1
|
Yang Q, Chan P. Skeletal Muscle Metabolic Alternation Develops Sarcopenia. Aging Dis 2022; 13:801-814. [PMID: 35656108 PMCID: PMC9116905 DOI: 10.14336/ad.2021.1107] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/28/2021] [Indexed: 11/23/2022] Open
Abstract
Sarcopenia is a new type of senile syndrome with progressive skeletal muscle mass loss with age, accompanied by decreased muscle strength and/or muscle function. Sarcopenia poses a serious threat to the health of the elderly and increases the burden of family and society. The underlying pathophysiological mechanisms of sarcopenia are still unclear. Recent studies have shown that changes of skeletal muscle metabolism are the risk factors for sarcopenia. Furthermore, the importance of the skeletal muscle metabolic microenvironment in regulating satellite cells (SCs) is gaining significant attention. Skeletal muscle metabolism has intrinsic relationship with the regulation of skeletal muscle mass and regeneration. This review is to discuss recent findings regarding skeletal muscle metabolic alternation and the development of sarcopenia, hoping to contribute better understanding and treatment of sarcopenia.
Collapse
Affiliation(s)
- Qiumei Yang
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Piu Chan
- Department of Neurology, Geriatrics and Neurobiology, National Clinical Research Center of Geriatric Disorders, Xuanwu Hospital of Capital Medical University, Beijing, China.
- Clinical Center for Parkinson’s Disease, Capital Medical University, Beijing Institute of Geriatrics, Beijing, China.
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Correspondence should be addressed to: Dr. Piu Chan, Department of Neurobiology, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Beijing 100053, China. .
| |
Collapse
|
2
|
Chai J, Xiong Q, Wang D, Wan X, Niu H, Xiang H, Li H, Wang H, Zheng R, Peng J, Jiang S. Identification of novel regulatory GRE-binding elements in the porcine IP3R1 gene promoter and their transcriptional activation under glucocorticoid stimulation. Gen Comp Endocrinol 2017; 249:71-81. [PMID: 28495269 DOI: 10.1016/j.ygcen.2017.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 05/02/2017] [Accepted: 05/06/2017] [Indexed: 01/24/2023]
Abstract
Inositol 1,4,5-trisphosphate receptor 1 (IP3R1) is a type of ligand-gated calcium channel that is expressed predominantly in mammalian skeletal muscle, where it acts as a key regulator of calcium homeostasis. In meat, calcium disequilibrium is accompanied by the deterioration of meat quality. Here we show that serum cortisol concentration was higher and the IP3R1 gene expression level increased markedly in pigs exposed to high stress. In porcine primary muscle cells, dexamethasone (DEX, a synthetic glucocorticoid) increased the protein levels of porcine IP3R1 and GRα, and cell apoptosis, and the specific GRα inhibitor RU486 attenuated these effects. DEX also increased the expression of IP3R1 at both the gene and protein levels, and this expression was attenuated by RU486, siRNA against GRα, and the transcriptional inhibitor actinomycin D. DEX significantly reduced cell viability and increased the intracellular calcium concentration, and these effects were attenuated by siRNA against GRα. Bioinformatics analyses predicted a potential glucocorticoid response element (GRE) located in the region -326 to -309 upstream of the IP3R1 promoter and highly conserved in pigs and other mammalian species. Promoter analysis showed that this region containing the GRE was critical for transcriptional activity of porcine IP3R1 under DEX stimulation. This was confirmed by deletion and site-mutation methods. EMSA and ChIP assays showed that this potential GRE bound specifically to GRα and this complex activated the transcription of the IP3R1 gene. Taken together, these data suggest that DEX-mediated induction of IP3R1 influences porcine muscle cells through the transcriptional activation of a mechanism involving interactions between GRα and a GRE present in the proximal IP3R1 promoter. This process can lead to an imbalance in intracellular calcium concentration, which may subsequently activate the apoptosis signal and decrease cell activity, and cause deterioration of meat quality.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Base Sequence
- Calcium/metabolism
- Cell Survival/drug effects
- Chromatin Immunoprecipitation
- Cloning, Molecular
- Dexamethasone/pharmacology
- Gene Expression Regulation/drug effects
- Glucocorticoids/pharmacology
- Hydrocortisone/blood
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- Male
- Muscles/drug effects
- Muscles/metabolism
- Protein Binding/drug effects
- Receptors, Glucocorticoid/metabolism
- Response Elements/genetics
- Sequence Analysis, DNA
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Sus scrofa/blood
- Sus scrofa/genetics
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Transcriptional Activation/genetics
Collapse
Affiliation(s)
- Jin Chai
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qi Xiong
- Hubei Key Laboratory of Animal Embryo Engineering and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Science, Wuhan, China
| | - Dan Wang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xuebing Wan
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongdan Niu
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hong Xiang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huanan Li
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongshuai Wang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Rong Zheng
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition, Huazhong Agricultural University, Wuhan, China.
| | - Siwen Jiang
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
3
|
Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics 2015; 16:399. [PMID: 25994290 PMCID: PMC4438523 DOI: 10.1186/s12864-015-1623-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology. Methods We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Results Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. Conclusions There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1623-0) contains supplementary material, which is available to authorized users.
Collapse
|
4
|
MicroRNA Transcriptome Profile Analysis in Porcine Muscle and the Effect of miR-143 on the MYH7 Gene and Protein. PLoS One 2015; 10:e0124873. [PMID: 25915937 PMCID: PMC4410957 DOI: 10.1371/journal.pone.0124873] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 03/05/2015] [Indexed: 11/19/2022] Open
Abstract
Porcine skeletal muscle fibres are classified based on their different physiological and biochemical properties. Muscle fibre phenotype is regulated by several independent signalling pathways, including the mitogen-activated protein kinase (MAPK), nuclear factor of activated T cells (NFAT), myocyte enhancer factor 2 (MEF2) and peroxisome proliferator-activated receptor (PPAR) signalling pathways. MicroRNAs are non-coding small RNAs that regulate many biological processes. However, their function in muscle fibre type regulation remains unclear. The aim of our study was to identify miRNAs that regulate muscle fibre type during porcine growth to help understand the miRNA regulation mechanism of fibre differentiation. We performed Solexa/Illumina deep sequencing for the microRNAome during 3 muscle growth stages (63, 98 and 161 d). In this study, 271 mature miRNAs and 243 pre-miRNAs were identified. We detected 472 novel miRNAs in the muscle samples. Among the mature miRNAs, there are 23 highest expression miRNAs (over 10,000 RPM), account for 85.3% of the total counts of mature miRNAs., including 10 (43.5%) muscle-related miRNAs (ssc-miR-133a-3p, ssc-miR-486, ssc-miR-1, ssc-miR-143-3p, ssc-miR-30a-5p, ssc-miR-181a, ssc-miR-148a-3p, ssc-miR-92a, ssc-miR-21, ssc-miR-126-5p). Particularly, both ssc-miR-1 and ssc-miR-133 belong to the MyomiRs, which control muscle myosin content, myofibre identity and muscle performance. The involvement of these miRNAs in muscle fibre phenotype provides new insight into the mechanism of muscle fibre regulation underlying muscle development. Furthermore, we performed cell transfection experiment. Overexpression/inhibition of ssc-miR-143-3p in porcine skeletal muscle satellite cell induced an/a increase/reduction of the slow muscle fibre gene and protein (MYH7), indicating that miR-143 activity regulated muscle fibre differentiate in skeletal muscle. And it regulate MYH7 through the HDAC4-MEF2 pathway.
Collapse
|
5
|
Zhu H, Park S, Scheffler JM, Kuang S, Grant AL, Gerrard DE. Porcine satellite cells are restricted to a phenotype resembling their muscle origin. J Anim Sci 2013; 91:4684-91. [PMID: 23893979 DOI: 10.2527/jas.2012-5804] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscles in most domestic animals differ in function and growth potential based largely on muscle fiber type composition. Though much is known about satellite cells (SC), information is limited regarding how populations of SC differ with muscle fiber type, especially in pigs. Therefore, the objective of this study was to isolate and culture SC from red (RST) and white (WST) portions of the semitendinosus muscle of neonatal and adult pigs and determine their capacity to proliferate, differentiate, and express various myosin heavy chain (MyHC) isoforms in vitro. Porcine satellite cells were isolated from RST and WST muscles of 6-wk-old and adult (>6-mo-old) pigs and cultured under standard conditions. Muscle from neonatal pigs yielded nearly 10 times more (P < 0.001) presumptive satellite cells as those from adult pigs, with fusion percentages close to 60% for the former. The RST yielded more (P < 0.001) SC per gram muscle compared to WST, 8.1 ± 0.2 × 10(4) cells versus 6.7 ± 0.1 × 10(4) cells/gram muscle in young pigs, and 9.7 ± 0.4 × 10(3) cells versus 5.5 ± 0.4 × 10(3) cells/gram muscle in adult pigs, respectively. Likewise, satellite cells from RST proliferated faster (P < 0.001) than those from WST across both ages, as indicated by a shorter cell doubling time, 18.6 ± 0.8 h versus 21.3 ± 0.9 h in young pigs, and 23.2 ± 0.7 h versus 26.7 ± 0.9 h in adult pigs, respectively. As a result of shorter times to confluence, satellite cells from RST also formed myotubes earlier than those SC originating from WST. Once induced, however, SC from WST differentiated and fused faster (P < 0.05) as evidenced by fusion percentage within the first 24 h, 41.6% versus 34.3%, respectively; but reached similar ultimate fusion percentages similar to WST by 48 h. Over 90% of MyHC expressed in maximally fused SC cultures from both RST and WST was restricted to the embryonic isoform. Type IIX MyHC mRNA was not detected in any culture. Myotube cultures from RST expressed more (P < 0.01) Type I MyHC isoform mRNA than those from WST, whereas those cultures from WST expressed more (P < 0.05) Type II (including Types IIA and IIB) MyHC transcripts. These data show SC cultures from porcine fast and slow muscles express MyHC profiles largely reflective of their muscle of origin and suggest satellite cells are partially restricted to a particular muscle phenotype in which they are juxtapositioned. Understanding the molecular nature of these intrinsic control mechanisms may lead to improved strategies for augmenting meat animal growth or muscle regeneration.
Collapse
Affiliation(s)
- H Zhu
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg 24060
| | | | | | | | | | | |
Collapse
|
6
|
Analysis of spontaneous and nerve-evoked calcium transients in intact extraocular muscles in vitro. Exp Eye Res 2012; 100:73-85. [PMID: 22579493 DOI: 10.1016/j.exer.2012.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/29/2012] [Accepted: 04/18/2012] [Indexed: 12/22/2022]
Abstract
Extraocular muscles (EOMs) have unique calcium handling properties, yet little is known about the dynamics of calcium events underlying ultrafast and tonic contractions in myofibers of intact EOMs. Superior oblique EOMs of juvenile chickens were dissected with their nerve attached, maintained in oxygenated Krebs buffer, and loaded with fluo-4. Spontaneous and nerve stimulation-evoked calcium transients were recorded and, following calcium imaging, some EOMs were double-labeled with rhodamine-conjugated alpha-bungarotoxin (rhBTX) to identify EOM myofiber types. EOMs showed two main types of spontaneous calcium transients, one slow type (calcium waves with 1/2(max) duration of 2-12 s, velocity of 25-50 μm/s) and two fast "flash-like" types (Type 1, 30-90 ms; Type 2, 90-150 ms 1/2(max) duration). Single pulse nerve stimulation evoked fast calcium transients identical to the fast (Type 1) calcium transients. Calcium waves were accompanied by a local myofiber contraction that followed the calcium transient wavefront. The magnitude of calcium-wave induced myofiber contraction far exceeded those of movement induced by nerve stimulation and associated fast calcium transients. Tetrodotoxin eliminated nerve-evoked transients, but not spontaneous transients. Alpha-bungarotoxin eliminated both spontaneous and nerve-evoked fast calcium transients, but not calcium waves, and caffeine increased wave activity. Calcium waves were observed in myofibers lacking spontaneous or evoked fast transients, suggestive of multiply-innervated myofibers, and this was confirmed by double-labeling with rhBTX. We propose that the abundant spontaneous calcium transients and calcium waves with localized contractions that do not depend on innervation may contribute to intrinsic generation of tonic functions of EOMs.
Collapse
|
7
|
Cavanaugh EJ, Crew JR, DiMario JX. Direct electrical stimulation of myogenic cultures for analysis of muscle fiber type control. Methods Mol Biol 2012; 798:77-84. [PMID: 22130832 DOI: 10.1007/978-1-61779-343-1_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Secondary skeletal muscle fiber phenotype is dependent upon depolarization from motor neuron innervation. To study the effects of depolarization on muscle fiber type development, several in vivo and in vitro model systems exist. We have developed a relatively simple-to-use in vitro model system in which differentiated muscle cells are directly electrically stimulated at precise frequencies. This allows for single cell analysis as well as biochemical and molecular analyses of the mechanisms that control skeletal muscle phenotype.
Collapse
Affiliation(s)
- Eric J Cavanaugh
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | | | | |
Collapse
|
8
|
Casas M, Figueroa R, Jorquera G, Escobar M, Molgó J, Jaimovich E. IP(3)-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers. ACTA ACUST UNITED AC 2010; 136:455-67. [PMID: 20837675 PMCID: PMC2947059 DOI: 10.1085/jgp.200910397] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP3Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5–7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP3R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10–20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP3R isoforms were present in adult muscle. IP3R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP3R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype.
Collapse
Affiliation(s)
- Mariana Casas
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
9
|
Cárdenas C, Juretić N, Bevilacqua JA, García IE, Figueroa R, Hartley R, Taratuto AL, Gejman R, Riveros N, Molgó J, Jaimovich E. Abnormal distribution of inositol 1,4,5‐trisphosphate receptors in human muscle can be related to altered calcium signals and gene expression in Duchenne dystrophy‐derived cells. FASEB J 2010; 24:3210-21. [DOI: 10.1096/fj.09-152017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- César Cárdenas
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nevenka Juretić
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jorge A. Bevilacqua
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Programa de Anatomía y Biología del DesarrolloInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Departamento de Neurología y NeurocirugíaHospital Clínico Universidad de Chile Independencia Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Isaac E. García
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Reinaldo Figueroa
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ricardo Hartley
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ana L. Taratuto
- Departamento de NeuropatologíaInstituto de Investigaciones NeurológicasFLENI Buenos Aires Argentina
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Roger Gejman
- Departamento de Anatomía PatológicaFacultad de MedicinaPontificia Universidad Católica de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nora Riveros
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jordi Molgó
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| |
Collapse
|
10
|
Crew JR, Falzari K, DiMario JX. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation. Exp Cell Res 2010; 316:1039-49. [PMID: 20070941 DOI: 10.1016/j.yexcr.2010.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 02/01/2023]
Abstract
Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1alpha) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.
Collapse
Affiliation(s)
- Jennifer R Crew
- Department of Cell Biology and Anatomy, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | |
Collapse
|
11
|
Nedachi T, Fujita H, Kanzaki M. Contractile C2C12 myotube model for studying exercise-inducible responses in skeletal muscle. Am J Physiol Endocrinol Metab 2008; 295:E1191-204. [PMID: 18780777 DOI: 10.1152/ajpendo.90280.2008] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adequate exercise leads to a vast variety of physiological changes in skeletal muscle as well as other tissues/organs and is also responsible for maintaining healthy muscle displaying enhanced insulin-responsive glucose uptake via GLUT4 translocation. We generated highly developed contractile C(2)C(12) myotubes by manipulating intracellular Ca(2+) transients with electric pulse stimulation (EPS) that is endowed with properties similar to those of in vivo skeletal muscle in terms of 1) excitation-induced contractile activity as a result of de novo sarcomere formation, 2) activation of both the AMP kinase and stress-activated MAP kinase cascades, and 3) improved insulin responsiveness as assessed by GLUT4 recycling. Tbc1d1, a Rab-GAP implicated in exercise-induced GLUT4 translocation in skeletal muscle, also appeared to be phosphorylated on Ser(231) after EPS-induced contraction. In addition, a switch in myosin heavy-chain (MHC) expression from "fast type" to "slow type" was observed in the C(2)C(12) myotubes endowed with EPS-induced repetitive contractility. Taking advantage of these highly developed contractile C(2)C(12) myotubes, we identified myotube-derived factors responsive to EPS-evoked contraction, including the CXC chemokines CXCL1/KC and CXCL5/LIX, as well as IL-6, previously reported to be upregulated in contracting muscles in vivo. Importantly, animal treadmill experiments revealed that exercise significantly increased systemic levels of CXCL1/KC, perhaps derived from contracting muscle. Taken together, these results confirm that we have established a specialized muscle cell culture model allowing contraction-inducible cellular responses to be explored. Utilizing this model, we identified contraction-inducible myokines potentially linked to the metabolic alterations, immune responses, and angiogenesis induced by exercise.
Collapse
Affiliation(s)
- Taku Nedachi
- Center for Research Strategy and Support, Tohoku University Biomedical Engineering Research Organization, Sendai, Japan
| | | | | |
Collapse
|
12
|
Shi H, Scheffler JM, Pleitner JM, Zeng C, Park S, Hannon KM, Grant AL, Gerrard DE. Modulation of skeletal muscle fiber type by mitogen‐activated protein kinase signaling. FASEB J 2008; 22:2990-3000. [DOI: 10.1096/fj.07-097600] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Shi
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | | | | | - Caiyun Zeng
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Sungkwon Park
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Kevin M. Hannon
- Department of Basic Medical SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - Alan L. Grant
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| | - David E. Gerrard
- Department of Animal SciencesPurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
13
|
Valdés JA, Gaggero E, Hidalgo J, Leal N, Jaimovich E, Carrasco MA. NFAT activation by membrane potential follows a calcium pathway distinct from other activity-related transcription factors in skeletal muscle cells. Am J Physiol Cell Physiol 2008; 294:C715-25. [DOI: 10.1152/ajpcell.00195.2007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Depolarization of skeletal muscle cells triggers intracellular Ca2+ signals mediated by ryanodine and inositol 1,4,5-trisphosphate (IP3) receptors. Previously, we have reported that K+-induced depolarization activates transcriptional regulators ERK, cAMP response element-binding protein, c- fos, c- jun, and egr-1 through IP3-dependent Ca2+ release, whereas NF-κB activation is elicited by both ryanodine and IP3 receptor-mediated Ca2+ signals. We have further shown that field stimulation with electrical pulses results in an NF-κB activation increase dependent of the amount of pulses and independent of their frequency. In this work, we report the results obtained for nuclear factor of activated T cells (NFAT)-mediated transcription and translocation generated by both K+ and electrical stimulation protocols in primary skeletal muscle cells and C2C12 cells. The Ca2+ source for NFAT activation is through release by ryanodine receptors and extracellular Ca2+ entry. We found this activation to be independent of the number of pulses within a physiological range of stimulus frequency and enhanced by long-lasting low-frequency stimulation. Therefore, activation of the NFAT signaling pathway differs from that of NF-κB and other transcription factors. Calcineurin enzyme activity correlated well with the relative activation of NFAT translocation and transcription using different stimulation protocols. Furthermore, both K+-induced depolarization and electrical stimulation increased mRNA levels of the type 1 IP3 receptor mediated by calcineurin activity, which suggests that depolarization may regulate IP3 receptor transcription. These results confirm the presence of at least two independent pathways for excitation-transcription coupling in skeletal muscle cells, both dependent on Ca2+ release and triggered by the same voltage sensor but activating different intracellular release channels.
Collapse
|
14
|
|
15
|
Hagiwara N, Yeh M, Liu A. Sox6 is required for normal fiber type differentiation of fetal skeletal muscle in mice. Dev Dyn 2007; 236:2062-76. [PMID: 17584907 DOI: 10.1002/dvdy.21223] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sox6, a member of the Sox family of transcription factors, is highly expressed in skeletal muscle. Despite its abundant expression, the role of Sox6 in muscle development is not well understood. We hypothesize that, in fetal muscle, Sox6 functions as a repressor of slow fiber type-specific genes. In the wild-type mouse, differentiation of fast and slow fibers becomes apparent during late fetal stages (after approximately embryonic day 16). However, in the Sox6 null-p(100H) mutant mouse, all fetal muscle fibers maintain slow fiber characteristics, as evidenced by expression of the slow myosin heavy chain MyHC-beta. Knockdown of Sox6 expression in wild-type myotubes results in a significant increase in MyHC-beta expression, supporting our hypothesis. Analysis of the MyHC-beta promoter revealed a Sox consensus sequence that likely functions as a negative cis-regulatory element. Together, our results suggest that Sox6 plays a critical role in the fiber type differentiation of fetal skeletal muscle.
Collapse
Affiliation(s)
- Nobuko Hagiwara
- University of California, Davis, Division of Cardiovascular Medicine/Rowe Program in Human Genetics, Davis, California 95616, USA.
| | | | | |
Collapse
|
16
|
Abstract
During skeletal muscle differentiation, the actomyosin motor is assembled into myofibrils, multiprotein machines that generate and transmit force to cell ends. How expression of muscle proteins is coordinated to build the myofibril is unknown. Here we show that zebrafish Mef2d and Mef2c proteins are required redundantly for assembly of myosin-containing thick filaments in nascent muscle fibres, but not for the earlier steps of skeletal muscle fibre differentiation, elongation, fusion or thin filament gene expression. mef2d mRNA and protein is present in myoblasts, whereas mef2c expression commences in muscle fibres. Knockdown of both Mef2s with antisense morpholino oligonucleotides or in mutant fish blocks muscle function and prevents sarcomere assembly. Cell transplantation and heat-shock-driven rescue reveal a cell-autonomous requirement for Mef2 within fibres. In nascent fibres, Mef2 drives expression of genes encoding thick, but not thin, filament proteins. Among genes analysed, myosin heavy and light chains and myosin-binding protein C require Mef2 for normal expression, whereas actin, tropomyosin and troponin do not. Our findings show that Mef2 controls skeletal muscle formation after terminal differentiation and define a new maturation step in vertebrate skeletal muscle development at which thick filament gene expression is controlled.
Collapse
Affiliation(s)
- Yaniv Hinits
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| | - Simon M. Hughes
- MRC Centre for Developmental Neurobiology and Randall Division for Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, SE1 1UL, UK
| |
Collapse
|
17
|
Carrasco MA, Hidalgo C. Calcium microdomains and gene expression in neurons and skeletal muscle cells. Cell Calcium 2006; 40:575-83. [PMID: 17034850 DOI: 10.1016/j.ceca.2006.08.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 08/23/2006] [Indexed: 01/14/2023]
Abstract
Neurons generate particular calcium microdomains in response to different stimuli. Calcium microdomains have a central role in a variety of neuronal functions. In particular, calcium microdomains participate in long-lasting synaptic plasticity--a neuronal response presumably correlated with cognitive brain functions that requires expression of new gene products. Stimulation of skeletal muscle generates - with few milliseconds delay - calcium microdomains that have a central role in the ensuing muscle contraction. In addition, recent evidence indicates that sustained stimulation of skeletal muscle cells in culture generates calcium microdomains, which stimulate gene expression but not muscle contraction. The mechanisms whereby calcium microdomains activate signaling cascades that lead to the transcription of genes known to participate in specific cellular responses are the central topic of this review. Thus, we will discuss here the signaling pathways and molecular mechanisms, which via activation of particular calcium-dependent transcription factors regulate the expression of specific genes or set of genes in neurons or skeletal muscle cells.
Collapse
Affiliation(s)
- M Angélica Carrasco
- Centro FONDAP de Estudios Moleculares de la Célula, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | | |
Collapse
|