1
|
Kamada Y, Ohnishi Y, Nakashima C, Fujii A, Terakawa M, Hamano I, Nakayamada U, Katoh S, Hirata N, Tateishi H, Fukuda R, Takahashi H, Lukacs GL, Okiyoneda T. HERC3 facilitates ERAD of select membrane proteins by recognizing membrane-spanning domains. J Cell Biol 2024; 223:e202308003. [PMID: 38722278 PMCID: PMC11082371 DOI: 10.1083/jcb.202308003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
Aberrant proteins located in the endoplasmic reticulum (ER) undergo rapid ubiquitination by multiple ubiquitin (Ub) E3 ligases and are retrotranslocated to the cytosol as part of the ER-associated degradation (ERAD). Despite several ERAD branches involving different Ub E3 ligases, the molecular machinery responsible for these ERAD branches in mammalian cells remains not fully understood. Through a series of multiplex knockdown/knockout experiments with real-time kinetic measurements, we demonstrate that HERC3 operates independently of the ER-embedded ubiquitin ligases RNF5 and RNF185 (RNF5/185) to mediate the retrotranslocation and ERAD of misfolded CFTR. While RNF5/185 participates in the ERAD process of both misfolded ABCB1 and CFTR, HERC3 uniquely promotes CFTR ERAD. In vitro assay revealed that HERC3 directly interacts with the exposed membrane-spanning domains (MSDs) of CFTR but not with the MSDs embedded in liposomes. Therefore, HERC3 could play a role in the quality control of MSDs in the cytoplasm and might be crucial for the ERAD pathway of select membrane proteins.
Collapse
Affiliation(s)
- Yuka Kamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Yuko Ohnishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Chikako Nakashima
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Aika Fujii
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Mana Terakawa
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ikuto Hamano
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Uta Nakayamada
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Saori Katoh
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Noriaki Hirata
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hazuki Tateishi
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| | - Hirotaka Takahashi
- Division of Cell-Free Sciences, Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| | - Gergely L. Lukacs
- Department of Physiology, McGill University, Montréal, Canada
- Department of Biochemistry, McGill University, Montréal, Canada
| | - Tsukasa Okiyoneda
- Department of Biomedical Sciences, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Japan
| |
Collapse
|
2
|
Benabdelkamel H, Alamri H, Okla M, Masood A, Abdel Jabar M, Alanazi IO, Alfadda AA, Nizami I, Dasouki M, Abdel Rahman AM. Serum-Based Proteomics Profiling in Adult Patients with Cystic Fibrosis. Int J Mol Sci 2020; 21:ijms21197415. [PMID: 33050003 PMCID: PMC7582405 DOI: 10.3390/ijms21197415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF), the most common lethal autosomal recessive disorder among Caucasians, is caused by mutations in the CF transmembrane conductance regulator (CFTR) chloride channel gene. Despite significant advances in the management of CF patients, novel disease-related biomarkers and therapies must be identified. We performed serum proteomics profiling in CF patients (n = 28) and healthy subjects (n = 10) using the 2D-DIGE MALDI-TOF proteomic approach. Out of a total of 198 proteins identified, 134 showed a statistically significant difference in abundance and a 1.5-fold change (ANOVA, p < 0.05), including 80 proteins with increased abundance and 54 proteins with decreased abundance in CF patients. A multiple reaction monitoring-mass spectrometry analysis of six differentially expressed proteins identified by a proteomic approach (DIGE-MALD-MS) showed a significant increase in C3 and CP proteins and a decrease in APOA1, Complement C1, Hp, and RBP4proteins compared with healthy controls. Fifteen proteins were identified as potential biomarkers for CF diagnosis. An ingenuity pathway analysis of the differentially regulated proteins indicates that the central nodes dysregulated in CF subjects involve pro-inflammatory cytokines, ERK1/2, and P38 MAPK, which are primarily involved in catalytic activities and metabolic processes. The involved canonical pathways include those related to FXR/RXR, LXR/RXR, acute phase response, IL12, nitric oxide, and reactive oxygen species in macrophages. Our data support the current efforts toward augmenting protease inhibitors in patients with CF. Perturbations in lipid and vitamin metabolism frequently observed in CF patients may be partly due to abnormalities in their transport mechanism.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
| | - Hanadi Alamri
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 183T11, Riyadh 11495, Saudi Arabia;
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
| | - Mai Abdel Jabar
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
| | - Ibrahim O. Alanazi
- The National Center for Biotechnology (NCB), Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), P.O. Box 6086, Riyadh 12354, Saudi Arabia;
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia; (H.B.); (A.M.); (A.A.A.)
- Department of Medicine, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-114647272 (ext. 24081) (M.D.); +966-114647272 (ext. 36481) (A.M.A.R.)
| | - Anas M. Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia;
- Department of Genetics, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia;
- Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X7, Canada
- Correspondence: (M.D.); (A.M.A.R.); Tel.: +966-114647272 (ext. 24081) (M.D.); +966-114647272 (ext. 36481) (A.M.A.R.)
| |
Collapse
|
3
|
Tang D, Sandoval W, Lam C, Haley B, Liu P, Xue D, Roy D, Patapoff T, Louie S, Snedecor B, Misaghi S. UBR E3 ligases and the PDIA3 protease control degradation of unfolded antibody heavy chain by ERAD. J Cell Biol 2020; 219:151862. [PMID: 32558906 PMCID: PMC7337499 DOI: 10.1083/jcb.201908087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/01/2022] Open
Abstract
Accumulation of unfolded antibody chains in the ER triggers ER stress that may lead to reduced productivity in therapeutic antibody manufacturing processes. We identified UBR4 and UBR5 as ubiquitin E3 ligases involved in HC ER-associated degradation. Knockdown of UBR4 and UBR5 resulted in intracellular accumulation, enhanced secretion, and reduced ubiquitination of HC. In concert with these E3 ligases, PDIA3 was shown to cleave ubiquitinated HC molecules to accelerate HC dislocation. Interestingly, UBR5, and to a lesser degree UBR4, were down-regulated as cellular demand for antibody expression increased in CHO cells during the production phase, or in plasma B cells. Reducing UBR4/UBR5 expression before the production phase increased antibody productivity in CHO cells, possibly by redirecting antibody molecules from degradation to secretion. Altogether we have characterized a novel proteolysis/proteasome-dependent pathway involved in degradation of unfolded antibody HC. Proteins characterized in this pathway may be novel targets for CHO cell engineering.
Collapse
Affiliation(s)
- Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech Inc., South San Francisco, CA
| | - Peter Liu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech Inc., South San Francisco, CA
| | - Di Xue
- Department of Research Biology, Genentech Inc., South San Francisco, CA
| | - Deepankar Roy
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Tom Patapoff
- Department of Early Stage Pharmaceutical Development, Genentech Inc., South San Francisco, CA
| | - Salina Louie
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, CA
| |
Collapse
|
4
|
Chen D, Geis-Asteggiante L, Gomes FP, Ostrand-Rosenberg S, Fenselau C. Top-Down Proteomic Characterization of Truncated Proteoforms. J Proteome Res 2019; 18:4013-4019. [PMID: 31545043 DOI: 10.1021/acs.jproteome.9b00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A top-down proteomic strategy with semiautomated analysis of data sets has proven successful for the global identification of truncated proteins without the use of chemical derivatization, enzymatic manipulation, immunoprecipitation, or other enrichment. This approach provides the reliable identification of internal polypeptides formed from precursor gene products by proteolytic cleavage of both the N- and C-termini, as well as truncated proteoforms that retain one or the other termini. The strategy has been evaluated by application to the immunosuppressive extracellular vesicles released by myeloid-derived suppressor cells. More than 1000 truncated proteoforms have been identified, from which binding motifs are derived to allow characterization of the putative proteases responsible for truncation.
Collapse
Affiliation(s)
- Dapeng Chen
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Lucia Geis-Asteggiante
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Fabio P Gomes
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Suzanne Ostrand-Rosenberg
- Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , Maryland 21250 , United States
| | - Catherine Fenselau
- Department of Chemistry and Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| |
Collapse
|
5
|
Na H, Song G. Predicting the functional motions of p97 using symmetric normal modes. Proteins 2016; 84:1823-1835. [PMID: 27653958 DOI: 10.1002/prot.25164] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 01/01/2023]
Abstract
p97 is a protein complex of the AAA+ family. Although functions of p97 are well understood, the mechanism by which p97 performs its unfolding activities remains unclear. In this work, we present a novel way of applying normal mode analysis to study this six-fold symmetric molecular machine. By selecting normal modes that are axial symmetric and give the largest movements at D1 or D2 pore residues, we are able to predict the functional motions of p97, which are then validated by experimentally observed conformational changes. Our results shed light and provide new understandings on several key steps of the p97 functional process that were previously unclear or controversial, and thus are able to reconcile multiple previous findings. Specifically, our results reveal that (i) a venous valve-like mechanism is used at D2 pore to ensure a one-way exit-only traffic of substrates; (ii) D1 pore remains shut during the functional process; (iii) the "swing-up" motion of the N domain is closely coupled with the vertical motion of the D1 pore along the pore axis; (iv) because of the shut D1 pore and the one-way traffic at D2 pore, it is highly likely that substrates enter the chamber through the gaps at the D1/D2 interface. The limited chamber volume inside p97 suggests that a substrate may be pulling out from D2 while at the same time being pulling in at the interface; (v) lastly, p97 uses a series of actions that alternate between twisting and pulling to remove the substrate. Proteins 2016; 84:1823-1835. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hyuntae Na
- Department of Computer Science, Penn State Harrisburg, Middletown, Pennsylvania, 17057
| | - Guang Song
- Department of Computer Science, Iowa State University, Ames, Iowa, 50011.,Program of Bioinformatics and Computational Biology, Iowa State University, Ames, Iowa, 50011.,L. H. Baker Center for Bioinformatics and Biological Statistics Iowa State University, Ames, Iowa, 50011
| |
Collapse
|
6
|
Smith N, Adle DJ, Zhao M, Qin X, Kim H, Lee J. Endoplasmic Reticulum-associated Degradation of Pca1p, a Polytopic Protein, via Interaction with the Proteasome at the Membrane. J Biol Chem 2016; 291:15082-92. [PMID: 27226596 DOI: 10.1074/jbc.m116.726265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays a critical role in the destruction of terminally misfolded proteins at the secretory pathway. The system also regulates expression levels of several proteins such as Pca1p, a cadmium exporter in yeast. To gain better insight into the mechanisms underlying ERAD of Pca1p and other polytopic proteins by the proteasome in the cytosol, our study determined the roles for the molecular factors of ERAD in dislodging Pca1p from the endoplasmic reticulum (ER). Inactivation of the 20S proteasome leads to accumulation of ubiquitinated Pca1p in the ER membrane, suggesting a role for the proteasome in extraction of Pca1p from the ER. Pca1p formed a complex with the proteasome at the membrane in a Doa10p E3 ligase-dependent manner. Cdc48p is required for recruiting the proteasome to Pca1p. Although the Ufd2p E4 ubiquitin chain extension enzyme is involved in efficient degradation of Pca1p, Ufd2p-deficient cells did not affect the formation of a complex between Pca1p and the proteasome. Two other polytopic membrane proteins undergoing ERAD, Ste6*p and Hmg2p, also displayed the same outcomes observed for Pca1p. However, poly-ubiquitinated Cpy1*p, a luminal ERAD substrate, was detected in the cytosol independent of proteolytic activities of the proteasome. These results indicate that extraction and degradation of polytopic membrane proteins at the ER is a coupled event. This mechanism would relieve the cost of exposed hydrophobic domains in the cytosol during ERAD.
Collapse
Affiliation(s)
- Nathan Smith
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - David J Adle
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Miaoyun Zhao
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Xiaojuan Qin
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and the College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China 200234
| | - Heejeong Kim
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| | - Jaekwon Lee
- From the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska, 68588-0664 and
| |
Collapse
|
7
|
Vallelian F, Deuel JW, Opitz L, Schaer CA, Puglia M, Lönn M, Engelsberger W, Schauer S, Karnaukhova E, Spahn DR, Stocker R, Buehler PW, Schaer DJ. Proteasome inhibition and oxidative reactions disrupt cellular homeostasis during heme stress. Cell Death Differ 2014; 22:597-611. [PMID: 25301065 PMCID: PMC4356336 DOI: 10.1038/cdd.2014.154] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 08/04/2014] [Accepted: 08/21/2014] [Indexed: 11/18/2022] Open
Abstract
Dual control of cellular heme levels by extracellular scavenger proteins and degradation by heme oxygenases is essential in diseases associated with increased heme release. During severe hemolysis or rhabdomyolysis, uncontrolled heme exposure can cause acute kidney injury and endothelial cell damage. The toxicity of heme was primarily attributed to its pro-oxidant effects; however additional mechanisms of heme toxicity have not been studied systematically. In addition to redox reactivity, heme may adversely alter cellular functions by binding to essential proteins and impairing their function. We studied inducible heme oxygenase (Hmox1)-deficient mouse embryo fibroblast cell lines as a model to systematically explore adaptive and disruptive responses that were triggered by intracellular heme levels exceeding the homeostatic range. We extensively characterized the proteome phenotype of the cellular heme stress responses by quantitative mass spectrometry of stable isotope-labeled cells that covered more than 2000 individual proteins. The most significant signals specific to heme toxicity were consistent with oxidative stress and impaired protein degradation by the proteasome. This ultimately led to an activation of the response to unfolded proteins. These observations were explained mechanistically by demonstrating binding of heme to the proteasome that was linked to impaired proteasome function. Oxidative heme reactions and proteasome inhibition could be differentiated as synergistic activities of the porphyrin. Based on the present data a novel model of cellular heme toxicity is proposed, whereby proteasome inhibition by heme sustains a cycle of oxidative stress, protein modification, accumulation of damaged proteins and cell death.
Collapse
Affiliation(s)
- F Vallelian
- Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland
| | - J W Deuel
- Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland
| | - L Opitz
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - C A Schaer
- 1] Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland [2] Institute of Anesthesiology, University of Zurich, Zurich, Switzerland
| | - M Puglia
- 1] Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland [2] Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - M Lönn
- School of Medical Sciences, Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - W Engelsberger
- Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland
| | - S Schauer
- Functional Genomics Center Zurich, Swiss Federal Institute of Technology Zurich/University of Zurich, Zurich, Switzerland
| | - E Karnaukhova
- Laboratory of Biochemistry and Vascular Biology, Center of Biologics Evaluation and Research (CBER), FDA, Bethesda, MD, USA
| | - D R Spahn
- Institute of Anesthesiology, University of Zurich, Zurich, Switzerland
| | - R Stocker
- 1] School of Medical Sciences, Discipline of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia [2] Victor Chang Cardiac Research Institute and University of New South Wales, Sydney, New South Wales, Australia
| | - P W Buehler
- Laboratory of Biochemistry and Vascular Biology, Center of Biologics Evaluation and Research (CBER), FDA, Bethesda, MD, USA
| | - D J Schaer
- 1] Division of Internal Medicine, University of Zurich, CH-8091 Zurich, Switzerland [2] Center of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Nakatsukasa K, Kamura T, Brodsky JL. Recent technical developments in the study of ER-associated degradation. Curr Opin Cell Biol 2014; 29:82-91. [PMID: 24867671 DOI: 10.1016/j.ceb.2014.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 04/04/2014] [Accepted: 04/23/2014] [Indexed: 11/25/2022]
Abstract
Endoplasmic reticulum-associated degradation (ERAD) is a mechanism during which native and misfolded proteins are recognized and retrotranslocated across the ER membrane to the cytosol for degradation by the ubiquitin-proteasome system. Like other cellular pathways, the factors required for ERAD have been analyzed using both conventional genetic and biochemical approaches. More recently, however, an integrated top-down approach has identified a functional network that underlies the ERAD system. In turn, bottom-up reconstitution has become increasingly sophisticated and elucidated the molecular mechanisms underlying substrate recognition, ubiquitylation, retrotranslocation, and degradation. In addition, a live cell imaging technique and a site-specific in vivo photo-crosslinking approach have further dissected specific steps during ERAD. These technical developments have revealed an unexpected dynamicity of the membrane-associated ERAD complex. In this article, we will discuss how these technical developments have improved our understanding of the ERAD pathway and have led to new questions.
Collapse
Affiliation(s)
- Kunio Nakatsukasa
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan.
| | - Takumi Kamura
- Division of Biological Sciences, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
9
|
Matsumura Y, Sakai J, Skach WR. Endoplasmic reticulum protein quality control is determined by cooperative interactions between Hsp/c70 protein and the CHIP E3 ligase. J Biol Chem 2013; 288:31069-79. [PMID: 23990462 DOI: 10.1074/jbc.m113.479345] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The C terminus of Hsp70 interacting protein (CHIP) E3 ligase functions as a key regulator of protein quality control by binding the C-terminal (M/I)EEVD peptide motif of Hsp/c70(90) with its N-terminal tetratricopeptide repeat (TPR) domain and facilitating polyubiquitination of misfolded client proteins via its C-terminal catalytic U-box. Using CFTR as a model client, we recently showed that the duration of the Hsc70-client binding cycle is a primary determinant of stability. However, molecular features that control CHIP recruitment to Hsp/c70, and hence the fate of the Hsp/c70 client, remain unknown. To understand how CHIP recognizes Hsp/c70, we utilized a dominant negative mutant in which loss of a conserved proline in the U-box domain (P269A) eliminates E3 ligase activity. In a cell-free reconstituted ER-associated degradation system, P269A CHIP inhibited Hsc70-dependent CFTR ubiquitination and degradation in a dose-dependent manner. Optimal inhibition required both the TPR and the U-box, indicating cooperativity between the two domains. Neither the wild type nor the P269A mutant changed the extent of Hsc70 association with CFTR nor the dissociation rate of the Hsc70-CFTR complex. However, the U-box mutation stimulated CHIP binding to Hsc70 while promoting CHIP oligomerization. CHIP binding to Hsc70 binding was also stimulated by the presence of an Hsc70 client with a preference for the ADP-bound state. Thus, the Hsp/c70 (M/I)EEVD motif is not a simple anchor for the TPR domain. Rather CHIP recruitment involves reciprocal allosteric interactions between its TPR and U-box domains and the substrate-binding and C-terminal domains of Hsp/c70.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and
| | | | | |
Collapse
|
10
|
Matsumura Y, David LL, Skach WR. Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum-associated degradation. Mol Biol Cell 2011; 22:2797-809. [PMID: 21697503 PMCID: PMC3154877 DOI: 10.1091/mbc.e11-02-0137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hsc70 plays a productive role during cotranslational cystic fibrosis transmembrane conductance regulator folding that is outweighed by its dominant contribution to posttranslational targeting to the ubiquitin-proteasome system. Moreover, the outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is governed by regulatory cochaperones. The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
11
|
Henderson MJ, Singh OV, Zeitlin PL. Applications of proteomic technologies for understanding the premature proteolysis of CFTR. Expert Rev Proteomics 2010; 7:473-86. [PMID: 20653504 DOI: 10.1586/epr.10.42] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, which encodes an ATP-dependent anion channel. Disease-causing mutations can affect channel biogenesis, trafficking or function, and result in reduced ion transport at the apical surface of many tissues. The most common CFTR mutation is a deletion of phenylalanine at position 508 (DeltaF508), which results in a misfolded protein that is prematurely targeted for degradation. This article focuses on how proteomic approaches have been utilized to explore the mechanisms of premature proteolysis in CF. Additionally, we emphasize the potential for proteomic-based technologies in expanding our understanding of CF pathophysiology and therapeutic approaches.
Collapse
Affiliation(s)
- Mark J Henderson
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
12
|
Belcher C, Vij N. Protein processing and inflammatory signaling in Cystic Fibrosis: challenges and therapeutic strategies. Curr Mol Med 2010; 10:82-94. [PMID: 20205681 PMCID: PMC3114428 DOI: 10.2174/156652410791065408] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/22/2009] [Indexed: 01/23/2023]
Abstract
Cystic Fibrosis (CF) is an autosomal recessive disorder caused by mutations in the gene encoding the CF transmembrane conductance regulator (CFTR) that regulates epithelial surface fluid secretion in respiratory and gastrointestinal tracts. The deletion of phenylalanine at position 508 (DeltaF508) in CFTR is the most common mutation that results in a temperature sensitive folding defect, retention of the protein in the endoplasmic reticulum (ER), and subsequent degradation by the proteasome. ER associated degradation (ERAD) is a major quality control pathway of the cell. The majority (99%) of the protein folding, DeltaF508-, mutant of CFTR is known to be degraded by this pathway to cause CF. Recent studies have revealed that inhibition of DeltaF508-CFTR ubiquitination and proteasomal degradation can increase its cell surface expression and may provide an approach to treat CF. The finely tuned balance of ER membrane interactions determine the cytosolic fate of newly synthesized CFTR. These ER membrane interactions induce ubiquitination and proteasomal targeting of DeltaF508- over wild type- CFTR. We discuss here challenges and therapeutic strategies targeting protein processing of DeltaF508-CFTR with the goal of rescuing functional DeltaF508-CFTR to the cell surface. It is evident from recent studies that CFTR plays a critical role in inflammatory response in addition to its well-described ion transport function. Previous studies in CF have focused only on improving chloride efflux as a marker for promising treatment. We propose that methods quantifying the therapeutic efficacy and recovery from CF should not include only changes in chloride efflux, but also recovery of the chronic inflammatory signaling, as evidenced by positive changes in inflammatory markers (in vitro and ex vivo), lung function (pulmonary function tests, PFT), and chronic lung disease (state of the art molecular imaging, in vivo). This will provide novel therapeutics with greater opportunities of potentially attenuating the progression of the chronic CF lung disease.
Collapse
Affiliation(s)
- C.N. Belcher
- Department of Pediatrics, Eudowood Division of Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - N. Vij
- Department of Pediatrics, Eudowood Division of Pulmonary Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
13
|
Azzu V, Brand MD. Degradation of an intramitochondrial protein by the cytosolic proteasome. J Cell Sci 2010; 123:578-85. [PMID: 20103532 DOI: 10.1242/jcs.060004] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial uncoupling protein 2 (UCP2) is implicated in a wide range of pathophysiological processes, including immunity and diabetes mellitus, but its rapid degradation remains uncharacterized. Using pharmacological proteasome inhibitors, immunoprecipitation, dominant negative ubiquitin mutants, [corrected] cellular fractionation and siRNA techniques, we demonstrate the involvement of the ubiquitin-proteasome system in the rapid degradation of UCP2. Importantly, we resolve the issue of whether intramitochondrial proteins can be degraded by the cytosolic proteasome by reconstituting a cell-free system that shows rapid proteasome-inhibitor-sensitive UCP2 degradation in isolated, energised mitochondria presented with an ATP regenerating system, ubiquitin and 26S proteasome fractions. These observations provide the first demonstration that a mitochondrial inner membrane protein is degraded by the cytosolic ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Vian Azzu
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK
| | | |
Collapse
|
14
|
Fisher EA, Lapierre LR, Junkins RD, McLeod RS. The AAA-ATPase p97 facilitates degradation of apolipoprotein B by the ubiquitin-proteasome pathway. J Lipid Res 2008; 49:2149-60. [DOI: 10.1194/jlr.m800108-jlr200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Perlmutter DH. Autophagic disposal of the aggregation-prone protein that causes liver inflammation and carcinogenesis in alpha-1-antitrypsin deficiency. Cell Death Differ 2008; 16:39-45. [PMID: 18617899 DOI: 10.1038/cdd.2008.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Alpha-1-antitrypsin (AT) deficiency is a relatively common autosomal co-dominant disorder, which causes chronic lung and liver disease. A point mutation renders aggregation-prone properties on a hepatic secretory protein in such a way that the mutant protein is retained in the endoplasmic reticulum of hepatocytes rather than secreted into the blood and body fluids where it ordinarily functions as an inhibitor of neutrophil proteases. A loss-of-function mechanism allows neutrophil proteases to degrade the connective tissue matrix of the lung causing chronic emphysema. Accumulation of aggregated mutant AT in the endoplasmic reticulum of hepatocytes causes liver inflammation and carcinogenesis by a gain-of-toxic function mechanism. However, genetic epidemiology studies indicate that many, if not the majority of, affected homozygotes are protected from liver disease by unlinked genetic and/or environmental modifiers. Studies performed over the last several years have demonstrated the importance of autophagy in disposal of mutant, aggregated AT and raise the possibility that predisposition to, or protection from, liver injury and carcinogenesis is determined by the balance of de novo biogenesis of the mutant AT molecule and its autophagic disposal.
Collapse
Affiliation(s)
- D H Perlmutter
- Department of Pediatrics, Cell Biology and Physiology, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC, 3705 Fifth Avenue, Pittsburgh, PA 15213-2583, USA.
| |
Collapse
|
16
|
Rothballer A, Tzvetkov N, Zwickl P. Mutations in p97/VCP induce unfolding activity. FEBS Lett 2007; 581:1197-201. [PMID: 17346713 DOI: 10.1016/j.febslet.2007.02.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 01/31/2007] [Accepted: 02/13/2007] [Indexed: 10/23/2022]
Abstract
A comparison of the protein sequences of various two-domain AAA+ ATPases revealed a striking difference in the residues lining the central pore of the D1 domain. The protein unfoldases of the bacterial Clp family and the archaeal VAT protein have at least one aromatic residue in the central D1 pore. In contrast, none of the members of the eukaryotic p97/VCP protein family has an aromatic residue in the D1 pore. The protein unfolding activity of VAT and other AAA+ ATPases is critically dependent on the presence of aromatic residues in this central pore. Unfoldase activity has not been demonstrated for the p97/VCP family in vitro. Thus, we exchanged the two aliphatic residues leucine and alanine of the D1 pore for aromatic tyrosine residues in full length p97 and in p97DeltaN, a truncated form of p97 lacking the N domain. We found that the mutant p97DeltaN variants with a single tyrosine or with two tyrosine residues in the central pore of D1 unfold the Clp family and VAT model substrate YFP-ssrA, whereas full length p97 with aromatic pore residues and wild-type p97 or p97DeltaN do not. Thus, p97 can exert unfoldase activity in vitro, provided that a single tyrosine residue is introduced into the D1 pore and that the N domain is deleted.
Collapse
Affiliation(s)
- Andrea Rothballer
- Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | |
Collapse
|
17
|
Carlson EJ, Pitonzo D, Skach WR. p97 functions as an auxiliary factor to facilitate TM domain extraction during CFTR ER-associated degradation. EMBO J 2006; 25:4557-66. [PMID: 16977321 PMCID: PMC1589997 DOI: 10.1038/sj.emboj.7601307] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 07/24/2006] [Indexed: 11/08/2022] Open
Abstract
The AAA-ATPase (ATPase associated with various cellular activities) p97 has been implicated in the degradation of misfolded and unassembled proteins in the endoplasmic reticulum (ERAD). To better understand its role in this process, we used a reconstituted cell-free system to define the precise contribution of p97 in degrading immature forms of the polytopic, multi-domain protein CFTR (cystic fibrosis transmembrane conductance regulator). Although p97 augmented both the rate and the extent of CFTR degradation, it was not obligatorily required for ERAD. Only a 50% decrease in degradation was observed in the complete absence of p97. Moreover, p97 specifically stimulated the degradation of CFTR transmembrane (TM) domains but had no effect on isolated cytosolic domains. Consistent with this, p97-mediated extraction of intact TM domains was independent of proteolytic cleavage and influenced by TM segment hydrophobicity, indicating that the relative contribution of p97 is partially determined by substrate stability. Thus, we propose that p97 functions in ERAD as a nonessential but important ancillary component to the proteasome where it facilitates substrate presentation and increases the degradation rate and efficiency of stable (TM) domains.
Collapse
Affiliation(s)
- Eric J Carlson
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - David Pitonzo
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| | - William R Skach
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
18
|
Shibatani T, Carlson EJ, Larabee F, McCormack AL, Früh K, Skach WR. Global organization and function of mammalian cytosolic proteasome pools: Implications for PA28 and 19S regulatory complexes. Mol Biol Cell 2006; 17:4962-71. [PMID: 16987959 PMCID: PMC1679665 DOI: 10.1091/mbc.e06-04-0311] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteolytic activity of the 20S proteasome is regulated by activators that govern substrate movement into and out of the catalytic chamber. However, the physiological relationship between activators, and hence the relative role of different proteasome species, remains poorly understood. To address this problem, we characterized the total pool of cytosolic proteasomes in intact and functional form using a single-step method that bypasses the need for antibodies, proteasome modification, or column purification. Two-dimensional Blue Native(BN)/SDS-PAGE and tandem mass spectrometry simultaneously identified six native proteasome populations in untreated cytosol: 20S, singly and doubly PA28-capped, singly 19S-capped, hybrid, and doubly 19S-capped proteasomes. All proteasome species were highly dynamic as evidenced by recruitment and exchange of regulatory caps. In particular, proteasome inhibition with MG132 markedly stimulated PA28 binding to exposed 20S alpha-subunits and generated doubly PA28-capped and hybrid proteasomes. PA28 recruitment virtually eliminated free 20S particles and was blocked by ATP depletion. Moreover, inhibited proteasomes remained stably associated with distinct cohorts of partially degraded fragments derived from cytosolic and ER substrates. These data establish a versatile platform for analyzing substrate-specific proteasome function and indicate that PA28 and 19S activators cooperatively regulate global protein turnover while functioning at different stages of the degradation cycle.
Collapse
Affiliation(s)
- Toru Shibatani
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Eric J. Carlson
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Fredrick Larabee
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| | - Ashley L. McCormack
- Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, Beaverton, OR 97006-3448
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon Health & Sciences University, Beaverton, OR 97006-3448
| | - William R. Skach
- *Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, Portland, OR 97201; and
| |
Collapse
|
19
|
Vij N, Fang S, Zeitlin PL. Selective inhibition of endoplasmic reticulum-associated degradation rescues DeltaF508-cystic fibrosis transmembrane regulator and suppresses interleukin-8 levels: therapeutic implications. J Biol Chem 2006; 281:17369-17378. [PMID: 16621797 DOI: 10.1074/jbc.m600509200] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is the major quality control pathway of the cell. The most common disease-causing protein folding mutation, DeltaF508-cystic fibrosis transmembrane regulator (CFTR), is destroyed by ERAD to cause cystic fibrosis (CF). p97/valosin-containing protein (VCP) physically interacts with gp78/autocrine motility factor receptor to couple ubiquitination, retrotranslocation, and proteasome degradation of misfolded proteins. We show here that p97/VCP and gp78 form complexes with CFTR during translocation from the ER for degradation by the cytosolic proteasome. Interference in the VCP-CFTR complex promoted accumulation of immature CFTR in the ER and partial rescue of functional chloride channels to the cell surface. Moreover, under these conditions, interleukin-8 (IL8), the expression of which is regulated by the proteasome, was reduced. Inhibition of the proteasome with bortezomib (PS-341/Velcade) also rescued CFTR, but with less efficiency, and suppressed NFkappaB-mediated IL8 activation. The inhibition of the major stress-inducible transcription factor CHOP (CCAAT/enhancer-binding protein homologous protein)/GADD153 together with bortezomib was most effective in repressing NFkappaB-mediated IL8 activation compared with interference of VCP, MLN-273 (proteasome inhibitor), or 4-phenylbutyrate (histone deacetylase inhibitor). Immunoprecipitation of DeltaF508-CFTR from primary CF bronchial epithelial cells confirmed the interaction with VCP and associated chaperones in CF. We conclude that VCP is an integral component of ERAD and cellular stress pathways induced by the unfolded protein response and may be central to the efficacy of CF drugs that target the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Neeraj Vij
- Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21287
| | - Shengyun Fang
- Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland 21201
| | - Pamela L Zeitlin
- Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21287.
| |
Collapse
|