1
|
Bammidi LS, Gayen S. Multifaceted role of CTCF in X-chromosome inactivation. Chromosoma 2024; 133:217-231. [PMID: 39433641 DOI: 10.1007/s00412-024-00826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Therian female mammals compensate for the dosage of X-linked gene expression by inactivating one of the X-chromosomes. X-inactivation is facilitated by the master regulator Xist long non-coding RNA, which coats the inactive-X and facilitates heterochromatinization through recruiting different chromatin modifiers and changing the X-chromosome 3D conformation. However, many mechanistic aspects behind the X-inactivation process remain poorly understood. Among the many contributing players, CTCF has emerged as one of the key players in orchestrating various aspects related to X-chromosome inactivation by interacting with several other protein and RNA partners. In general, CTCF is a well-known architectural protein, which plays an important role in chromatin organization and transcriptional regulation. Here, we provide significant insight into the role of CTCF in orchestrating X-chromosome inactivation and highlight future perspectives.
Collapse
Affiliation(s)
- Lakshmi Sowjanya Bammidi
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Srimonta Gayen
- Chromatin RNA and Genome (CRG) Lab, Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore-560012, India.
| |
Collapse
|
2
|
Peeters SB, Posynick BJ, Brown CJ. Out of the Silence: Insights into How Genes Escape X-Chromosome Inactivation. EPIGENOMES 2023; 7:29. [PMID: 38131901 PMCID: PMC10742877 DOI: 10.3390/epigenomes7040029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
The silencing of all but one X chromosome in mammalian cells is a remarkable epigenetic process leading to near dosage equivalence in X-linked gene products between the sexes. However, equally remarkable is the ability of a subset of genes to continue to be expressed from the otherwise inactive X chromosome-in some cases constitutively, while other genes are variable between individuals, tissues or cells. In this review we discuss the advantages and disadvantages of the approaches that have been used to identify escapees. The identity of escapees provides important clues to mechanisms underlying escape from XCI, an arena of study now moving from correlation to functional studies. As most escapees show greater expression in females, the not-so-inactive X chromosome is a substantial contributor to sex differences in humans, and we highlight some examples of such impact.
Collapse
Affiliation(s)
| | | | - Carolyn J. Brown
- Molecular Epigenetics Group, Department of Medical Genetics, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
3
|
Keniry A, Blewitt ME. Chromatin-mediated silencing on the inactive X chromosome. Development 2023; 150:dev201742. [PMID: 37991053 DOI: 10.1242/dev.201742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In mammals, the second X chromosome in females is silenced to enable dosage compensation between XX females and XY males. This essential process involves the formation of a dense chromatin state on the inactive X (Xi) chromosome. There is a wealth of information about the hallmarks of Xi chromatin and the contribution each makes to silencing, leaving the tantalising possibility of learning from this knowledge to potentially remove silencing to treat X-linked diseases in females. Here, we discuss the role of each chromatin feature in the establishment and maintenance of the silent state, which is of crucial relevance for such a goal.
Collapse
Affiliation(s)
- Andrew Keniry
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- Epigenetics and Development Division, The Walter and Eliza Hall Institute for Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Collombet S, Rall I, Dugast-Darzacq C, Heckert A, Halavatyi A, Le Saux A, Dailey G, Darzacq X, Heard E. RNA polymerase II depletion from the inactive X chromosome territory is not mediated by physical compartmentalization. Nat Struct Mol Biol 2023; 30:1216-1223. [PMID: 37291424 PMCID: PMC10442225 DOI: 10.1038/s41594-023-01008-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/28/2023] [Indexed: 06/10/2023]
Abstract
Subnuclear compartmentalization has been proposed to play an important role in gene regulation by segregating active and inactive parts of the genome in distinct physical and biochemical environments. During X chromosome inactivation (XCI), the noncoding Xist RNA coats the X chromosome, triggers gene silencing and forms a dense body of heterochromatin from which the transcription machinery appears to be excluded. Phase separation has been proposed to be involved in XCI, and might explain the exclusion of the transcription machinery by preventing its diffusion into the Xist-coated territory. Here, using quantitative fluorescence microscopy and single-particle tracking, we show that RNA polymerase II (RNAPII) freely accesses the Xist territory during the initiation of XCI. Instead, the apparent depletion of RNAPII is due to the loss of its chromatin stably bound fraction. These findings indicate that initial exclusion of RNAPII from the inactive X reflects the absence of actively transcribing RNAPII, rather than a consequence of putative physical compartmentalization of the inactive X heterochromatin domain.
Collapse
Affiliation(s)
| | - Isabell Rall
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Claire Dugast-Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Alec Heckert
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA, USA
| | | | - Agnes Le Saux
- Curie Institute, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France
| | - Gina Dailey
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Li Ka Shing Center for Biomedical and Health Sciences, University of California, Berkeley, Berkeley, CA, USA.
| | - Edith Heard
- European Molecular Biology Laboratory, Heidelberg, Germany.
- Curie Institute, PSL Research University, CNRS UMR3215, INSERM U934, UPMC Paris-Sorbonne, Paris, France.
- College de France, Paris, France.
| |
Collapse
|
5
|
Belmont AS. Nuclear Compartments: An Incomplete Primer to Nuclear Compartments, Bodies, and Genome Organization Relative to Nuclear Architecture. Cold Spring Harb Perspect Biol 2022; 14:a041268. [PMID: 34400557 PMCID: PMC9248822 DOI: 10.1101/cshperspect.a041268] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This work reviews nuclear compartments, defined broadly to include distinct nuclear structures, bodies, and chromosome domains. It first summarizes original cytological observations before comparing concepts of nuclear compartments emerging from microscopy versus genomic approaches and then introducing new multiplexed imaging approaches that promise in the future to meld both approaches. I discuss how previous models of radial distribution of chromosomes or the binary division of the genome into A and B compartments are now being refined by the recognition of more complex nuclear compartmentalization. The poorly understood question of how these nuclear compartments are established and maintained is then discussed, including through the modern perspective of phase separation, before moving on to address possible functions of nuclear compartments, using the possible role of nuclear speckles in modulating gene expression as an example. Finally, the review concludes with a discussion of future questions for this field.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
6
|
Zakirov AN, Sosnovskaya S, Ryumina ED, Kharybina E, Strelkova OS, Zhironkina OA, Golyshev SA, Moiseenko A, Kireev II. Fiber-Like Organization as a Basic Principle for Euchromatin Higher-Order Structure. Front Cell Dev Biol 2022; 9:784440. [PMID: 35174159 PMCID: PMC8841976 DOI: 10.3389/fcell.2021.784440] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
A detailed understanding of the principles of the structural organization of genetic material is of great importance for elucidating the mechanisms of differential regulation of genes in development. Modern ideas about the spatial organization of the genome are based on a microscopic analysis of chromatin structure and molecular data on DNA–DNA contact analysis using Chromatin conformation capture (3C) technology, ranging from the “polymer melt” model to a hierarchical folding concept. Heterogeneity of chromatin structure depending on its functional state and cell cycle progression brings another layer of complexity to the interpretation of structural data and requires selective labeling of various transcriptional states under nondestructive conditions. Here, we use a modified approach for replication timing-based metabolic labeling of transcriptionally active chromatin for ultrastructural analysis. The method allows pre-embedding labeling of optimally structurally preserved chromatin, thus making it compatible with various 3D-TEM techniques including electron tomography. By using variable pulse duration, we demonstrate that euchromatic genomic regions adopt a fiber-like higher-order structure of about 200 nm in diameter (chromonema), thus providing support for a hierarchical folding model of chromatin organization as well as the idea of transcription and replication occurring on a highly structured chromatin template.
Collapse
Affiliation(s)
- Amir N Zakirov
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Sophie Sosnovskaya
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina D Ryumina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina Kharybina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Olga S Strelkova
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Oxana A Zhironkina
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergei A Golyshev
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Andrey Moiseenko
- Laboratory of Electron Microscopy, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Igor I Kireev
- Department of Electron Microscopy, AN. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Chair of Cell Biology and Histology, Biology Faculty, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
7
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
8
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
9
|
Fernandes N, Buchan JR. RNAs as Regulators of Cellular Matchmaking. Front Mol Biosci 2021; 8:634146. [PMID: 33898516 PMCID: PMC8062979 DOI: 10.3389/fmolb.2021.634146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/22/2021] [Indexed: 12/30/2022] Open
Abstract
RNA molecules are increasingly being identified as facilitating or impeding the interaction of proteins and nucleic acids, serving as so-called scaffolds or decoys. Long non-coding RNAs have been commonly implicated in such roles, particularly in the regulation of nuclear processes including chromosome topology, regulation of chromatin state and gene transcription, and assembly of nuclear biomolecular condensates such as paraspeckles. Recently, an increased awareness of cytoplasmic RNA scaffolds and decoys has begun to emerge, including the identification of non-coding regions of mRNAs that can also function in a scaffold-like manner to regulate interactions of nascently translated proteins. Collectively, cytoplasmic RNA scaffolds and decoys are now implicated in processes such as mRNA translation, decay, protein localization, protein degradation and assembly of cytoplasmic biomolecular condensates such as P-bodies. Here, we review examples of RNA scaffolds and decoys in both the nucleus and cytoplasm, illustrating common themes, the suitability of RNA to such roles, and future challenges in identifying and better understanding RNA scaffolding and decoy functions.
Collapse
Affiliation(s)
| | - J. Ross Buchan
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
10
|
Poonperm R, Hiratani I. Formation of a multi-layered 3-dimensional structure of the heterochromatin compartment during early mammalian development. Dev Growth Differ 2021; 63:5-17. [PMID: 33491197 DOI: 10.1111/dgd.12709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/14/2020] [Accepted: 01/05/2021] [Indexed: 01/10/2023]
Abstract
During embryogenesis in mammals, the 3-dimensional (3D) genome organization changes globally in parallel with transcription changes in a cell-type specific manner. This involves the progressive formation of heterochromatin, the best example of which is the inactive X chromosome (Xi) in females, originally discovered as a compact 3D structure at the nuclear periphery known as the Barr body. The heterochromatin formation on the autosomes and the Xi is tightly associated with the differentiation state and the developmental potential of cells, making it an ideal readout of the cellular epigenetic state. At a glance, the heterochromatin appears to be uniform. However, recent studies are beginning to reveal a more complex picture, with multiple hierarchical levels co-existing within the heterochromatin compartment. Such hierarchical levels appear to exist in the heterochromatin compartment on autosomes as well as on the Xi. Here, we review recent progress in our understanding of the 3D genome organization changes during the period of differentiation surrounding pluripotency in vivo and in vitro, with a focus on the heterochromatin compartment. We first look at the whole genome, then focus on the Xi, and discuss their differences and similarities. Finally, we present a unified view of how the heterochromatin compartment is formed and regulated during early development. In particular, we emphasize that there are multiple layers within the heterochromatic compartment on both the autosomes and the Xi, with regulatory mechanisms common and specific to each layer.
Collapse
Affiliation(s)
- Rawin Poonperm
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
11
|
Fang H, Bonora G, Lewandowski JP, Thakur J, Filippova GN, Henikoff S, Shendure J, Duan Z, Rinn JL, Deng X, Noble WS, Disteche CM. Trans- and cis-acting effects of Firre on epigenetic features of the inactive X chromosome. Nat Commun 2020; 11:6053. [PMID: 33247132 PMCID: PMC7695720 DOI: 10.1038/s41467-020-19879-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Firre encodes a lncRNA involved in nuclear organization. Here, we show that Firre RNA expressed from the active X chromosome maintains histone H3K27me3 enrichment on the inactive X chromosome (Xi) in somatic cells. This trans-acting effect involves SUZ12, reflecting interactions between Firre RNA and components of the Polycomb repressive complexes. Without Firre RNA, H3K27me3 decreases on the Xi and the Xi-perinucleolar location is disrupted, possibly due to decreased CTCF binding on the Xi. We also observe widespread gene dysregulation, but not on the Xi. These effects are measurably rescued by ectopic expression of mouse or human Firre/FIRRE transgenes, supporting conserved trans-acting roles. We also find that the compact 3D structure of the Xi partly depends on the Firre locus and its RNA. In common lymphoid progenitors and T-cells Firre exerts a cis-acting effect on maintenance of H3K27me3 in a 26 Mb region around the locus, demonstrating cell type-specific trans- and cis-acting roles of this lncRNA.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Boston, MA, USA
| | | | - Galina N Filippova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | | | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Zhijun Duan
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - John L Rinn
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Xinxian Deng
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| | - William S Noble
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Christine M Disteche
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
- Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
12
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
13
|
Akkipeddi SMK, Velleca AJ, Carone DM. Probing the function of long noncoding RNAs in the nucleus. Chromosome Res 2020; 28:87-110. [PMID: 32026224 PMCID: PMC7131881 DOI: 10.1007/s10577-019-09625-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/20/2019] [Accepted: 12/29/2019] [Indexed: 12/26/2022]
Abstract
The nucleus is a highly organized and dynamic environment where regulation and coordination of processes such as gene expression and DNA replication are paramount. In recent years, noncoding RNAs have emerged as key participants in the regulation of nuclear processes. There are a multitude of functional roles for long noncoding RNA (lncRNA), mediated through their ability to act as molecular scaffolds bridging interactions with proteins, chromatin, and other RNA molecules within the nuclear environment. In this review, we discuss the diversity of techniques that have been developed to probe the function of nuclear lncRNAs, along with the ways in which those techniques have revealed insights into their mechanisms of action. Foundational observations into lncRNA function have been gleaned from molecular cytology-based, single-cell approaches to illuminate both the localization and abundance of lncRNAs in addition to their potential binding partners. Biochemical, extraction-based approaches have revealed the molecular contacts between lncRNAs and other molecules within the nuclear environment and how those interactions may contribute to nuclear organization and regulation. Using examples of well-studied nuclear lncRNAs, we demonstrate that the emerging functions of individual lncRNAs have been most clearly deduced from combined cytology and biochemical approaches tailored to study specific lncRNAs. As more functional nuclear lncRNAs continue to emerge, the development of additional technologies to study their interactions and mechanisms of action promise to continually expand our understanding of nuclear organization, chromosome architecture, genome regulation, and disease states.
Collapse
Affiliation(s)
| | - Anthony J Velleca
- Department of Molecular Phamacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dawn M Carone
- Department of Biology, Swarthmore College, Swarthmore, PA, USA.
| |
Collapse
|
14
|
Identification of methotrexate as a heterochromatin-promoting drug. Sci Rep 2019; 9:11673. [PMID: 31406262 PMCID: PMC6690983 DOI: 10.1038/s41598-019-48137-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Heterochromatin is a tightly packed form of DNA involved in gene silencing, chromosome segregation, and protection of genome stability. Heterochromatin is becoming more recognized in tumor suppression and may thus serve as a potential target for cancer therapy. However, to date there are no drugs that are well established to specifically promote heterochromatin formation. Here, we describe a screening method using Drosophila to identify small molecule compounds that promote heterochromatin formation, with the purpose of developing epigenetic cancer therapeutics. We took advantage of a Drosophila strain with a variegated eye color phenotype that is sensitive to heterochromatin levels, and screened a library of 97 FDA approved oncology drugs. This screen identified methotrexate as the most potent small molecule drug, among the 97 oncology drugs screened, in promoting heterochromatin formation. Interestingly, methotrexate has been identified as a JAK/STAT inhibitor in a functional screen, causing reduced phosphorylation of STAT proteins. These findings are in line with our previous observation that unphosphorylated STAT (uSTAT) promotes heterochromatin formation in both Drosophila and human cells and suppresses tumor growth in mouse xenografts. Thus, Drosophila with variegated eye color phenotypes could be an effective tool for screening heterochromatin-promoting compounds that could be candidates as cancer therapeutics.
Collapse
|
15
|
Buchwalter A, Kaneshiro JM, Hetzer MW. Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 2019; 20:39-50. [PMID: 30356165 DOI: 10.1038/s41576-018-0063-5] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The genome is packaged and organized nonrandomly within the 3D space of the nucleus to promote efficient gene expression and to faithfully maintain silencing of heterochromatin. The genome is enclosed within the nucleus by the nuclear envelope membrane, which contains a set of proteins that actively participate in chromatin organization and gene regulation. Technological advances are providing views of genome organization at unprecedented resolution and are beginning to reveal the ways that cells co-opt the structures of the nuclear periphery for nuclear organization and gene regulation. These genome regulatory roles of proteins of the nuclear periphery have important influences on development, disease and ageing.
Collapse
Affiliation(s)
- Abigail Buchwalter
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Jeanae M Kaneshiro
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Martin W Hetzer
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
16
|
Fritz AJ, Sehgal N, Pliss A, Xu J, Berezney R. Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer 2019; 58:407-426. [PMID: 30664301 DOI: 10.1002/gcc.22732] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 12/29/2022] Open
Abstract
Spatial positioning is a fundamental principle governing nuclear processes. Chromatin is organized as a hierarchy from nucleosomes to Mbp chromatin domains (CD) or topologically associating domains (TADs) to higher level compartments culminating in chromosome territories (CT). Microscopic and sequencing techniques have substantiated chromatin organization as a critical factor regulating gene expression. For example, enhancers loop back to interact with their target genes almost exclusively within TADs, distally located coregulated genes reposition into common transcription factories upon activation, and Mbp CDs exhibit dynamic motion and configurational changes in vivo. A longstanding question in the nucleus field is whether an interactive nuclear matrix provides a direct link between structure and function. The findings of nonrandom radial positioning of CT within the nucleus suggest the possibility of preferential interaction patterns among populations of CT. Sequential labeling up to 10 CT followed by application of computer imaging and geometric graph mining algorithms revealed cell-type specific interchromosomal networks (ICN) of CT that are altered during the cell cycle, differentiation, and cancer progression. It is proposed that the ICN correlate with the global level of genome regulation. These approaches also demonstrated that the large scale 3-D topology of CT is specific for each CT. The cell-type specific proximity of certain chromosomal regions in normal cells may explain the propensity of distinct translocations in cancer subtypes. Understanding how genes are dysregulated upon disruption of the normal "wiring" of the nucleus by translocations, deletions, and amplifications that are hallmarks of cancer, should enable more targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, The University of Vermont Larner College of Medicine, Burlington, Vermont
| | - Nitasha Sehgal
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| | - Artem Pliss
- Institute for Lasers, Photonics and Biophotonics and the Department of Chemistry, University at Buffalo, Buffalo, New York
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, New York
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
17
|
Jowhar Z, Shachar S, Gudla PR, Wangsa D, Torres E, Russ JL, Pegoraro G, Ried T, Raznahan A, Misteli T. Effects of human sex chromosome dosage on spatial chromosome organization. Mol Biol Cell 2018; 29:2458-2469. [PMID: 30091656 PMCID: PMC6233059 DOI: 10.1091/mbc.e18-06-0359] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/25/2018] [Accepted: 08/01/2018] [Indexed: 01/08/2023] Open
Abstract
Sex chromosome aneuploidies (SCAs) are common genetic syndromes characterized by the presence of an aberrant number of X and Y chromosomes due to meiotic defects. These conditions impact the structure and function of diverse tissues, but the proximal effects of SCAs on genome organization are unknown. Here, to determine the consequences of SCAs on global genome organization, we have analyzed multiple architectural features of chromosome organization in a comprehensive set of primary cells from SCA patients with various ratios of X and Y chromosomes by use of imaging-based high-throughput chromosome territory mapping (HiCTMap). We find that X chromosome supernumeracy does not affect the size, volume, or nuclear position of the Y chromosome or an autosomal chromosome. In contrast, the active X chromosome undergoes architectural changes as a function of increasing X copy number as measured by a decrease in size and an increase in circularity, which is indicative of chromatin compaction. In Y chromosome supernumeracy, Y chromosome size is reduced suggesting higher chromatin condensation. The radial positioning of chromosomes is unaffected in SCA karyotypes. Taken together, these observations document changes in genome architecture in response to alterations in sex chromosome numbers and point to trans-effects of dosage compensation on chromosome organization.
Collapse
Affiliation(s)
- Ziad Jowhar
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| | - Sigal Shachar
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| | - Prabhakar R. Gudla
- High-Throughput Imaging Facility, National Institutes of Health, Bethesda, MD 20892
| | - Darawalee Wangsa
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Erin Torres
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Jill L. Russ
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Institutes of Health, Bethesda, MD 20892
| | - Thomas Ried
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Armin Raznahan
- Human Genetics Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Tom Misteli
- Cell Biology of Genomes Group, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
18
|
Galupa R, Heard E. X-Chromosome Inactivation: A Crossroads Between Chromosome Architecture and Gene Regulation. Annu Rev Genet 2018; 52:535-566. [PMID: 30256677 DOI: 10.1146/annurev-genet-120116-024611] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In somatic nuclei of female therian mammals, the two X chromosomes display very different chromatin states: One X is typically euchromatic and transcriptionally active, and the other is mostly silent and forms a cytologically detectable heterochromatic structure termed the Barr body. These differences, which arise during female development as a result of X-chromosome inactivation (XCI), have been the focus of research for many decades. Initial approaches to define the structure of the inactive X chromosome (Xi) and its relationship to gene expression mainly involved microscopy-based approaches. More recently, with the advent of genomic techniques such as chromosome conformation capture, molecular details of the structure and expression of the Xi have been revealed. Here, we review our current knowledge of the 3D organization of the mammalian X-chromosome chromatin and discuss its relationship with gene activity in light of the initiation, spreading, and maintenance of XCI, as well as escape from gene silencing.
Collapse
Affiliation(s)
- Rafael Galupa
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Current affiliation: Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Edith Heard
- Genetics and Developmental Biology Unit and Mammalian Developmental Epigenetics Group, Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 75248 Paris, France; .,Collège de France, 75231 Paris, France
| |
Collapse
|
19
|
Westervelt N, Chadwick BP. Characterization of the ICCE Repeat in Mammals Reveals an Evolutionary Relationship with the DXZ4 Macrosatellite through Conserved CTCF Binding Motifs. Genome Biol Evol 2018; 10:2190-2204. [PMID: 30102341 PMCID: PMC6125249 DOI: 10.1093/gbe/evy176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Appreciation is growing for how chromosomes are organized in three-dimensional space at interphase. Microscopic and high throughput sequence-based studies have established that the mammalian inactive X chromosome (Xi) adopts an alternate conformation relative to the active X chromosome. The Xi is organized into several multi-megabase chromatin loops called superloops. At the base of these loops are superloop anchors, and in humans three of these anchors are composed of large tandem repeat DNA that include DXZ4, Functional Intergenic Repeating RNA Element, and Inactive-X CTCF-binding Contact Element (ICCE). Each repeat contains a high density of binding sites for the architectural organization protein CCCTC-binding factor (CTCF) which exclusively associates with the Xi allele in normal cells. Removal of DXZ4 from the Xi compromises proper folding of the chromosome. In this study, we report the characterization of the ICCE tandem repeat, for which very little is known. ICCE is embedded within an intron of the Nobody (NBDY) gene locus at Xp11.21. We find that primary DNA sequence conservation of ICCE is only retained in higher primates, but that ICCE orthologs exist beyond the primate lineage. Like DXZ4, what is conserved is organization of the underlying DNA into a large tandem repeat, physical location within the NBDY locus and conservation of short DNA sequences corresponding to specific CTCF and Yin Yang 1 binding motifs that correlate with female-specific DNA hypomethylation. Unlike DXZ4, ICCE is not common to all eutherian mammals. Analysis of certain ICCE CTCF motifs reveal striking similarity with the DXZ4 motif and support an evolutionary relationship between DXZ4 and ICCE.
Collapse
Affiliation(s)
- Natalia Westervelt
- Department of Biological Science, Florida State University, King Life Science Building
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, King Life Science Building
| |
Collapse
|
20
|
C-terminal intrinsically disordered region-dependent organization of the mycobacterial genome by a histone-like protein. Sci Rep 2018; 8:8197. [PMID: 29844400 PMCID: PMC5974015 DOI: 10.1038/s41598-018-26463-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/11/2018] [Indexed: 11/23/2022] Open
Abstract
The architecture of the genome influences the functions of DNA from bacteria to eukaryotes. Intrinsically disordered regions (IDR) of eukaryotic histones have pivotal roles in various processes of gene expression. IDR is rare in bacteria, but interestingly, mycobacteria produce a unique histone-like protein, MDP1 that contains a long C-terminal IDR. Here we analyzed the role of IDR in MDP1 function. By employing Mycobacterium smegmatis that inducibly expresses MDP1 or its IDR-deficient mutant, we observed that MDP1 induces IDR-dependent DNA compaction. MDP1-IDR is also responsible for the induction of growth arrest and tolerance to isoniazid, a front line tuberculosis drug that kills growing but not growth-retardated mycobacteria. We demonstrated that MDP1-deficiency and conditional knock out of MDP1 cause spreading of the M. smegmatis genome in the stationary phase. This study thus demonstrates for the first time a C-terminal region-dependent organization of the genome architecture by MDP1, implying the significance of IDR in the function of bacterial histone-like protein.
Collapse
|
21
|
Bonora G, Disteche CM. Structural aspects of the inactive X chromosome. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0357. [PMID: 28947656 PMCID: PMC5627159 DOI: 10.1098/rstb.2016.0357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 12/20/2022] Open
Abstract
A striking difference between male and female nuclei was recognized early on by the presence of a condensed chromatin body only in female cells. Mary Lyon proposed that X inactivation or silencing of one X chromosome at random in females caused this structural difference. Subsequent studies have shown that the inactive X chromosome (Xi) does indeed have a very distinctive structure compared to its active counterpart and all autosomes in female mammals. In this review, we will recap the discovery of this fascinating biological phenomenon and seminal studies in the field. We will summarize imaging studies using traditional microscopy and super-resolution technology, which revealed uneven compaction of the Xi. We will then discuss recent findings based on high-throughput sequencing techniques, which uncovered the distinct three-dimensional bipartite configuration of the Xi and the role of specific long non-coding RNAs in eliciting and maintaining this structure. The relative position of specific genomic elements, including genes that escape X inactivation, repeat elements and chromatin features, will be reviewed. Finally, we will discuss the position of the Xi, either near the nuclear periphery or the nucleolus, and the elements implicated in this positioning. This article is part of the themed issue ‘X-chromosome inactivation: a tribute to Mary Lyon’.
Collapse
Affiliation(s)
- Giancarlo Bonora
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Christine M Disteche
- Department of Pathology, University of Washington, Seattle, WA 98195, USA .,Department of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
22
|
Lyu G, Tan T, Guan Y, Sun L, Liang Q, Tao W. Changes in the position and volume of inactive X chromosomes during the G0/G1 transition. Chromosome Res 2018; 26:179-189. [PMID: 29679205 DOI: 10.1007/s10577-018-9577-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/24/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022]
Abstract
In female mammals, each cell silences one X chromosome by converting it into transcriptionally inert heterochromatin. The inactivation is concomitant with epigenetic changes including methylation of specific histone residues and incorporation of macroH2A. Such epigenetic changes may exert influence on the positioning of the inactive X chromosome (Xi) within the nucleus beyond the level of chromatin structure. However, the dynamic positioning of the inactive X chromosome during cell cycle remains unclear. Here, we show that H3K27me3 is a cell-cycle-independent marker for the inactivated X chromosomes in WI38 cells. By utilizing this marker, three types of Xi locations in the nuclei are classified, which are envelope position (associated with envelope), mid-position (between the envelope and nucleolus), and nucleolus position (associated with the nucleolus). Moreover, serial-section analysis revealed that the inactive X chromosomes in the mid-position appear to be sparser and less condensed than those associated with the nuclear envelope or nucleolus. During the transition from G0 to G1 phase, the inactive X chromosomes tend to move from the envelope position to the nucleolus position in WI38 cells. Our results imply a role of chromosome positioning in maintaining the organization of the inactive X chromosomes in different cell phases.
Collapse
Affiliation(s)
- Guoliang Lyu
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Tan Tan
- Beijing Key Laboratory of Gene Resource and Molecular Development/ Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study / Department of Biological Science & Technology, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Yiting Guan
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Lei Sun
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China
| | - Qianjin Liang
- Beijing Key Laboratory of Gene Resource and Molecular Development/ Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, 100875, People's Republic of China.
| | - Wei Tao
- The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, 100871, People's Republic of China.
| |
Collapse
|
23
|
Shah FR, Bhat YA, Wani AH. Subnuclear distribution of proteins: Links with genome architecture. Nucleus 2018; 9:42-55. [PMID: 28910577 PMCID: PMC5973252 DOI: 10.1080/19491034.2017.1361578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/08/2023] Open
Abstract
Metazoan genomes have a hierarchal 3-dimensional (3D) organization scaling from nucleosomes, loops, topologically associating domains (TADs), compartments, to chromosome territories. The 3D organization of genome has been linked with development, differentiation and disease. However, the principles governing the 3D chromatin architecture are just beginning to get unraveled. The nucleus has very high concentration of proteins and these proteins are either diffusely distributed throughout the nucleus, or aggregated in the form of foci/bodies/clusters/speckles or in combination of both. Several evidences suggest that the distribution of proteins within the nuclear space is linked to the organization and function of genome. Here, we describe advances made in understanding the relationship between subnuclear distribution of proteins and genome architecture.
Collapse
Affiliation(s)
- Fouziya R. Shah
- Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Younus A. Bhat
- Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Ajazul H. Wani
- Biotechnology, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
24
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
25
|
Wang CY, Froberg JE, Blum R, Jeon Y, Lee JT. Comment on “Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing”. Science 2017; 356. [DOI: 10.1126/science.aal4976] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Chen
et al
. (Reports, 28 October 2016, p. 468) proposed that an interaction between Xist RNA and Lamin B receptor (LBR) is necessary and sufficient for Xist spreading during X-chromosome inactivation. We reanalyzed their data and found that reported genotypes of mutants are not supported by the sequencing data. These inconsistencies preclude assessment of the role of LBR in Xist spreading.
Collapse
Affiliation(s)
- Chen-Yu Wang
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John E. Froberg
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Roy Blum
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Yesu Jeon
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - Jeannie T. Lee
- Howard Hughes Medical Institute, Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
26
|
Abstract
Extensive 3D folding is required to package a genome into the tiny nuclear space, and this packaging must be compatible with proper gene expression. Thus, in the well-hierarchized nucleus, chromosomes occupy discrete territories and adopt specific 3D organizational structures that facilitate interactions between regulatory elements for gene expression. The mammalian X chromosome exemplifies this structure-function relationship. Recent studies have shown that, upon X-chromosome inactivation, active and inactive X chromosomes localize to different subnuclear positions and adopt distinct chromosomal architectures that reflect their activity states. Here, we review the roles of long non-coding RNAs, chromosomal organizational structures and the subnuclear localization of chromosomes as they relate to X-linked gene expression.
Collapse
|
27
|
Abstract
X chromosome inactivation (XCI) is a dosage compensation process that was adopted by female mammals to balance gene dosage between XX females and XY males. XCI starts with the upregulation of the non-coding RNA Xist, after which most X-linked genes are silenced and acquire a repressive chromatin state. Even though the chromatin marks of the inactive X have been fairly well described, the mechanisms responsible for the initiation of XCI remain largely unknown. In this review, we discuss recent developments that revealed unexpected factors playing a role in XCI and that might be of crucial importance to understand the mechanisms responsible for the very first steps of this chromosome-wide gene-silencing event.
Collapse
Affiliation(s)
- Ines Pinheiro
- Mammalian Developmental Epigenetics Group (équipe labellisée La Ligue), Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 26 Rue d'Ulm, 11 75248 Paris Cedex 05, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group (équipe labellisée La Ligue), Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 26 Rue d'Ulm, 11 75248 Paris Cedex 05, France
| |
Collapse
|
28
|
Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation. Nat Struct Mol Biol 2017; 24:197-204. [DOI: 10.1038/nsmb.3370] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
|
29
|
Robert Finestra T, Gribnau J. X chromosome inactivation: silencing, topology and reactivation. Curr Opin Cell Biol 2017; 46:54-61. [PMID: 28236732 DOI: 10.1016/j.ceb.2017.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 01/22/2023]
Abstract
To ensure X-linked gene dosage compensation between females (XX) and males (XY), one X chromosome undergoes X chromosome inactivation (XCI) in female cells. This process is tightly regulated throughout development by many different factors, with Xist as a key regulator, encoding a long non-coding RNA, involved in establishment of several layers of repressive epigenetic modifications. Several recent studies on XCI focusing on identification and characterization of Xist RNA-protein interactors, revealed new factors involved in gene silencing, genome topology and nuclear membrane attachment, amongst others. Also, new insights in higher order chromatin organization have been presented, revealing differences between the topological organization of active and inactive X chromosomes (Xa and Xi), with associated differences in gene expression. Finally, further evidence indicates that the inactive state of the Xi can be (partially) reversed, and that this X chromosome reactivation (XCR) might be associated with disease.
Collapse
Affiliation(s)
- Teresa Robert Finestra
- Department of Developmental Biology, Erasmus MC, Wytemaweg 80, Rotterdam CN 3015, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Wytemaweg 80, Rotterdam CN 3015, The Netherlands.
| |
Collapse
|
30
|
Kataoka K, Mochizuki K. Heterochromatin aggregation during DNA elimination in Tetrahymena is facilitated by a prion-like protein. J Cell Sci 2016; 130:480-489. [PMID: 27909245 DOI: 10.1242/jcs.195503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/21/2016] [Indexed: 12/22/2022] Open
Abstract
Regulated aggregations of prion and prion-like proteins play physiological roles in various biological processes. However, their structural roles in the nucleus are poorly understood. Here, we show that the prion-like protein Jub6p is involved in the regulation of chromatin structure in the ciliated protozoan Tetrahymena thermophila Jub6p forms sodium dodecyl sulfate (SDS)-resistant aggregates when it is ectopically expressed in vegetative cells and binds to RNA in vitro Jub6p is a heterochromatin component and is important for the formation of heterochromatin bodies during the process of programmed DNA elimination. We suggest that RNA-protein aggregates formed by Jub6p are an essential architectural component for the assembly of heterochromatin bodies.
Collapse
Affiliation(s)
- Kensuke Kataoka
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr-Gasse 3, Vienna A-1030, Austria
| | - Kazufumi Mochizuki
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr Bohr-Gasse 3, Vienna A-1030, Austria .,Institute of Human Genetics (IGH), CNRS UPR1142, 141 rue de la Cardonille, Montpellier Cedex 5 34396, France
| |
Collapse
|
31
|
Chen CK, Blanco M, Jackson C, Aznauryan E, Ollikainen N, Surka C, Chow A, Cerase A, McDonel P, Guttman M. Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing. Science 2016; 354:468-472. [PMID: 27492478 DOI: 10.1126/science.aae0047] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 07/25/2016] [Indexed: 12/12/2022]
Abstract
The Xist long noncoding RNA orchestrates X chromosome inactivation, a process that entails chromosome-wide silencing and remodeling of the three-dimensional (3D) structure of the X chromosome. Yet, it remains unclear whether these changes in nuclear structure are mediated by Xist and whether they are required for silencing. Here, we show that Xist directly interacts with the Lamin B receptor, an integral component of the nuclear lamina, and that this interaction is required for Xist-mediated silencing by recruiting the inactive X to the nuclear lamina and by doing so enables Xist to spread to actively transcribed genes across the X. Our results demonstrate that lamina recruitment changes the 3D structure of DNA, enabling Xist and its silencing proteins to spread across the X to silence transcription.
Collapse
Affiliation(s)
- Chun-Kan Chen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mario Blanco
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Constanza Jackson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Erik Aznauryan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Noah Ollikainen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christine Surka
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrea Cerase
- European Molecular Biology Laboratory-Monterotondo, Via Ramarini 32, 00015 Monterotondo (RM), Italy
| | - Patrick McDonel
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Mitchell Guttman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
32
|
Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 2016; 17:756-770. [DOI: 10.1038/nrm.2016.126] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Phosphorylation of an HP1-like protein is a prerequisite for heterochromatin body formation in Tetrahymena DNA elimination. Proc Natl Acad Sci U S A 2016; 113:9027-32. [PMID: 27466409 DOI: 10.1073/pnas.1606012113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multiple heterochromatic loci are often clustered into a higher order nuclear architecture called a heterochromatin body in diverse eukaryotes. Although phosphorylation of Heterochromatin Protein 1 (HP1) family proteins regulates heterochromatin dynamics, its role in heterochromatin bodies remains unknown. We previously reported that dephosphorylation of the HP1-like protein Pdd1p is required for the formation of heterochromatin bodies during the process of programmed DNA elimination in the ciliated protozoan Tetrahymena Here, we show that the heterochromatin body component Jub4p is required for Pdd1p phosphorylation, heterochromatin body formation, and DNA elimination. Moreover, our analyses of unphosphorylatable Pdd1p mutants demonstrate that Pdd1p phosphorylation is required for heterochromatin body formation and DNA elimination, whereas it is dispensable for local heterochromatin assembly. Therefore, both phosphorylation and the following dephosphorylation of Pdd1p are necessary to facilitate the formation of heterochromatin bodies. We suggest that Jub4p-mediated phosphorylation of Pdd1p creates a chromatin environment that is a prerequisite for subsequent heterochromatin body assembly and DNA elimination.
Collapse
|
34
|
Pinter SF. A Tale of Two Cities: How Xist and its partners localize to and silence the bicompartmental X. Semin Cell Dev Biol 2016; 56:19-34. [PMID: 27072488 DOI: 10.1016/j.semcdb.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 10/22/2022]
Abstract
Sex chromosomal dosage compensation in mammals takes the form of X chromosome inactivation (XCI), driven by the non-coding RNA Xist. In contrast to dosage compensation systems of flies and worms, mammalian XCI has to restrict its function to the Xist-producing X chromosome, while leaving autosomes and active X untouched. The mechanisms behind the long-range yet cis-specific localization and silencing activities of Xist have long been enigmatic, but genomics, proteomics, super-resolution microscopy, and innovative genetic approaches have produced significant new insights in recent years. In this review, I summarize and integrate these findings with a particular focus on the redundant yet mutually reinforcing pathways that enable long-term transcriptional repression throughout the soma. This includes an exploration of concurrent epigenetic changes acting in parallel within two distinct compartments of the inactive X. I also examine how Polycomb repressive complexes 1 and 2 and macroH2A may bridge XCI establishment and maintenance. XCI is a remarkable phenomenon that operates across multiple scales, combining changes in nuclear architecture, chromosome topology, chromatin compaction, and nucleosome/nucleotide-level epigenetic cues. Learning how these pathways act in concert likely holds the answer to the riddle posed by Cattanach's and other autosomal translocations: What makes the X especially receptive to XCI?
Collapse
Affiliation(s)
- Stefan F Pinter
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, 263 Farmington Ave, Farmington, CT 06030-6403, USA.
| |
Collapse
|
35
|
Löb D, Lengert N, Chagin VO, Reinhart M, Casas-Delucchi CS, Cardoso MC, Drossel B. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression. Nat Commun 2016; 7:11207. [PMID: 27052359 PMCID: PMC4829661 DOI: 10.1038/ncomms11207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 03/02/2016] [Indexed: 01/02/2023] Open
Abstract
DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.
Collapse
Affiliation(s)
- D. Löb
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - N. Lengert
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - V. O. Chagin
- Laboratory of Chromosome Stability, Institute of Cytology, St Petersburg 194064, Russia
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - M. Reinhart
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - C. S. Casas-Delucchi
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - M. C. Cardoso
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - B. Drossel
- Department of Physics, Institute for Condensed Matter Physics, Technische Universität Darmstadt, 64289 Darmstadt, Germany
| |
Collapse
|
36
|
Pandya-Jones A, Plath K. The "lnc" between 3D chromatin structure and X chromosome inactivation. Semin Cell Dev Biol 2016; 56:35-47. [PMID: 27062886 DOI: 10.1016/j.semcdb.2016.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 12/01/2022]
Abstract
The long non-coding RNA Xist directs a remarkable instance of developmentally regulated, epigenetic change known as X Chromosome Inactivation (XCI). By spreading in cis across the X chromosome from which it is expressed, Xist RNA facilitates the creation of a heritably silent, heterochromatic nuclear territory that displays a three-dimensional structure distinct from that of the active X chromosome. How Xist RNA attaches to and propagates across a chromosome and its influence over the three-dimensional (3D) structure of the inactive X are aspects of XCI that have remained largely unclear. Here, we discuss studies that have made significant contributions towards answering these open questions.
Collapse
Affiliation(s)
- Amy Pandya-Jones
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- Department of Biological Chemistry, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Yoo J, Kim H, Aksimentiev A, Ha T. Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation. Nat Commun 2016; 7:11045. [PMID: 27001929 PMCID: PMC4804163 DOI: 10.1038/ncomms11045] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/16/2016] [Indexed: 02/06/2023] Open
Abstract
Although proteins mediate highly ordered DNA organization in vivo, theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another even in the absence of proteins. Here we combine molecular dynamics simulations with single-molecule fluorescence resonance energy transfer experiments to examine the interactions between duplex DNA in the presence of spermine, a biological polycation. We find that AT-rich DNA duplexes associate more strongly than GC-rich duplexes, regardless of the sequence homology. Methyl groups of thymine acts as a steric block, relocating spermine from major grooves to interhelical regions, thereby increasing DNA–DNA attraction. Indeed, methylation of cytosines makes attraction between GC-rich DNA as strong as that between AT-rich DNA. Recent genome-wide chromosome organization studies showed that remote contact frequencies are higher for AT-rich and methylated DNA, suggesting that direct DNA–DNA interactions that we report here may play a role in the chromosome organization and gene regulation. Theoretical studies suggest that homologous DNA duplexes can preferentially associate with one another in the absence of proteins. Here, the authors show that GC-rich DNA with methylated cytosine and AT-rich DNA duplexes associate more strongly than GC-rich duplexes regardless of the sequence homology.
Collapse
Affiliation(s)
- Jejoong Yoo
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hajin Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.,Center for Soft and Living Matter, Institute for Basic Science, Ulsan, Korea
| | - Aleksei Aksimentiev
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Taekjip Ha
- Department of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.,Howard Hughes Medical Institute, Baltimore, Maryland 21205, USA.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21205, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
38
|
Sehgal N, Fritz AJ, Vecerova J, Ding H, Chen Z, Stojkovic B, Bhattacharya S, Xu J, Berezney R. Large-scale probabilistic 3D organization of human chromosome territories. Hum Mol Genet 2016; 25:419-36. [PMID: 26604142 PMCID: PMC4731017 DOI: 10.1093/hmg/ddv479] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/07/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023] Open
Abstract
There is growing evidence that chromosome territories (CT) have a probabilistic non-random arrangement within the cell nucleus of mammalian cells including radial positioning and preferred patterns of interchromosomal interactions that are cell-type specific. While it is generally assumed that the three-dimensional (3D) arrangement of genes within the CT is linked to genomic regulation, the degree of non-random organization of individual CT remains unclear. As a first step to elucidating the global 3D organization (topology) of individual CT, we performed multi-color fluorescence in situ hybridization using six probes extending across each chromosome in human WI38 lung fibroblasts. Six CT were selected ranging in size and gene density (1, 4, 12, 17, 18 and X). In-house computational geometric algorithms were applied to measure the 3D distances between every combination of probes and to elucidate data-mined structural patterns. Our findings demonstrate a high degree of non-random arrangement of individual CT that vary from chromosome to chromosome and display distinct changes during the cell cycle. Application of a classic, well-defined data mining and pattern recognition approach termed the 'k-means' generated 3D models for the best fit arrangement of each chromosome. These predicted models correlated well with the detailed distance measurements and analysis. We propose that the unique 3D topology of each CT and characteristic changes during the cell cycle provide the structural framework for the global gene expression programs of the individual chromosomes.
Collapse
Affiliation(s)
| | | | | | - Hu Ding
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Zihe Chen
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Branislav Stojkovic
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | - Sambit Bhattacharya
- Department of Mathematics and Computer Sciences, Fayetteville State University, Fayetteville, NC 28301, USA
| | - Jinhui Xu
- Department of Computer Science and Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA and
| | | |
Collapse
|
39
|
Sharma R, Meister P. Dosage compensation and nuclear organization: cluster to control chromosome-wide gene expression. Curr Opin Genet Dev 2016; 37:9-16. [PMID: 26748388 DOI: 10.1016/j.gde.2015.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/18/2015] [Accepted: 11/25/2015] [Indexed: 11/28/2022]
Abstract
In many species, male and female animals differ in the number of X chromosomes they possess. As a consequence, large scale differences in gene dosage exist between sexes; a phenomenon that is rarely tolerated by the organism for changes in autosome dosage. Several strategies have evolved independently to balance X-linked gene dosage between sexes, named dosage compensation (DC). The molecular basis of DC differs among the three best-studied examples: mammals, fruit fly and nematodes. In this short review, we summarize recent microscopic and chromosome conformation capture data that reveal key features of the compensated X chromosome and highlight the events leading to the establishment of a functional, specialized nuclear compartment, the X domain.
Collapse
Affiliation(s)
- Rahul Sharma
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, Switzerland.
| |
Collapse
|
40
|
Linhoff MW, Garg SK, Mandel G. A high-resolution imaging approach to investigate chromatin architecture in complex tissues. Cell 2015; 163:246-55. [PMID: 26406379 DOI: 10.1016/j.cell.2015.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 05/22/2015] [Accepted: 08/11/2015] [Indexed: 01/08/2023]
Abstract
We present ChromATin, a quantitative high-resolution imaging approach for investigating chromatin organization in complex tissues. This method combines analysis of epigenetic modifications by immunostaining, localization of specific DNA sequences by FISH, and high-resolution segregation of nuclear compartments using array tomography (AT) imaging. We then apply this approach to examine how the genome is organized in the mammalian brain using female Rett syndrome mice, which are a mosaic of normal and Mecp2-null cells. Side-by-side comparisons within the same field reveal distinct heterochromatin territories in wild-type neurons that are altered in Mecp2-null nuclei. Mutant neurons exhibit increased chromatin compaction and a striking redistribution of the H4K20me3 histone modification into pericentromeric heterochromatin, a territory occupied normally by MeCP2. These events are not observed in every neuronal cell type, highlighting ChromATin as a powerful in situ method for examining cell-type-specific differences in chromatin architecture in complex tissues.
Collapse
Affiliation(s)
- Michael W Linhoff
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Saurabh K Garg
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Gail Mandel
- Vollum Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Howard Hughes Medical Institute, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
41
|
Quantitatively imaging chromosomes by correlated cryo-fluorescence and soft x-ray tomographies. Biophys J 2015; 107:1988-1996. [PMID: 25418180 DOI: 10.1016/j.bpj.2014.09.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/28/2014] [Accepted: 09/09/2014] [Indexed: 11/24/2022] Open
Abstract
Soft x-ray tomography (SXT) is increasingly being recognized as a valuable method for visualizing and quantifying the ultrastructure of cryopreserved cells. Here, we describe the combination of SXT with cryogenic confocal fluorescence tomography (CFT). This correlative approach allows the incorporation of molecular localization data, with isotropic precision, into high-resolution three-dimensional (3-D) SXT reconstructions of the cell. CFT data are acquired first using a cryogenically adapted confocal light microscope in which the specimen is coupled to a high numerical aperture objective lens by an immersion fluid. The specimen is then cryo-transferred to a soft x-ray microscope (SXM) for SXT data acquisition. Fiducial markers visible in both types of data act as common landmarks, enabling accurate coalignment of the two complementary tomographic reconstructions. We used this method to identify the inactive X chromosome (Xi) in female v-abl transformed thymic lymphoma cells by localizing enhanced green fluorescent protein-labeled macroH2A with CFT. The molecular localization data were used to guide segmentation of Xi in the SXT reconstructions, allowing characterization of the Xi topological arrangement in near-native state cells. Xi was seen to adopt a number of different topologies with no particular arrangement being dominant.
Collapse
|
42
|
MacDonald WA, Sachani SS, White CR, Mann MRW. A role for chromatin topology in imprinted domain regulation. Biochem Cell Biol 2015. [PMID: 26222733 DOI: 10.1139/bcb-2015-0032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.
Collapse
Affiliation(s)
- William A MacDonald
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Saqib S Sachani
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Carlee R White
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| | - Mellissa R W Mann
- a Departments of Obstetrics & Gynecology, and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, Ontario, Canada.,b Children's Health Research Institute, 4th Floor, Victoria Research Laboratories, A4-130a, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
| |
Collapse
|
43
|
Boulé JB, Mozziconacci J, Lavelle C. The polymorphisms of the chromatin fiber. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:033101. [PMID: 25437138 DOI: 10.1088/0953-8984/27/3/033101] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In eukaryotes, the genome is packed into chromosomes, each consisting of large polymeric fibers made of DNA bound with proteins (mainly histones) and RNA molecules. The nature and precise 3D organization of this fiber has been a matter of intense speculations and debates. In the emerging picture, the local chromatin state plays a critical role in all fundamental DNA transactions, such as transcriptional control, DNA replication or repair. However, the molecular and structural mechanisms involved remain elusive. The purpose of this review is to give an overview of the tremendous efforts that have been made for almost 40 years to build physiologically relevant models of chromatin structure. The motivation behind building such models was to shift our representation and understanding of DNA transactions from a too simplistic 'naked DNA' view to a more realistic 'coated DNA' view, as a step towards a better framework in which to interpret mechanistically the control of genetic expression and other DNA metabolic processes. The field has evolved from a speculative point of view towards in vitro biochemistry and in silico modeling, but is still longing for experimental in vivo validations of the proposed structures or even proof of concept experiments demonstrating a clear role of a given structure in a metabolic transaction. The mere existence of a chromatin fiber as a relevant biological entity in vivo has been put into serious questioning. Current research is suggesting a possible reconciliation between theoretical studies and experiments, pointing towards a view where the polymorphic and dynamic nature of the chromatin fiber is essential to support its function in genome metabolism.
Collapse
Affiliation(s)
- Jean-Baptiste Boulé
- Genome Structure and Instability, CNRS UMR7196 - INSERM U1154, National Museum of Natural History, Paris, France. CNRS GDR 3536, University Pierre and Marie Curie-Paris 6, Paris, France
| | | | | |
Collapse
|
44
|
Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 2014; 7:8. [PMID: 25057298 PMCID: PMC4108088 DOI: 10.1186/1756-8935-7-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.
Collapse
Affiliation(s)
- Daniel Smeets
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Volker J Schmid
- Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany
| | - Felix Kraus
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Andrea Cerase
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Sterr
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Susanne Fiedler
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Justin Demmerle
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jens Popken
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Heinrich Leonhardt
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Lothar Schermelleh
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marion Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| |
Collapse
|
45
|
Belmont AS. Large-scale chromatin organization: the good, the surprising, and the still perplexing. Curr Opin Cell Biol 2013; 26:69-78. [PMID: 24529248 DOI: 10.1016/j.ceb.2013.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 11/19/2022]
Abstract
Traditionally large-scale chromatin structure has been studied by microscopic approaches, providing direct spatial information but limited sequence context. In contrast, newer 3C (chromosome capture conformation) methods provide rich sequence context but uncertain spatial context. Recent demonstration of large, topologically linked DNA domains, hundreds to thousands of kb in size, may now link 3C data to actual chromosome physical structures, as visualized directly by microscopic methods. Yet, new data suggesting that 3C may measure cytological rather than molecular proximity prompts a renewed focus on understanding the origin of 3C interactions and dissecting the biological significance of long-range genomic interactions.
Collapse
Affiliation(s)
- Andrew S Belmont
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, B107 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801, United States.
| |
Collapse
|
46
|
Müller I, Merk B, Voss KO, Averbeck N, Jakob B, Durante M, Taucher-Scholz G. Species conserved DNA damage response at the inactive human X chromosome. Mutat Res 2013; 756:30-36. [PMID: 23628434 DOI: 10.1016/j.mrgentox.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 06/02/2023]
Abstract
Chromatin modifications are long known as an essential part of the orchestrated response resulting in the repair of radiation-induced DNA double-strand breaks (DSBs). Only recently, however, the influence of the chromatin architecture itself on the DNA damage response has been recognised. Thus for heterochromatic DSBs the sensing and early recruitment of repair factors to the lesion occurs within the heterochromatic compartments, but the damage sites are subsequently relocated from the inside to the outside of the heterochromatin. While previous studies were accomplished at the constitutive heterochromatin of centromeric regions in mouse and flies, here we examine the DSB repair at the facultative heterochromatin of the inactive X chromosome (Xi) in humans. Using heavy ion irradiation we show that at later times after irradiation the DSB damage streaks bend around the Xi verifying that the relocation process is conserved between species and not specialised to repetitive sequences only. In addition, to measure chromatin relaxation at rare positions within the genome, we established live cell microscopy at the GSI microbeam thus allowing the aimed irradiation of small nuclear structures like the Xi. Chromatin decondensation at DSBs within the Xi is clearly visible within minutes as a continuous decrease of the DNA staining over time, comparable to the DNA relaxation revealed at DSBs in mouse chromocenters. Furthermore, despite being conserved between species, slight differences in the underlying regulation of these processes in heterochromatic DSBs are apparent.
Collapse
Affiliation(s)
- Iris Müller
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Open and closed domains in the mouse genome are configured as 10-nm chromatin fibres. EMBO Rep 2013; 13:992-6. [PMID: 22986547 DOI: 10.1038/embor.2012.139] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 08/21/2012] [Accepted: 08/28/2012] [Indexed: 11/08/2022] Open
Abstract
The mammalian genome is compacted to fit within the confines of the cell nucleus. DNA is wrapped around nucleosomes, forming the classic "beads-on-a-string" 10-nm chromatin fibre. Ten-nanometre chromatin fibres are thought to condense into 30-nm fibres. This structural reorganization is widely assumed to correspond to transitions between active and repressed chromatin, thereby representing a chief regulatory event. Here, by combining electron spectroscopic imaging with tomography, three-dimensional images are generated, revealing that both open and closed chromatin domains in mouse somatic cells comprise 10-nm fibres. These findings indicate that the 30-nm chromatin model does not reflect the true regulatory structure in vivo.
Collapse
|
48
|
Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, Kadri S, Xing J, Goren A, Lander ES, Plath K, Guttman M. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 2013; 341:1237973. [PMID: 23828888 DOI: 10.1126/science.1237973] [Citation(s) in RCA: 751] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many large noncoding RNAs (lncRNAs) regulate chromatin, but the mechanisms by which they localize to genomic targets remain unexplored. We investigated the localization mechanisms of the Xist lncRNA during X-chromosome inactivation (XCI), a paradigm of lncRNA-mediated chromatin regulation. During the maintenance of XCI, Xist binds broadly across the X chromosome. During initiation of XCI, Xist initially transfers to distal regions across the X chromosome that are not defined by specific sequences. Instead, Xist identifies these regions by exploiting the three-dimensional conformation of the X chromosome. Xist requires its silencing domain to spread across actively transcribed regions and thereby access the entire chromosome. These findings suggest a model in which Xist coats the X chromosome by searching in three dimensions, modifying chromosome structure, and spreading to newly accessible locations.
Collapse
|
49
|
Human inactive X chromosome is compacted through a PRC2-independent SMCHD1-HBiX1 pathway. Nat Struct Mol Biol 2013; 20:566-73. [PMID: 23542155 DOI: 10.1038/nsmb.2532] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 02/07/2013] [Indexed: 12/31/2022]
Abstract
Human inactive X chromosome (Xi) forms a compact structure called the Barr body, which is enriched in repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3) and Lys27 (H3K27me3). These two histone marks are distributed in distinct domains, and X-inactive specific transcript (XIST) preferentially colocalizes with H3K27me3 domains. Here we show that Xi compaction requires HBiX1, a heterochromatin protein 1 (HP1)-binding protein, and structural maintenance of chromosomes hinge domain-containing protein 1 (SMCHD1), both of which are enriched throughout the Xi chromosome. HBiX1 localization to H3K9me3 and XIST-associated H3K27me3 (XIST-H3K27me3) domains was mediated through interactions with HP1 and SMCHD1, respectively. Furthermore, HBiX1 was required for SMCHD1 localization to H3K9me3 domains. Depletion of HBiX1 or SMCHD1, but not Polycomb repressive complex 2 (PRC2), resulted in Xi decompaction, similarly to XIST depletion. Thus, the molecular network involving HBiX1 and SMCHD1 links the H3K9me3 and XIST-H3K27me3 domains to organize the compact Xi structure.
Collapse
|
50
|
Abstract
Repetitive sequences, especially transposon-derived interspersed repetitive elements, account for a large fraction of the genome in most eukaryotes. Despite the repetitive nature, these transposable elements display quantitative and qualitative differences even among species of the same lineage. Although transposable elements contribute greatly as a driving force to the biological diversity during evolution, they can induce embryonic lethality and genetic disorders as a result of insertional mutagenesis and genomic rearrangement. Temporary relaxation of the epigenetic control of retrotransposons during early germline development opens a risky window that can allow retrotransposons to escape from host constraints and to propagate abundantly in the host genome. Because germline mutations caused by retrotransposon activation are heritable and thus can be deleterious to the offspring, an adaptive strategy has evolved in host cells, especially in the germline. In this review, we will attempt to summarize general defense mechanisms deployed by the eukaryotic genome, with an emphasis on pathways utilized by the male germline to confer retrotransposon silencing.
Collapse
Affiliation(s)
- Jianqiang Bao
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | | |
Collapse
|