1
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
2
|
Choi SH, Park JH, Nguyen TTN, Shim HJ, Song YH. Initiation of Drosophila chorion gene amplification requires Claspin and mus101, whereas Claspin, but not mus101, plays a major role during elongation. Dev Dyn 2017; 246:466-474. [PMID: 28294450 PMCID: PMC5435936 DOI: 10.1002/dvdy.24499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Claspin and TopBP1 are checkpoint mediators that are required for the phosphorylation of Chk1 by ATR to maintain genomic stability. Here, we investigated the functions of Drosophila Claspin and mus101 (TopBP1 ortholog) during chorion (eggshell component) gene amplification, which occurs in follicle cells in the absence of global genomic DNA replication. RESULTS Unlike Drosophila mei-41 (ATR ortholog) mutant embryos, Claspin and mus101 mutant embryos showed severe eggshell defects resulting from defects in chorion gene amplification. EdU (5-ethynyl-2'-deoxyuridine) incorporation assay during initiation and elongation stages revealed that Claspin and mus101 were required for initiation, while only Claspin had a major role in the efficient progression of the replication forks. Claspin proteins were enriched in the amplification foci both in the initiation and elongation stage-follicle cell nuclei in a mei-41-independent manner. The focal localization of ORC2, a component of the origin recognition complex, was not significantly affected in the Claspin mutant, whereas it was reduced in the mus101 mutant. CONCLUSIONS Drosophila Claspin plays a major role in the initiation and elongation stages of chorion gene amplification by localizing to the amplification foci in a mei-41-independent manner. Drosophila mus101 is also involved in chorion gene amplification, mostly functioning in initiation, rather than elongation. Developmental Dynamics 246:466-474, 2016. © 2017 The Authors Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Seung Ho Choi
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Ji-Hong Park
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Tram Thi Ngoc Nguyen
- Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hee Jin Shim
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea
| | - Young-Han Song
- Ilsong Institute of Life Science, Hallym University, Anyang, Gyeonggi-do, Republic of Korea.,Department of Biomedical Gerontology, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
3
|
Purushothaman P, Dabral P, Gupta N, Sarkar R, Verma SC. KSHV Genome Replication and Maintenance. Front Microbiol 2016; 7:54. [PMID: 26870016 PMCID: PMC4740845 DOI: 10.3389/fmicb.2016.00054] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/04/2022] Open
Abstract
Kaposi's sarcoma associated herpesvirus (KSHV) or human herpesvirus 8 (HHV8) is a major etiological agent for multiple severe malignancies in immune-compromised patients. KSHV establishes lifetime persistence in the infected individuals and displays two distinct life cycles, generally a prolonged passive latent, and a short productive or lytic cycle. During latent phase, the viral episome is tethered to the host chromosome and replicates once during every cell division. Latency-associated nuclear antigen (LANA) is a predominant multifunctional nuclear protein expressed during latency, which plays a central role in episome tethering, replication and perpetual segregation of the episomes during cell division. LANA binds cooperatively to LANA binding sites (LBS) within the terminal repeat (TR) region of the viral episome as well as to the cellular nucleosomal proteins to tether viral episome to the host chromosome. LANA has been shown to modulate multiple cellular signaling pathways and recruits various cellular proteins such as chromatin modifying enzymes, replication factors, transcription factors, and cellular mitotic framework to maintain a successful latent infection. Although, many other regions within the KSHV genome can initiate replication, KSHV TR is important for latent DNA replication and possible segregation of the replicated episomes. Binding of LANA to LBS favors the recruitment of various replication factors to initiate LANA dependent DNA replication. In this review, we discuss the molecular mechanisms relevant to KSHV genome replication, segregation, and maintenance of latency.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Prerna Dabral
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Namrata Gupta
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Roni Sarkar
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, Reno Reno, NV, USA
| |
Collapse
|
4
|
Zhang L, Beaucher M, Cheng Y, Rong YS. Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila. EMBO J 2014; 33:1148-58. [PMID: 24733842 DOI: 10.1002/embj.201386940] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In Drosophila, a group of retrotransposons is mobilized exclusively to telomeres in a sequence-independent manner. How they target chromosome ends is not understood. Here, we focused on the telomeric element HeT-A and characterized the cell cycle expression and cytological distribution of its protein and RNA products. We determined the timing of telomere replication by creating a single lacO-marked telomere and provide evidence suggesting that transposon expression and recruitment to telomeres is linked to telomere replication. The HeT-A-encoded ORF1p protein is expressed predominantly in S phase, particularly in early S phase. Orf1p binds HeT-A transcripts and forms spherical structures at telomeres undergoing DNA replication. HeT-A sphere formation requires Verrocchio, a putative homolog of the conserved Stn1 telomeric protein. Our results suggest that coupling of telomere elongation and telomere replication is a universal feature, and raise the possibility that transposon recruitment to Drosophila telomeres is mechanistically related to telomerase recruitment in other organisms. Our study also supports a co-adaptive relationship between the Drosophila host and HeT-A mobile elements.
Collapse
Affiliation(s)
- Liang Zhang
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| | - Michelle Beaucher
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| | - Yan Cheng
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| | - Yikang S Rong
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute (NCI) NIH, Bethesda, MD, USA
| |
Collapse
|
5
|
Knockdown of SCF(Skp2) function causes double-parked accumulation in the nucleus and DNA re-replication in Drosophila plasmatocytes. PLoS One 2013; 8:e79019. [PMID: 24205363 PMCID: PMC3812016 DOI: 10.1371/journal.pone.0079019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 09/18/2013] [Indexed: 12/25/2022] Open
Abstract
In Drosophila, circulating hemocytes are derived from the cephalic mesoderm during the embryonic wave of hematopoiesis. These cells are contributed to the larva and persist through metamorphosis into the adult. To analyze this population of hemocytes, we considered data from a previously published RNAi screen in the hematopoietic niche, which suggested several members of the SCF complex play a role in lymph gland development. eater-Gal4;UAS-GFP flies were crossed to UAS-RNAi lines to knockdown the function of all known SCF complex members in a plasmatocyte-specific fashion, in order to identify which members are novel regulators of plasmatocytes. This specific SCF complex contains five core members: Lin-19-like, SkpA, Skp2, Roc1a and complex activator Nedd8. The complex was identified by its very distinctive large cell phenotype. Furthermore, these large cells stained for anti-P1, a plasmatocyte-specific antibody. It was also noted that the DNA in these cells appeared to be over-replicated. Gamma-tubulin and DAPI staining suggest the cells are undergoing re-replication as they had multiple centrioles and excessive DNA content. Further experimentation determined enlarged cells were BrdU-positive indicating they have progressed through S-phase. To determine how these cells become enlarged and undergo re-replication, cell cycle proteins were analyzed by immunofluorescence. This analysis identified three proteins that had altered subcellular localization in these enlarged cells: Cyclin E, Geminin and Double-parked. Previous research has shown that Double-parked must be degraded to exit S-phase, otherwise the DNA will undergo re-replication. When Double-parked was titrated from the nucleus by an excess of its inhibitor, geminin, the enlarged cells and aberrant protein localization phenotypes were partially rescued. The data in this report suggests that the SCFSkp2 complex is necessary to ubiquitinate Double-parked during plasmatocyte cell division, ensuring proper cell cycle progression and the generation of a normal population of this essential blood cell type.
Collapse
|
6
|
Abstract
Ovarian reserve and its utilization, over a reproductive life span, are determined by genetic, epigenetic, and environmental factors. The establishment of the primordial follicle pool and the rate of primordial follicle activation have been under intense study to determine genetic factors that affect reproductive lifespan. Much has been learned from transgenic animal models about the developmental origins of the primordial follicle pool and mechanisms that lead to primordial follicle activation, folliculogenesis, and the maturation of a single oocyte with each menstrual cycle. Recent genome-wide association studies on the age of human menopause have identified approximately 20 loci, and shown the importance of factors involved in double-strand break repair and immunology. Studies to date from animal models and humans show that many genes determine ovarian aging, and that there is no single dominant allele yet responsible for depletion of the ovarian reserve. Personalized genomic approaches will need to take into account the high degree of genetic heterogeneity, family pedigree, and functional data of the genes critical at various stages of ovarian development to predict women's reproductive life span.
Collapse
Affiliation(s)
- Michelle A Wood
- Department of Obstetrics, Gynecology, and Reproductive Sciences
| | | |
Collapse
|
7
|
Dui W, Wei B, He F, Lu W, Li C, Liang X, Ma J, Jiao R. The Drosophila F-box protein dSkp2 regulates cell proliferation by targeting Dacapo for degradation. Mol Biol Cell 2013; 24:1676-87, S1-7. [PMID: 23552694 PMCID: PMC3667721 DOI: 10.1091/mbc.e12-10-0772] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
dSkp2 regulates cell cycle progression by antagonizing Dap in Drosophila, which resolves the question of whether dSkp2 has a role in regulating Dap stability and suggests the possibility of using Drosophila as a model system in which to study Skp2-mediated tumorigenesis. Cell cycle progression is controlled by a complex regulatory network consisting of interacting positive and negative factors. In humans, the positive regulator Skp2, an F-box protein, has been a subject of intense investigation in part because of its oncogenic activity. By contrast, the molecular and developmental functions of its Drosophila homologue, dSkp2, are poorly understood. Here we investigate the role of dSkp2 by focusing on its functional relationship with Dacapo (Dap), the Drosophila homologue of the cyclin-dependent kinase inhibitors p21cip1/p27kip1/p57kip2. We show that dSkp2 interacts physically with Dap and has a role in targeting Dap for ubiquitination and proteasome-mediated degradation. We present evidence that dSkp2 regulates cell cycle progression by antagonizing Dap in vivo. dSkp2 knockdown reduces cell density in the wing by prolonging the cell doubling time. In addition, the wing phenotype caused by dSkp2 knockdown resembles that caused by dap overexpression and can be partially suppressed by reducing the gene dose of dap. Our study thus documents a conserved functional relationship between dSkp2 and Dap in their control of cell cycle progression, suggesting the possibility of using Drosophila as a model system to study Skp2-mediated tumorigenesis.
Collapse
Affiliation(s)
- Wen Dui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Maqbool SB, Mehrotra S, Kolpakas A, Durden C, Zhang B, Zhong H, Calvi BR. Dampened activity of E2F1-DP and Myb-MuvB transcription factors in Drosophila endocycling cells. J Cell Sci 2010; 123:4095-106. [PMID: 21045111 DOI: 10.1242/jcs.064519] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The endocycle is a variant cell cycle comprised of alternating gap (G) and DNA synthesis (S) phases (endoreplication) without mitosis (M), which results in DNA polyploidy and large cell size. Endocycles occur widely in nature, but much remains to be learned about the regulation of this modified cell cycle. Here, we compared gene expression profiles of mitotic cycling larval brain and disc cells with the endocycling cells of fat body and salivary gland of the Drosophila larva. The results indicated that many genes that are positively regulated by the heterodimeric E2F1-DP or Myb-MuvB complex transcription factors are expressed at lower levels in endocycling cells. Many of these target genes have functions in M phase, suggesting that dampened E2F1 and Myb activity promote endocycles. Many other E2F1 target genes that are required for DNA replication were also repressed in endocycling cells, an unexpected result given that these cells must duplicate up to thousands of genome copies during each S phase. For some EF2-regulated genes, the lower level of mRNA in endocycling cells resulted in lower protein concentration, whereas for other genes it did not, suggesting a contribution of post-transcriptional regulation. Both knockdown and overexpression of E2F1-DP and Myb-MuvB impaired endocycles, indicating that transcriptional activation and repression must be balanced. Our data suggest that dampened transcriptional activation by E2F1-DP and Myb-MuvB is important to repress mitosis and coordinate the endocycle transcriptional and protein stability oscillators.
Collapse
|
9
|
Lee HO, Zacharek SJ, Xiong Y, Duronio RJ. Cell type-dependent requirement for PIP box-regulated Cdt1 destruction during S phase. Mol Biol Cell 2010; 21:3639-53. [PMID: 20826610 PMCID: PMC2965682 DOI: 10.1091/mbc.e10-02-0130] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Previous studies have shown that Cdt1 overexpression in cultured cells can trigger re-replication, but not whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal mitotic cell cycle progression in vivo. We demonstrate that PIP box–mediated destruction of Cdt1Dup during S phase is necessary for the cell division cycle in Drosophila. DNA synthesis–coupled proteolysis of the prereplicative complex component Cdt1 by the CRL4Cdt2 E3 ubiquitin ligase is thought to help prevent rereplication of the genome during S phase. To directly test whether CRL4Cdt2-triggered destruction of Cdt1 is required for normal cell cycle progression in vivo, we expressed a mutant version of Drosophila Cdt1 (Dup), which lacks the PCNA-binding PIP box (DupΔPIP) and which cannot be regulated by CRL4Cdt2. DupΔPIP is inappropriately stabilized during S phase and causes developmental defects when ectopically expressed. DupΔPIP restores DNA synthesis to dup null mutant embryonic epidermal cells, but S phase is abnormal, and these cells do not progress into mitosis. In contrast, DupΔPIP accumulation during S phase did not adversely affect progression through follicle cell endocycles in the ovary. In this tissue the combination of DupΔPIP expression and a 50% reduction in Geminin gene dose resulted in egg chamber degeneration. We could not detect Dup hyperaccumulation using mutations in the CRL4Cdt2 components Cul4 and Ddb1, likely because these cause pleiotropic effects that block cell proliferation. These data indicate that PIP box–mediated destruction of Dup is necessary for the cell division cycle and suggest that Geminin inhibition can restrain DupΔPIP activity in some endocycling cell types.
Collapse
Affiliation(s)
- Hyun O Lee
- Curriculum in Genetics and Molecular Biology, Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
10
|
Havens CG, Walter JC. Docking of a specialized PIP Box onto chromatin-bound PCNA creates a degron for the ubiquitin ligase CRL4Cdt2. Mol Cell 2009; 35:93-104. [PMID: 19595719 DOI: 10.1016/j.molcel.2009.05.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 04/14/2009] [Accepted: 05/06/2009] [Indexed: 12/29/2022]
Abstract
Substrates of the E3 ubiquitin ligase CRL4(Cdt2), including Cdt1 and p21, contain a PCNA-binding motif called a PIP box. Upon binding of the PIP box to PCNA on chromatin, CRL4(Cdt2) is recruited and the substrate is ubiquitylated. Importantly, a PIP box cannot be sufficient for destruction, as most PIP box proteins are stable. Using Xenopus egg extracts, we identify two sequence elements in CRL4(Cdt2) substrates that promote their proteolysis: a specialized PIP box that confers exceptionally efficient PCNA binding and a basic amino acid 4 residues downstream of the PIP box, which recruits CRL4(Cdt2) to the substrate-PCNA complex. We also identify two mechanisms that couple CRL4(Cdt2)-dependent proteolysis to the chromatin-bound form of PCNA, ensuring that this proteolysis pathway is active only in S phase or after DNA damage. Thus, CRL4(Cdt2) recognizes an unusual degron, which is assembled specifically on chromatin via the binding of a specialized PIP box to PCNA.
Collapse
Affiliation(s)
- Courtney G Havens
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Lin HC, Wu JT, Tan BCM, Chien CT. Cul4 and DDB1 regulate Orc2 localization, BrdU incorporation and Dup stability during gene amplification in Drosophila follicle cells. J Cell Sci 2009; 122:2393-401. [PMID: 19531585 DOI: 10.1242/jcs.042861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In higher eukaryotes, the pre-replication complex (pre-RC) component Cdt1 is the major regulator in licensing control for DNA replication. The Cul4-DDB1-based ubiquitin ligase mediates Cdt1 ubiquitylation for subsequent proteolysis. During the initiation of chorion gene amplification, Double-parked (Dup), the Drosophila ortholog of Cdt1, is restricted to chorion gene foci. We found that Dup accumulated in nuclei in Cul4 mutant follicle cells, and the accumulation was less prominent in DDB1 mutant cells. Loss of Cul4 or DDB1 activity in follicle cells also compromised chorion gene amplification and induced ectopic genomic DNA replication. The focal localization of Orc2, a subunit of the origin recognition complex, is frequently absent in Cul4 mutant follicle cells. Therefore, Cul4 and DDB1 have differential functions during chorion gene amplification.
Collapse
Affiliation(s)
- Hsiu-Chen Lin
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | |
Collapse
|
12
|
Mehrotra S, Maqbool SB, Kolpakas A, Murnen K, Calvi BR. Endocycling cells do not apoptose in response to DNA rereplication genotoxic stress. Genes Dev 2009; 22:3158-71. [PMID: 19056894 DOI: 10.1101/gad.1710208] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Initiation of DNA replication at origins more than once per cell cycle results in rereplication and has been implicated in cancer. Here we use Drosophila to examine the checkpoint responses to rereplication in a developmental context. We find that increased Double-parked (Dup), the Drosophila ortholog of Cdt1, results in rereplication and DNA damage. In most cells, this rereplication triggers caspase activation and apoptotic cell death mediated by both p53-dependent and -independent pathways. Elevated Dup also caused DNA damage in endocycling cells, which switch to a G/S cycle during normal development, indicating that rereplication and the endocycling DNA reduplication program are distinct processes. Unexpectedly, however, endocycling cells do not apoptose regardless of tissue type. Our combined evidence suggests that endocycling apoptosis is repressed in part because proapoptotic gene promoters are silenced. Normal endocycling cells had DNA lesions near heterochromatin, which increased after rereplication, explaining why endocycling cells must constantly repress the genotoxic apoptotic response. Our results reveal a novel regulation of apoptosis in development and new insights into the little-understood endocycle. Similar mechanisms may operate during vertebrate development, with implications for cancer predisposition in certain tissues.
Collapse
Affiliation(s)
- Sonam Mehrotra
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | |
Collapse
|
13
|
Narbonne-Reveau K, Lilly M. The Cyclin-dependent kinase inhibitor Dacapo promotes genomic stability during premeiotic S phase. Mol Biol Cell 2009; 20:1960-9. [PMID: 19211840 DOI: 10.1091/mbc.e08-09-0916] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The proper execution of premeiotic S phase is essential to both the maintenance of genomic integrity and accurate chromosome segregation during the meiotic divisions. However, the regulation of premeiotic S phase remains poorly defined in metazoa. Here, we identify the p21(Cip1)/p27(Kip1)/p57(Kip2)-like cyclin-dependent kinase inhibitor (CKI) Dacapo (Dap) as a key regulator of premeiotic S phase and genomic stability during Drosophila oogenesis. In dap(-/-) females, ovarian cysts enter the meiotic cycle with high levels of Cyclin E/cyclin-dependent kinase (Cdk)2 activity and accumulate DNA damage during the premeiotic S phase. High Cyclin E/Cdk2 activity inhibits the accumulation of the replication-licensing factor Doubleparked/Cdt1 (Dup/Cdt1). Accordingly, we find that dap(-/-) ovarian cysts have low levels of Dup/Cdt1. Moreover, mutations in dup/cdt1 dominantly enhance the dap(-/-) DNA damage phenotype. Importantly, the DNA damage observed in dap(-/-) ovarian cysts is independent of the DNA double-strands breaks that initiate meiotic recombination. Together, our data suggest that the CKI Dap promotes the licensing of DNA replication origins for the premeiotic S phase by restricting Cdk activity in the early meiotic cycle. Finally, we report that dap(-/-) ovarian cysts frequently undergo an extramitotic division before meiotic entry, indicating that Dap influences the timing of the mitotic/meiotic transition.
Collapse
Affiliation(s)
- Karine Narbonne-Reveau
- Cell Biology and Metabolism Program, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
14
|
Shibutani ST, de la Cruz AFA, Tran V, Turbyfill WJ, Reis T, Edgar BA, Duronio RJ. Intrinsic negative cell cycle regulation provided by PIP box- and Cul4Cdt2-mediated destruction of E2f1 during S phase. Dev Cell 2009; 15:890-900. [PMID: 19081076 DOI: 10.1016/j.devcel.2008.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 09/09/2008] [Accepted: 10/06/2008] [Indexed: 12/22/2022]
Abstract
E2F transcription factors are key regulators of cell proliferation that are inhibited by pRb family tumor suppressors. pRb-independent modes of E2F inhibition have also been described, but their contribution to animal development and tumor suppression is unclear. Here, we show that S phase-specific destruction of Drosophila E2f1 provides a novel mechanism for cell cycle regulation. E2f1 destruction is mediated by a PCNA-interacting-protein (PIP) motif in E2f1 and the Cul4(Cdt2) E3 ubiquitin ligase and requires the Dp dimerization partner but not direct Cdk phosphorylation or Rbf1 binding. E2f1 lacking a functional PIP motif accumulates inappropriately during S phase and is more potent than wild-type E2f1 at accelerating cell cycle progression and inducing apoptosis. Thus, S phase-coupled destruction is a key negative regulator of E2f1 activity. We propose that pRb-independent inhibition of E2F during S phase is an evolutionarily conserved feature of the metazoan cell cycle that is necessary for development.
Collapse
Affiliation(s)
- Shusaku T Shibutani
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Zielke N, Querings S, Rottig C, Lehner C, Sprenger F. The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev 2008; 22:1690-703. [PMID: 18559483 DOI: 10.1101/gad.469108] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoreplicating cells undergo multiple rounds of DNA replication leading to polyploidy or polyteny. Oscillation of Cyclin E (CycE)-dependent kinase activity is the main driving force in Drosophila endocycles. High levels of CycE-Cdk2 activity trigger S phase, while down-regulation of CycE-Cdk2 activity is crucial to allow licensing of replication origins. In mitotic cells relicensing in S phase is prevented by Geminin. Here we show that Geminin protein oscillates in endoreplicating salivary glands of Drosophila. Geminin levels are high in S phase, but drop once DNA replication has been completed. DNA licensing is coupled to mitosis through the action of the anaphase-promoting complex/cyclosome (APC/C). We demonstrate that, even though endoreplicating cells never enter mitosis, APC/C activity is required in endoreplicating cells to mediate Geminin oscillation. Down-regulation of APC/C activity results in stabilization of Geminin protein and blocks endocycle progression. Geminin is only abundant in cells with high CycE-Cdk2 activity, suggesting that APC/C-Fzr activity is periodically inhibited by CycE-Cdk2, to prevent relicensing in S-phase cells.
Collapse
Affiliation(s)
- Norman Zielke
- University of Cologne, Institute for Genetics, 50674 Köln, Germany
| | | | | | | | | |
Collapse
|
16
|
Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev 2007; 21:497-518. [PMID: 17344412 DOI: 10.1101/gad.1508907] [Citation(s) in RCA: 313] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, prereplication complexes (pre-RCs) are assembled on chromatin in the G1 phase, rendering origins of DNA replication competent to initiate DNA synthesis. When DNA replication commences in S phase, pre-RCs are disassembled, and multiple initiations from the same origin do not occur because new rounds of pre-RC assembly are inhibited. In most experimental organisms, multiple mechanisms that prevent pre-RC assembly have now been identified, and rereplication within the same cell cycle can be induced through defined perturbations of these mechanisms. This review summarizes the diverse array of inhibitory pathways used by different organisms to prevent pre-RC assembly, and focuses on the challenge of understanding how in any one cell type, various mechanisms cooperate to strictly enforce once per cell cycle regulation of DNA replication.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
17
|
Shibutani S, Swanhart LM, Duronio RJ. Rbf1-independent termination of E2f1-target gene expression during early Drosophila embryogenesis. Development 2006; 134:467-78. [PMID: 17185321 DOI: 10.1242/dev.02738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The initiation and maintenance of G1 cell cycle arrest is a key feature of animal development. In the Drosophila ectoderm, G1 arrest first appears during the seventeenth embryonic cell cycle. The initiation of G1(17) arrest requires the developmentally-induced expression of Dacapo, a p27-like Cyclin E-Cdk2 inhibitor. The maintenance of G1(17) arrest requires Rbf1-dependent repression of E2f1-regulated replication factor genes, which are expressed continuously during cycles 1-16 when S phase immediately follows mitosis. The mechanisms that trigger Rbf1 repressor function and mediate G1(17) maintenance are unknown. Here we show that the initial downregulation of expression of the E2f1-target gene RnrS, which occurs during cycles 15 and 16 prior to entry into G1(17), does not require Rbf1 or p27(Dap). This suggests a mechanism for Rbf1-independent control of E2f1 during early development. We show that E2f1 protein is destroyed in a cell cycle-dependent manner during S phase of cycles 15 and 16. E2f1 is destroyed during early S phase, and requires ongoing DNA replication. E2f1 protein reaccumulates in epidermal cells arrested in G1(17), and in these cells the induction of p27(Dap) activates Rbf1 to repress E2f1-target genes to maintain a stable G1 arrest.
Collapse
Affiliation(s)
- Shusaku Shibutani
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
18
|
Richardson HE. Vinegar flies turn to porto for cell division cycle meeting. Dev Cell 2006; 11:141-6. [PMID: 16937557 DOI: 10.1016/j.devcel.2006.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Third International Workshop on Drosophila Cell Division Cycle brought together researchers focusing on DNA replication, mitosis, meiosis, cell cycle regulation, checkpoints, asymmetric division, cell and tissue growth, and tumorgenesis. This review describes new findings presented at the meeting that particularly highlight the advantages of the Drosophila systems.
Collapse
Affiliation(s)
- Helena E Richardson
- Cell Cycle and Development Lab, Research Division, MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
19
|
DePamphilis ML, Blow JJ, Ghosh S, Saha T, Noguchi K, Vassilev A. Regulating the licensing of DNA replication origins in metazoa. Curr Opin Cell Biol 2006; 18:231-9. [PMID: 16650748 DOI: 10.1016/j.ceb.2006.04.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2006] [Accepted: 04/04/2006] [Indexed: 01/19/2023]
Abstract
Eukaryotic DNA replication is a highly conserved process; the proteins and sequence of events that replicate animal genomes are remarkably similar to those that replicate yeast genomes. Moreover, the assembly of prereplication complexes at DNA replication origins ('DNA licensing') is regulated in all eukaryotes so that no origin fires more than once in a single cell cycle. And yet there are significant differences between species both in the selection of replication origins and in the way in which these origins are licensed to operate. Moreover, these differences impart advantages to multicellular animals and plants that facilitate their development, such as better control over endoreduplication, flexibility in origin selection, and discrimination between quiescent and proliferative states.
Collapse
Affiliation(s)
- Melvin L DePamphilis
- National Institute of Child Health and Human Development, National Institutes of Health, Building 6/3A-15, 9000 Rockville Pike, Bethesda, MD 20892-2753, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Nishitani H, Sugimoto N, Roukos V, Nakanishi Y, Saijo M, Obuse C, Tsurimoto T, Nakayama KI, Nakayama K, Fujita M, Lygerou Z, Nishimoto T. Two E3 ubiquitin ligases, SCF-Skp2 and DDB1-Cul4, target human Cdt1 for proteolysis. EMBO J 2006; 25:1126-36. [PMID: 16482215 PMCID: PMC1409712 DOI: 10.1038/sj.emboj.7601002] [Citation(s) in RCA: 314] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/23/2006] [Indexed: 12/25/2022] Open
Abstract
Replication licensing is carefully regulated to restrict replication to once in a cell cycle. In higher eukaryotes, regulation of the licensing factor Cdt1 by proteolysis and Geminin is essential to prevent re-replication. We show here that the N-terminal 100 amino acids of human Cdt1 are recognized for proteolysis by two distinct E3 ubiquitin ligases during S-G2 phases. Six highly conserved amino acids within the 10 first amino acids of Cdt1 are essential for DDB1-Cul4-mediated proteolysis. This region is also involved in proteolysis following DNA damage. The second E3 is SCF-Skp2, which recognizes the Cy-motif-mediated Cyclin E/A-cyclin-dependent kinase-phosphorylated region. Consistently, in HeLa cells cosilenced of Skp2 and Cul4, Cdt1 remained stable in S-G2 phases. The Cul4-containing E3 is active during ongoing replication, while SCF-Skp2 operates both in S and G2 phases. PCNA binds to Cdt1 through the six conserved N-terminal amino acids. PCNA is essential for Cul4- but not Skp2-directed degradation during DNA replication and following ultraviolet-irradiation. Our data unravel multiple distinct pathways regulating Cdt1 to block re-replication.
Collapse
Affiliation(s)
- Hideo Nishitani
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Arias EE, Walter JC. PCNA functions as a molecular platform to trigger Cdt1 destruction and prevent re-replication. Nat Cell Biol 2005; 8:84-90. [PMID: 16362051 DOI: 10.1038/ncb1346] [Citation(s) in RCA: 243] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 12/05/2005] [Indexed: 01/20/2023]
Abstract
Ubiquitin-mediated proteolysis of the replication licensing factor Cdt1 (Cdc10-dependent transcript 1) in S phase is a key mechanism that limits DNA replication to a single round per cell cycle in metazoans. In Xenopus egg extracts, Cdt1 is destroyed on chromatin during DNA replication. Here, we report that replication-dependent proteolysis of Cdt1 requires its interaction with proliferating cell nuclear antigen (PCNA), a homotrimeric processivity factor for DNA polymerases. Cdt1 binds to PCNA through a consensus PCNA-interaction motif that is conserved in Cdt1 of all metazoans, and removal of PCNA from egg extracts inhibits replication-dependent Cdt1 destruction. Mutation of the PCNA-interaction motif yields a stabilized Cdt1 protein that induces re-replication. DDB1, a component of the Cul4 E3 ubiquitin ligase that mediates human Cdt1 proteolysis in response to DNA damage, is also required for replication-dependent Cdt1 destruction. Cdt1 and DDB1 interact in extracts, and DDB1 chromatin loading is dependent on the binding of Cdt1 to PCNA, which indicates that PCNA docking activates the pre-formed Cdt1-Cul4(DDB1) ligase complex. Thus, PCNA functions as a platform for Cdt1 destruction, ensuring efficient and temporally restricted inactivation of a key cell-cycle regulator.
Collapse
Affiliation(s)
- Emily E Arias
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|