE Universidade Estadual Paulista Júlio Mesquita São Paulo Brazil
| | - Antonio J. Costa‐Filho
- Departamento de Física Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto Brazil
| |
Collapse
|
5
|
Hallée S, Thériault C, Gagnon D, Kehrer J, Frischknecht F, Mair GR, Richard D. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum. Cell Microbiol 2018; 20:e12843. [PMID: 29579782 DOI: 10.1111/cmi.12843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/09/2018] [Accepted: 03/09/2018] [Indexed: 12/01/2022]
Abstract
Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages.
Collapse
Affiliation(s)
- Stéphanie Hallée
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Catherine Thériault
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Dominic Gagnon
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jessica Kehrer
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Friedrich Frischknecht
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Gunnar R Mair
- Integrative Parasitology, Department of Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| | - Dave Richard
- Centre de recherche en infectiologie, CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
6
|
Schlott AC, Holder AA, Tate EW. N-Myristoylation as a Drug Target in Malaria: Exploring the Role of N-Myristoyltransferase Substrates in the Inhibitor Mode of Action. ACS Infect Dis 2018; 4:449-457. [PMID: 29363940 DOI: 10.1021/acsinfecdis.7b00203] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Malaria continues to be a significant cause of death and morbidity worldwide, and there is a need for new antimalarial drugs with novel targets. We have focused as a potential target for drug development on N-myristoyl transferase (NMT), an enzyme that acylates a wide range of substrate proteins. The NMT substrates in Plasmodium falciparum include some proteins that are common to processes in eukaryotes such as secretory transport and others that are unique to apicomplexan parasites. Myristoylation facilitates a protein interaction with membranes that may be strengthened by further lipidation, and the inhibition of NMT results in incorrect protein localization and the consequent disruption of function. The diverse roles of NMT substrates mean that NMT inhibition has a pleiotropic and severe impact on parasite development, growth, and multiplication. To study the mode of action underlying NMT inhibition, it is important to consider the function of proteins upstream and downstream of NMT. In this work, we therefore present our current perspective on the different functions of known NMT substrates as well as compare the inhibition of cotranslational myristoylation to the inhibition of known targets upstream of NMT.
Collapse
Affiliation(s)
- Anja C. Schlott
- Malaria Parasitology, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
- Department of Chemistry, Imperial College London, Imperial College Road, SW7 2AZ London, United Kingdom
| | - Anthony A. Holder
- Malaria Parasitology, The Francis Crick Institute, 1 Midland Road, NW1 1AT London, United Kingdom
| | - Edward W. Tate
- Department of Chemistry, Imperial College London, Imperial College Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
7
|
Evidence that the Plasmodium falciparum Protein Sortilin Potentially Acts as an Escorter for the Trafficking of the Rhoptry-Associated Membrane Antigen to the Rhoptries. mSphere 2018; 3:mSphere00551-17. [PMID: 29299530 PMCID: PMC5750388 DOI: 10.1128/msphere.00551-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/06/2017] [Indexed: 12/11/2022] Open
Abstract
The rhoptry organelle is critical for the invasion of an erythrocyte by the malaria parasite Plasmodium falciparum. Despite their critical roles, the mechanisms behind their biogenesis are still poorly defined. Our earlier work had suggested that the interaction between the glycosylphosphatidylinositol (GPI)-anchored rhoptry-associated membrane antigen (RAMA) and the soluble rhoptry-associated protein 1 was involved in the transport of the latter from the Golgi apparatus to the rhoptry. However, how this protein complex could interact with the intracellular trafficking machinery was unknown at this stage. Here we show that the P. falciparum homologue of the transmembrane protein sortilin-VPS10 interacts with regions of RAMA that are sufficient to target a fluorescent reporter to the rhoptries. These results suggest that P. falciparum sortilin (PfSortilin) could potentially act as the escorter for the transport of rhoptry-destined cargo. IMPORTANCE The malaria parasite is a massive burden in several parts of the world. Worryingly, the parasite has become resistant to several of the drugs commonly used to treat the disease, and at this time, there is no commercial vaccine. It is therefore critical to identify new targets for the development of antimalarials. To survive in the human body, the malaria parasite needs to invade red blood cells. For this, it uses a variety of effectors stored in organelles forming a structure called the apical complex. The mechanisms behind how the parasite generates the apical complex are poorly understood. In this study, we present evidence that a transmembrane protein called sortilin potentially acts as an escorter to transport proteins from the Golgi apparatus to the rhoptries, a component of the apical complex. Our study provides new insight into the biogenesis of a critical structure of the malaria parasite.
Collapse
|
8
|
Ebrahimzadeh Z, Mukherjee A, Richard D. A map of the subcellular distribution of phosphoinositides in the erythrocytic cycle of the malaria parasite Plasmodium falciparum. Int J Parasitol 2017; 48:13-25. [PMID: 29154995 DOI: 10.1016/j.ijpara.2017.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/22/2017] [Accepted: 08/31/2017] [Indexed: 12/16/2022]
Abstract
Despite representing a small percentage of the cellular lipids of eukaryotic cells, phosphoinositides (PIPs) are critical in various processes such as intracellular trafficking and signal transduction. Central to their various functions is the differential distribution of PIP species to specific membrane compartments through the actions of kinases, phosphatases and lipases. Despite their importance in the malaria parasite lifecycle, the subcellular distribution of most PIP species in this organism is still unknown. We here localise several species of PIPs throughout the erythrocytic cycle of Plasmodium falciparum. We show that PI3P is mostly found at the apicoplast and the membrane of the food vacuole, that PI4P associates with the Golgi apparatus and the plasma membrane and that PI(4,5)P2, in addition to being detected at the plasma membrane, labels some cavity-like spherical structures. Finally, we show that the elusive PI5P localises to the plasma membrane, the nucleus and potentially to the transitional endoplasmic reticulum (ER). Our map of the subcellular distribution of PIP species in P. falciparum will be a useful tool to shed light on the dynamics of these lipids in this deadly parasite.
Collapse
Affiliation(s)
- Zeinab Ebrahimzadeh
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Angana Mukherjee
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada
| | - Dave Richard
- Centre de recherche en infectiologie, CRCHU de Québec-Université Laval, 2705 Boul. Laurier, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
9
|
Thériault C, Richard D. Characterization of a putative Plasmodium falciparum SAC1 phosphoinositide-phosphatase homologue potentially required for survival during the asexual erythrocytic stages. Sci Rep 2017; 7:12710. [PMID: 28983103 PMCID: PMC5629215 DOI: 10.1038/s41598-017-12762-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Despite marked reductions in morbidity and mortality in the last ten years, malaria still takes a tremendous toll on human populations throughout tropical and sub-tropical regions of the world. The absence of an effective vaccine and resistance to most antimalarial drugs available demonstrate the urgent need for new intervention strategies. Phosphoinositides are a class of lipids with critical roles in numerous processes and their specific subcellular distribution, generated through the action of kinases and phosphatases, define organelle identity in a wide range of eukaryotic cells. Recent studies have highlighted important functions of phosphoinositide kinases in several parts of the Plasmodium lifecycle such as hemoglobin endocytosis and cytokinesis during the erythrocytic stage however, nothing is known with regards to the parasite's putative phosphoinositide phosphatases. We present the identification and initial characterization of a putative homologue of the SAC1 phosphoinositide phosphatase family. Our results show that the protein is expressed throughout the asexual blood stages and that it localises to the endoplasmic reticulum and potentially to the Golgi apparatus. Furthermore, conditional knockdown and knockout studies suggest that a minimal amount of the protein are likely required for survival during the erythrocytic cycle.
Collapse
Affiliation(s)
- Catherine Thériault
- Centre de recherche en infectiologie du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Dave Richard
- Centre de recherche en infectiologie du CHU de Québec-Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
10
|
Parashar S, Mukhopadhyay A. GTPase Sar1 regulates the trafficking and secretion of the virulence factor gp63 in Leishmania. J Biol Chem 2017; 292:12111-12125. [PMID: 28576830 DOI: 10.1074/jbc.m117.784033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/30/2017] [Indexed: 12/30/2022] Open
Abstract
Metalloprotease gp63 (Leishmania donovani gp63 (Ldgp63)) is a critical virulence factor secreted by Leishmania However, how newly synthesized Ldgp63 exits the endoplasmic reticulum (ER) and is secreted by this parasite is unknown. Here, we cloned, expressed, and characterized the GTPase LdSar1 and other COPII components like LdSec23, LdSec24, LdSec13, and LdSec31 from Leishmania to understand their role in ER exit of Ldgp63. Using dominant-positive (LdSar1:H74L) and dominant-negative (LdSar1:T34N) mutants of LdSar1, we found that GTP-bound LdSar1 specifically binds to LdSec23, which binds, in turn, with LdSec24(1-702) to form a prebudding complex. Moreover, LdSec13 specifically interacted with His6-LdSec31(1-603), and LdSec31 bound the prebudding complex via LdSec23. Interestingly, dileucine 594/595 and valine 597 residues present in the Ldgp63 C-terminal domain were critical for binding with LdSec24(703-966), and GFP-Ldgp63L594A/L595A or GFP-Ldgp63V597S mutants failed to exit from the ER. Moreover, Ldgp63-containing COPII vesicle budding from the ER was inhibited by LdSar1:T34N in an in vitro budding assay, indicating that GTP-bound LdSar1 is required for budding of Ldgp63-containing COPII vesicles. To directly demonstrate the function of LdSar1 in Ldgp63 trafficking, we coexpressed RFP-Ldgp63 along with LdSar1:WT-GFP or LdSar1:T34N-GFP and found that LdSar1:T34N overexpression blocks Ldgp63 trafficking and secretion in Leishmania Finally, we noted significantly compromised survival of LdSar1:T34N-GFP-overexpressing transgenic parasites in macrophages. Taken together, these results indicated that Ldgp63 interacts with the COPII complex via LdSec24 for Ldgp63 ER exit and subsequent secretion.
Collapse
Affiliation(s)
- Smriti Parashar
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | |
Collapse
|
11
|
Receptor for Activated C-Kinase 1 (PfRACK1) is required for Plasmodium falciparum intra-erythrocytic proliferation. Mol Biochem Parasitol 2016; 211:62-66. [PMID: 27732881 DOI: 10.1016/j.molbiopara.2016.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/05/2016] [Accepted: 10/08/2016] [Indexed: 11/24/2022]
Abstract
Emerging resistance to current anti-malarials necessitates a more detailed understanding of the biological processes of Plasmodium falciparum proliferation, thus allowing identification of new drug targets. The well-conserved protein Receptor for Activated C-Kinase 1 (RACK1) was originally identified in mammalian cells as an anchoring protein for protein kinase C (PKC) and has since been shown to be important for cell migration, cytokinesis, transcription, epigenetics, and protein translation. The P. falciparum ortholog, PfRACK1, is expressed in blood stages of the parasite and is diffusely localized in the parasite cytoplasm. Using a destabilizing domain to allow inducible knockdown of the endogenous protein level, we evaluated the requirement for PfRACK1 during blood-stage replication. Following destabilization, the parasites demonstrate a nearly complete growth arrest at the trophozoite stage. The essential nature of PfRACK1 suggests that the protein itself or the pathways regulated by the protein are potential targets for novel anti-malarial therapeutics.
Collapse
|
12
|
Kaiser G, De Niz M, Zuber B, Burda PC, Kornmann B, Heussler VT, Stanway RR. High resolution microscopy reveals an unusual architecture of the Plasmodium berghei endoplasmic reticulum. Mol Microbiol 2016; 102:775-791. [PMID: 27566438 DOI: 10.1111/mmi.13490] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 02/04/2023]
Abstract
To fuel the tremendously fast replication of Plasmodium liver stage parasites, the endoplasmic reticulum (ER) must play a critical role as a major site of protein and lipid biosynthesis. In this study, we analysed the parasite's ER morphology and function. Previous studies exploring the parasite ER have mainly focused on the blood stage. Visualizing the Plasmodium berghei ER during liver stage development, we found that the ER forms an interconnected network throughout the parasite with perinuclear and peripheral localizations. Surprisingly, we observed that the ER additionally generates huge accumulations. Using stimulated emission depletion microscopy and serial block-face scanning electron microscopy, we defined ER accumulations as intricate dense networks of ER tubules. We provide evidence that these accumulations are functional subdivisions of the parasite ER, presumably generated in response to elevated demands of the parasite, potentially consistent with ER stress. Compared to higher eukaryotes, Plasmodium parasites have a fundamentally reduced unfolded protein response machinery for reacting to ER stress. Accordingly, parasite development is greatly impaired when ER stress is applied. As parasites appear to be more sensitive to ER stress than are host cells, induction of ER stress could potentially be used for interference with parasite development.
Collapse
Affiliation(s)
- Gesine Kaiser
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Mariana De Niz
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland.,Wellcome Trust Center for Molecular Parasitology, G12 8TA, Glasgow, UK
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Baltzerstrasse 2, 3012, Bern, Switzerland
| | - Paul-Christian Burda
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| | - Benoît Kornmann
- Institute of Biochemistry, ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Volker T Heussler
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| | - Rebecca R Stanway
- Institute of Cell Biology, University of Bern, Baltzerstr. 4, 3012 Bern, Switzerland
| |
Collapse
|
13
|
Zhang X, Wang Y. Glycosylation Quality Control by the Golgi Structure. J Mol Biol 2016; 428:3183-3193. [PMID: 26956395 PMCID: PMC4983240 DOI: 10.1016/j.jmb.2016.02.030] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/27/2016] [Accepted: 02/28/2016] [Indexed: 01/04/2023]
Abstract
Glycosylation is a ubiquitous modification that occurs on proteins and lipids in all living cells. Consistent with their high complexity, glycans play crucial biological roles in protein quality control and recognition events. Asparagine-linked protein N-glycosylation, the most complex glycosylation, initiates in the endoplasmic reticulum and matures in the Golgi apparatus. This process not only requires an accurate distribution of processing machineries, such as glycosyltransferases, glycosidases, and nucleotide sugar transporters, but also needs an efficient and well-organized factory that is responsible for the fidelity and quality control of sugar chain processing. In addition, accurate glycosylation must occur in coordination with protein trafficking and sorting. These activities are carried out by the Golgi apparatus, a membrane organelle in the center of the secretory pathway. To accomplish these tasks, the Golgi has developed into a unique stacked structure of closely aligned, flattened cisternae in which Golgi enzymes reside; in mammalian cells, dozens of Golgi stacks are often laterally linked into a ribbon-like structure. Here, we review our current knowledge of how the Golgi structure is formed and why its formation is required for accurate glycosylation, with the focus on how the Golgi stacking factors GRASP55 and GRASP65 generate the Golgi structure and how the conserved oligomeric Golgi complex maintains Golgi enzymes in different Golgi subcompartments by retrograde protein trafficking.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109-1048, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
14
|
Overexpression of Plasmodium berghei ATG8 by Liver Forms Leads to Cumulative Defects in Organelle Dynamics and to Generation of Noninfectious Merozoites. mBio 2016; 7:mBio.00682-16. [PMID: 27353755 PMCID: PMC4937212 DOI: 10.1128/mbio.00682-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Plasmodium parasites undergo continuous cellular renovation to adapt to various environments in the vertebrate host and insect vector. In hepatocytes, Plasmodium berghei discards unneeded organelles for replication, such as micronemes involved in invasion. Concomitantly, intrahepatic parasites expand organelles such as the apicoplast that produce essential metabolites. We previously showed that the ATG8 conjugation system is upregulated in P. berghei liver forms and that P. berghei ATG8 (PbATG8) localizes to the membranes of the apicoplast and cytoplasmic vesicles. Here, we focus on the contribution of PbATG8 to the organellar changes that occur in intrahepatic parasites. We illustrated that micronemes colocalize with PbATG8-containing structures before expulsion from the parasite. Interference with PbATG8 function by overexpression results in poor development into late liver stages and production of small merosomes that contain immature merozoites unable to initiate a blood infection. At the cellular level, PbATG8-overexpressing P. berghei exhibits a delay in microneme compartmentalization into PbATG8-containing autophagosomes and elimination compared to parasites from the parental strain. The apicoplast, identifiable by immunostaining of the acyl carrier protein (ACP), undergoes an abnormally fast proliferation in mutant parasites. Over time, the ACP staining becomes diffuse in merosomes, indicating a collapse of the apicoplast. PbATG8 is not incorporated into the progeny of mutant parasites, in contrast to parental merozoites in which PbATG8 and ACP localize to the apicoplast. These observations reveal that Plasmodium ATG8 is a key effector in the development of merozoites by controlling microneme clearance and apicoplast proliferation and that dysregulation in ATG8 levels is detrimental for malaria infectivity. IMPORTANCE Malaria is responsible for more mortality than any other parasitic disease. Resistance to antimalarial medicines is a recurring problem; new drugs are urgently needed. A key to the parasite's successful intracellular development in the liver is the metabolic changes necessary to convert the parasite from a sporozoite to a replication-competent, metabolically active trophozoite form. Our study reinforces the burgeoning concept that organellar changes during parasite differentiation are mediated by an autophagy-like process. We have identified ATG8 in Plasmodium liver forms as an important effector that controls the development and fate of organelles, e.g., the clearance of micronemes that are required for hepatocyte invasion and the expansion of the apicoplast that produces many metabolites indispensable for parasite replication. Given the unconventional properties and the importance of ATG8 for parasite development in hepatocytes, targeting the parasite's autophagic pathway may represent a novel approach to control malarial infections.
Collapse
|
15
|
Zhang X, Wang Y. GRASPs in Golgi Structure and Function. Front Cell Dev Biol 2016; 3:84. [PMID: 26779480 PMCID: PMC4701983 DOI: 10.3389/fcell.2015.00084] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022] Open
Abstract
The Golgi apparatus is a central intracellular membrane organelle for trafficking and modification of proteins and lipids. Its basic structure is a stack of tightly aligned flat cisternae. In mammalian cells, dozens of stacks are concentrated in the pericentriolar region and laterally connected to form a ribbon. Despite extensive research in the last decades, how this unique structure is formed and why its formation is important for proper Golgi functioning remain largely unknown. The Golgi ReAssembly Stacking Proteins, GRASP65, and GRASP55, are so far the only proteins shown to function in Golgi stacking. They are peripheral membrane proteins on the cytoplasmic face of the Golgi cisternae that form trans-oligomers through their N-terminal GRASP domain, and thereby function as the “glue” to stick adjacent cisternae together into a stack and to link Golgi stacks into a ribbon. Depletion of GRASPs in cells disrupts the Golgi structure and results in accelerated protein trafficking and defective glycosylation. In this minireview we summarize our current knowledge on how GRASPs function in Golgi structure formation and discuss why Golgi structure formation is important for its function.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, USA; Department of Neurology, University of Michigan School of MedicineAnn Arbor, MI, USA
| |
Collapse
|
16
|
Heiny SR, Pautz S, Recker M, Przyborski JM. Protein Traffic to thePlasmodium falciparumApicoplast: Evidence for a Sorting Branch Point at the Golgi. Traffic 2014; 15:1290-304. [DOI: 10.1111/tra.12226] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Sabrina R. Heiny
- Parasitology, FB Biology, Philipps University Marburg; Karl von Frisch Straße 8; 35043 Marburg Germany
| | - Sabine Pautz
- Parasitology, FB Biology, Philipps University Marburg; Karl von Frisch Straße 8; 35043 Marburg Germany
| | - Mario Recker
- College of Engineering, Mathematics and Physical Sciences; University of Exeter; North Park Road Exeter UK
| | - Jude M. Przyborski
- Parasitology, FB Biology, Philipps University Marburg; Karl von Frisch Straße 8; 35043 Marburg Germany
| |
Collapse
|
17
|
Krai P, Dalal S, Klemba M. Evidence for a Golgi-to-endosome protein sorting pathway in Plasmodium falciparum. PLoS One 2014; 9:e89771. [PMID: 24587025 PMCID: PMC3934947 DOI: 10.1371/journal.pone.0089771] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/24/2014] [Indexed: 12/20/2022] Open
Abstract
During the asexual intraerythrocytic stage, the malaria parasite Plasmodium falciparum must traffic newly-synthesized proteins to a broad array of destinations within and beyond the parasite's plasma membrane. In this study, we have localized two well-conserved protein components of eukaryotic endosomes, the retromer complex and the small GTPase Rab7, to define a previously-undescribed endosomal compartment in P. falciparum. Retromer and Rab7 co-localized to a small number of punctate structures within parasites. These structures, which we refer to as endosomes, lie in close proximity to the Golgi apparatus and, like the Golgi apparatus, are inherited by daughter merozoites. However, the endosome is clearly distinct from the Golgi apparatus as neither retromer nor Rab7 redistributed to the endoplasmic reticulum upon brefeldin A treatment. Nascent rhoptries (specialized secretory organelles required for invasion) developed adjacent to endosomes, an observation that suggests a role for the endosome in rhoptry biogenesis. A P. falciparum homolog of the sortilin family of protein sorting receptors (PfSortilin) was localized to the Golgi apparatus. Together, these results elaborate a putative Golgi-to-endosome protein sorting pathway in asexual blood stage parasites and suggest that one role of retromer is to mediate the retrograde transport of PfSortilin from the endosome to the Golgi apparatus.
Collapse
Affiliation(s)
- Priscilla Krai
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Seema Dalal
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Michael Klemba
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wright MH, Clough B, Rackham MD, Rangachari K, Brannigan JA, Grainger M, Moss DK, Bottrill AR, Heal WP, Broncel M, Serwa RA, Brady D, Mann DJ, Leatherbarrow RJ, Tewari R, Wilkinson AJ, Holder AA, Tate EW. Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach. Nat Chem 2013; 6:112-21. [PMID: 24451586 DOI: 10.1038/nchem.1830] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 11/19/2013] [Indexed: 02/07/2023]
Abstract
Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.
Collapse
Affiliation(s)
- Megan H Wright
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| | - Barbara Clough
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Mark D Rackham
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Kaveri Rangachari
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - James A Brannigan
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Munira Grainger
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - David K Moss
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK
| | - William P Heal
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2]
| | | | - Remigiusz A Serwa
- Department of Chemistry, Imperial College London, London SW7 2AZ, UK
| | - Declan Brady
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - David J Mann
- 1] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK [2] Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Robin J Leatherbarrow
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK [3]
| | - Rita Tewari
- Centre for Genetics and Genomics, School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham NG2 7UH, UK
| | - Anthony J Wilkinson
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Anthony A Holder
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Edward W Tate
- 1] Department of Chemistry, Imperial College London, London SW7 2AZ, UK [2] Institute of Chemical Biology, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
19
|
Jarvela T, Linstedt AD. Isoform-specific tethering links the Golgi ribbon to maintain compartmentalization. Mol Biol Cell 2013; 25:133-44. [PMID: 24227884 PMCID: PMC3873884 DOI: 10.1091/mbc.e13-07-0395] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Use of photoinactivation, cisternae-specific fluorescence recovery, and high-resolution microscopy shows that the membrane tethers GRASP65 and GRASP55 on early and late Golgi membranes, respectively, are critical to the specific, homotypic fusion of the membranes on which they reside. Homotypic membrane tethering by the Golgi reassembly and stacking proteins (GRASPs) is required for the lateral linkage of mammalian Golgi ministacks into a ribbon-like membrane network. Although GRASP65 and GRASP55 are specifically localized to cis and medial/trans cisternae, respectively, it is unknown whether each GRASP mediates cisternae-specific tethering and whether such specificity is necessary for Golgi compartmentalization. Here each GRASP was tagged with KillerRed (KR), expressed in HeLa cells, and inhibited by 1-min exposure to light. Significantly, inactivation of either GRASP unlinked the Golgi ribbon, and the immediate effect of GRASP65-KR inactivation was a loss of cis- rather than trans-Golgi integrity, whereas inactivation of GRASP55-KR first affected the trans- and not the cis-Golgi. Thus each GRASP appears to play a direct and cisternae-specific role in linking ministacks into a continuous membrane network. To test the consequence of loss of cisternae-specific tethering, we generated Golgi membranes with a single GRASP on all cisternae. Remarkably, the membranes exhibited the full connectivity of wild-type Golgi ribbons but were decompartmentalized and defective in glycan processing. Thus the GRASP isoforms specifically link analogous cisternae to ensure Golgi compartmentalization and proper processing.
Collapse
Affiliation(s)
- Timothy Jarvela
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|
20
|
Klinger CM, Nisbet RE, Ouologuem DT, Roos DS, Dacks JB. Cryptic organelle homology in apicomplexan parasites: insights from evolutionary cell biology. Curr Opin Microbiol 2013; 16:424-31. [PMID: 23932202 PMCID: PMC4513074 DOI: 10.1016/j.mib.2013.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/21/2022]
Abstract
The economic and clinical significance of apicomplexan parasites drives interest in their many evolutionary novelties. Distinctive intracellular organelles play key roles in parasite motility, invasion, metabolism, and replication, and understanding their relationship with the organelles of better-studied eukaryotic systems suggests potential targets for therapeutic intervention. Recent work has demonstrated divergent aspects of canonical eukaryotic components in the Apicomplexa, including Golgi bodies and mitochondria. The apicoplast is a relict plastid of secondary endosymbiotic origin, harboring metabolic pathways distinct from those of host species. The inner membrane complex (IMC) is derived from the cortical alveoli defining the superphylum Alveolata, but in apicomplexans functions in parasite motility and replication. Micronemes and rhoptries are associated with establishment of the intracellular niche, and define the apical complex for which the phylum is named. Morphological, cell biological and molecular evidence strongly suggest that these organelles are derived from the endocytic pathway.
Collapse
Affiliation(s)
| | - R. Ellen Nisbet
- Department of Biochemistry, Cambridge University, Cambridge UK and School of Pharmacy and Medical Sciences, University of South Australia, Adelaide SA, Australia
- Department of Biology, University of Pennsylvania, Philadelphia PA USA
| | | | | | - Joel B. Dacks
- Department of Cell Biology, University of Alberta, Edmonton AB, Canada
| |
Collapse
|
21
|
Dahan-Pasternak N, Nasereddin A, Kolevzon N, Pe'er M, Wong W, Shinder V, Turnbull L, Whitchurch CB, Elbaum M, Gilberger TW, Yavin E, Baum J, Dzikowski R. PfSec13 is an unusual chromatin-associated nucleoporin of Plasmodium falciparum that is essential for parasite proliferation in human erythrocytes. J Cell Sci 2013; 126:3055-69. [PMID: 23687383 DOI: 10.1242/jcs.122119] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Plasmodium falciparum, the deadliest form of human malaria, the nuclear periphery has drawn much attention due to its role as a sub-nuclear compartment involved in virulence gene expression. Recent data have implicated components of the nuclear envelope in regulating gene expression in several eukaryotes. Special attention has been given to nucleoporins that compose the nuclear pore complex (NPC). However, very little is known about components of the nuclear envelope in Plasmodium parasites. Here we characterize PfSec13, an unusual nucleoporin of P. falciparum, which shows unique structural similarities suggesting that it is a fusion between Sec13 and Nup145C of yeast. Using super resolution fluorescence microscopy (3D-SIM) and in vivo imaging, we show that the dynamic localization of PfSec13 during parasites' intra-erythrocytic development corresponds with that of the NPCs and that these dynamics are associated with microtubules rather than with F-actin. In addition, PfSec13 does not co-localize with the heterochormatin markers HP1 and H3K9me3, suggesting euchromatic location of the NPCs. The proteins associated with PfSec13 indicate that this unusual Nup is involved in several cellular processes. Indeed, ultrastructural and chromatin immunoprecipitation analyses revealed that, in addition to the NPCs, PfSec13 is found in the nucleoplasm where it is associated with chromatin. Finally, we used peptide nucleic acids (PNA) to downregulate PfSec13 and show that it is essential for parasite proliferation in human erythrocytes.
Collapse
Affiliation(s)
- Noa Dahan-Pasternak
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Deponte M, Hoppe HC, Lee MC, Maier AG, Richard D, Rug M, Spielmann T, Przyborski JM. Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol Biochem Parasitol 2012; 186:95-116. [DOI: 10.1016/j.molbiopara.2012.09.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 11/27/2022]
|
23
|
Abstract
The Golgi is an ancient and fundamental eukaryotic organelle. Evolutionary cell biological studies have begun establishing the repertoire, processes, and level of complexity of membrane-trafficking machinery present in early eukaryotic cells. This article serves as a review of the literature on the topic of Golgi evolution and diversity and reports a novel comparative genomic survey addressing Golgi machinery in the widest taxonomic diversity of eukaryotes sampled to date. Finally, the article is meant to serve as a primer on the rationale and design of evolutionary cell biological studies, hopefully encouraging readers to consider this approach as an addition to their cell biological toolbox. It is clear that the major machinery involved in vesicle trafficking to and from the Golgi was already in place by the time of the divergence of the major eukaryotic lineages, nearly 2 billion years ago. Much of this complexity was likely generated by an evolutionary process involving gene duplication and coevolution of specificity encoding membrane-trafficking proteins. There have also been clear cases of loss of Golgi machinery in some lineages as well as innovation of novel machinery. The Golgi is a wonderfully complex and diverse organelle and its continued exploration promises insight into the evolutionary history of the eukaryotic cell.
Collapse
Affiliation(s)
- Mary J Klute
- Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | |
Collapse
|
24
|
Abstract
The mammalian GRASPs (Golgi reassembly stacking proteins) GRASP65 and GRASP55 were first discovered more than a decade ago as factors involved in the stacking of Golgi cisternae. Since then, orthologues have been identified in many different organisms and GRASPs have been assigned new roles that may seem disconnected. In vitro, GRASPs have been shown to have the biochemical properties of Golgi stacking factors, but the jury is still out as to whether they act as such in vivo. In mammalian cells, GRASP65 and GRASP55 are required for formation of the Golgi ribbon, a structure which is fragmented in mitosis owing to the phosphorylation of a number of serine and threonine residues situated in its C-terminus. Golgi ribbon unlinking is in turn shown to be part of a mitotic checkpoint. GRASP65 also seems to be the key target of signalling events leading to re-orientation of the Golgi during cell migration and its breakdown during apoptosis. Interestingly, the Golgi ribbon is not a feature of lower eukaryotes, yet a GRASP homologue is present in the genome of Encephalitozoon cuniculi, suggesting they have other roles. GRASPs have no identified function in bulk anterograde protein transport along the secretory pathway, but some cargo-specific trafficking roles for GRASPs have been discovered. Furthermore, GRASP orthologues have recently been shown to mediate the unconventional secretion of the cytoplasmic proteins AcbA/Acb1, in both Dictyostelium discoideum and yeast, and the Golgi bypass of a number of transmembrane proteins during Drosophila development. In the present paper, we review the multiple roles of GRASPs.
Collapse
|
25
|
Rask TS, Hansen DA, Theander TG, Gorm Pedersen A, Lavstsen T. Plasmodium falciparum erythrocyte membrane protein 1 diversity in seven genomes--divide and conquer. PLoS Comput Biol 2010; 6. [PMID: 20862303 PMCID: PMC2940729 DOI: 10.1371/journal.pcbi.1000933] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 08/16/2010] [Indexed: 12/21/2022] Open
Abstract
The var gene encoded hyper-variable Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family mediates cytoadhesion of infected erythrocytes to human endothelium. Antibodies blocking cytoadhesion are important mediators of malaria immunity acquired by endemic populations. The development of a PfEMP1 based vaccine mimicking natural acquired immunity depends on a thorough understanding of the evolved PfEMP1 diversity, balancing antigenic variation against conserved receptor binding affinities. This study redefines and reclassifies the domains of PfEMP1 from seven genomes. Analysis of domains in 399 different PfEMP1 sequences allowed identification of several novel domain classes, and a high degree of PfEMP1 domain compositional order, including conserved domain cassettes not always associated with the established group A–E division of PfEMP1. A novel iterative homology block (HB) detection method was applied, allowing identification of 628 conserved minimal PfEMP1 building blocks, describing on average 83% of a PfEMP1 sequence. Using the HBs, similarities between domain classes were determined, and Duffy binding-like (DBL) domain subclasses were found in many cases to be hybrids of major domain classes. Related to this, a recombination hotspot was uncovered between DBL subdomains S2 and S3. The VarDom server is introduced, from which information on domain classes and homology blocks can be retrieved, and new sequences can be classified. Several conserved sequence elements were found, including: (1) residues conserved in all DBL domains predicted to interact and hold together the three DBL subdomains, (2) potential integrin binding sites in DBLα domains, (3) an acylation motif conserved in group A var genes suggesting N-terminal N-myristoylation, (4) PfEMP1 inter-domain regions proposed to be elastic disordered structures, and (5) several conserved predicted phosphorylation sites. Ideally, this comprehensive categorization of PfEMP1 will provide a platform for future studies on var/PfEMP1 expression and function. About one million African children die from malaria every year. The severity of malaria infections in part depends on which type of the parasitic protein PfEMP1 is expressed on the surface of the infected red blood cells. Natural immunity to malaria is mediated through antibodies to PfEMP1. Therefore hopes for a malaria vaccine based on PfEMP1 proteins have been raised. However, the large sequence variation among PfEMP1 molecules has caused great difficulties in executing and interpreting studies on PfEMP1. Here, we present an extensive sequence analysis of all currently available PfEMP1 sequences and show that PfEMP1 variation is ordered and can be categorized at different levels. In this way, PfEMP1 belong to group A–E and are composed of up to four components, each component containing specific DBL or CIDR domain subclasses, which in some cases form entire conserved domain combinations. Finally, each PfEMP1 can be described in high detail as a combination of 628 homology blocks. This dissection of PfEMP1 diversity also enables predictions of several functional sequence motifs relevant to the fold of PfEMP1 proteins and their ability to bind human receptors. We therefore believe that this description of PfEMP1 diversity is necessary and helpful for the design and interpretation of future PfEMP1 studies.
Collapse
Affiliation(s)
- Thomas S. Rask
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| | - Daniel A. Hansen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thor G. Theander
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
| | - Anders Gorm Pedersen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Thomas Lavstsen
- Centre for Medical Parasitology, Department of Medical Microbiology and Immunology, University of Copenhagen, Copehagen, Denmark
- * E-mail: (TSR); (TL)
| |
Collapse
|
26
|
Levi SK, Bhattacharyya D, Strack RL, Austin JR, Glick BS. The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway. Traffic 2010; 11:1168-79. [PMID: 20573068 PMCID: PMC2919637 DOI: 10.1111/j.1600-0854.2010.01089.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In mammalian cells, the 'Golgi reassembly and stacking protein' (GRASP) family has been implicated in Golgi stacking, but the broader functions of GRASP proteins are still unclear. The yeast Saccharomyces cerevisiae contains a single non-essential GRASP homolog called Grh1. However, Golgi cisternae in S. cerevisiae are not organized into stacks, so a possible structural role for Grh1 has been difficult to test. Here, we examined the localization and function of Grh1 in S. cerevisiae and in the related yeast Pichia pastoris, which has stacked Golgi cisternae. In agreement with earlier studies indicating that Grh1 interacts with coat protein II (COPII) vesicle coat proteins, we find that Grh1 colocalizes with COPII at transitional endoplasmic reticulum (tER) sites in both yeasts. Deletion of P. pastoris Grh1 had no obvious effect on the structure of tER-Golgi units. To test the role of S. cerevisiae Grh1, we exploited the observation that inhibiting ER export in S. cerevisiae generates enlarged tER sites that are often associated with the cis Golgi. This tER-Golgi association was preserved in the absence of Grh1. The combined data suggest that Grh1 acts early in the secretory pathway, but is dispensable for the organization of secretory compartments.
Collapse
Affiliation(s)
- Stephanie K. Levi
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Dibyendu Bhattacharyya
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Rita L. Strack
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| | - Jotham R. Austin
- Biological Sciences Division, Office of Shared Research Facilities, The University of Chicago, Chicago, IL 60637
| | - Benjamin S. Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637
| |
Collapse
|
27
|
Xiang Y, Wang Y. GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. ACTA ACUST UNITED AC 2010; 188:237-51. [PMID: 20083603 PMCID: PMC2812519 DOI: 10.1083/jcb.200907132] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two peripheral GRASP membrane proteins work together to keep the Golgi from falling apart. In vitro studies have suggested that Golgi stack formation involves two homologous peripheral Golgi proteins, GRASP65 and GRASP55, which localize to the cis and medial-trans cisternae, respectively. However, no mechanism has been provided on how these two GRASP proteins work together to stack Golgi cisternae. Here, we show that depletion of either GRASP55 or GRASP65 by siRNA reduces the number of cisternae per Golgi stack, whereas simultaneous knockdown of both GRASP proteins leads to disassembly of the entire stack. GRASP55 stacks Golgi membranes by forming oligomers through its N-terminal GRASP domain. This process is regulated by phosphorylation within the C-terminal serine/proline-rich domain. Expression of nonphosphorylatable GRASP55 mutants enhances Golgi stacking in interphase cells and inhibits Golgi disassembly during mitosis. These results demonstrate that GRASP55 and GRASP65 stack mammalian Golgi cisternae via a common mechanism.
Collapse
Affiliation(s)
- Yi Xiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
28
|
Ramirez IBR, Lowe M. Golgins and GRASPs: holding the Golgi together. Semin Cell Dev Biol 2009; 20:770-9. [PMID: 19508854 DOI: 10.1016/j.semcdb.2009.03.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/28/2022]
Abstract
The GRASP and golgin families of proteins have emerged as key components of the Golgi apparatus, with major roles in both the structural organisation of this organelle and the trafficking that occurs there. Both types of protein participate in membrane tethering events that occur upstream of membrane fusion as well as contributing to the structural scaffold that defines Golgi architecture, referred to as the Golgi matrix. The importance of these proteins is highlighted by their targeting in mitosis, apoptosis, and pathogenic infections that cause dramatic structural and functional reorganisation of the Golgi apparatus. In this review we will discuss our current understanding of GRASP and golgin function, highlighting some of the common themes that have emerged as well as describing previously unsuspected roles for these proteins in various cellular processes.
Collapse
|
29
|
Sengupta D, Truschel S, Bachert C, Linstedt AD. Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. ACTA ACUST UNITED AC 2009; 186:41-55. [PMID: 19581411 PMCID: PMC2712994 DOI: 10.1083/jcb.200902110] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Formation of the ribbon-like membrane network of the Golgi apparatus depends on GM130 and GRASP65, but the mechanism is unknown. We developed an in vivo organelle tethering assaying in which GRASP65 was targeted to the mitochondrial outer membrane either directly or via binding to GM130. Mitochondria bearing GRASP65 became tethered to one another, and this depended on a GRASP65 PDZ domain that was also required for GRASP65 self-interaction. Point mutation within the predicted binding groove of the GRASP65 PDZ domain blocked both tethering and, in a gene replacement assay, Golgi ribbon formation. Tethering also required proximate membrane anchoring of the PDZ domain, suggesting a mechanism that orientates the PDZ binding groove to favor interactions in trans. Thus, a homotypic PDZ interaction mediates organelle tethering in living cells.
Collapse
Affiliation(s)
- Debrup Sengupta
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|