1
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
2
|
Doerksen AH, Herath NN, Sanders SS. Fat traffic control: S-acylation in axonal transport. Mol Pharmacol 2025; 107:100039. [PMID: 40349611 DOI: 10.1016/j.molpha.2025.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 05/14/2025] Open
Abstract
Neuronal axons serve as a conduit for the coordinated transport of essential molecular cargo between structurally and functionally distinct subcellular compartments via axonal molecular machinery. Long-distance, efficient axonal transport of membrane-bound organelles enables signal transduction and neuronal homeostasis. Efficient axonal transport is conducted by dynein and kinesin ATPase motors that use a local ATP supply from metabolic enzymes tethered to transport vesicles. Molecular motor adaptor proteins promote the processive motility and cargo selectivity of fast axonal transport. Axonal transport impairments are directly causative or associated with many neurodegenerative diseases and neuropathologies. Cargo specificity, cargo-adaptor proteins, and posttranslational modifications of cargo, adaptor proteins, microtubules, or the motor protein subunits all contribute to the precise regulation of vesicular transit. One posttranslational lipid modification that is particularly important in neurons in regulating protein trafficking, protein-protein interactions, and protein association with lipid membranes is S-acylation. Interestingly, many fast axonal transport cargos, cytoskeletal-associated proteins, motor protein subunits, and adaptors are S-acylated to modulate axonal transport. Here, we review the established regulatory role of S-acylation in fast axonal transport and provide evidence for a broader role of S-acylation in regulating the motor-cargo complex machinery, adaptor proteins, and metabolic enzymes from low-throughput studies and S-acyl-proteomic data sets. We propose that S-acylation regulates fast axonal transport and vesicular motility through localization of the proteins required for the motile cargo-complex machinery and relate how perturbed S-acylation contributes to transport impairments in neurological disorders. SIGNIFICANCE STATEMENT: This review investigates the regulatory role of S-acylation in fast axonal transport and its connection to neurological diseases, with a focus on the emerging connections between S-acylation and the molecular motors, adaptor proteins, and metabolic enzymes that make up the trafficking machinery.
Collapse
Affiliation(s)
- Amelia H Doerksen
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Nisandi N Herath
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Shaun S Sanders
- Department of Molecular and Cellular Biology, College of Biological Sciences, University of Guelph, Ontario, Canada.
| |
Collapse
|
3
|
McMahon G, Agarwal D, Arora M, Wang Z, Hakozaki H, Schöneberg J. 4D mitochondrial network assumes distinct and predictive phenotypes through human lung and intestinal epithelial development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648043. [PMID: 40291695 PMCID: PMC12027333 DOI: 10.1101/2025.04.09.648043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Mitochondria form a dynamic three-dimensional network within the cell that exhibits a wide range of morphologies and behaviors. Depending on cell state, cell type, and cell fate, a cell's mitochondrial phenotype might range from relatively isolated mitochondrial segments to complex branching networks, and from stationary mitochondria to highly motile structures. While isolated mitochondrial phenotypes have been described for a subset of cell states, types, and fates, an integrated map of how mitochondrial phenotypes change over the full course of tissue development has so far been lacking. Here, we identify the mitochondrial phenotypes that appear throughout the course of lung and intestinal epithelial development from stem cells to differentiated tissue. Using human stem cell-derived intestinal and branching lung organoids that mimic developing human organs as model systems, we extract and analyze key mitochondrial biophysical phenotypes in human development. To achieve this, we employ lattice light-sheet microscopy (LLSM), which enables high-resolution, 4D (x, y, z, time) imaging of mitochondria in organoid tissues with minimal damage to the sample. We image at key developmental time points from stem cell differentiation into mature organoid tissue. For data processing, we utilize the MitoGraph and MitoTNT software packages along with our developed custom computational tools. These tools allow for automated 4D organoid to single cell image processing and quantitative 4D single cell mitochondrial temporal network tracking. This work represents the first 4D high spatiotemporal-resolution quantification of live human organoid tissues at the single-cell level through development. We identified distinct mitochondrial phenotypes unique to each organoid type and found correlations between mitochondrial phenotypes, cellular age, and cell type. Furthermore, we demonstrate that mitochondrial network characteristics can predict both organoid type and cell age. Our findings reveal fundamental aspects of mitochondrial biology that were previously unobservable, offering new insights into cell-type-specific mitochondrial dynamics and enabling new findings in relevant human model systems. We believe that our findings and methods will be essential for advancing 4D cell biology, providing a powerful framework for characterizing organelles in organoid tissues.
Collapse
|
4
|
Xiang H. The interplay between α-synuclein aggregation and necroptosis in Parkinson's disease: a spatiotemporal perspective. Front Neurosci 2025; 19:1567445. [PMID: 40264913 PMCID: PMC12011736 DOI: 10.3389/fnins.2025.1567445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the death of dopaminergic neurons and the aggregation of alpha-synuclein (α-Syn). It presents with prominent motor symptoms, and by the time of diagnosis, a significant number of neurons have already been lost. Current medications can only alleviate symptoms but cannot halt disease progression. Studies have confirmed that both dopaminergic neuronal loss and α-Syn aggregation are associated with necroptosis mechanisms. Necroptosis, a regulated form of cell death, has been recognized as an underexplored hotspot in PD pathogenesis research. In this review, we propose a spatiotemporal model of PD progression, highlighting the interactions between α-Syn aggregation, mitochondrial dysfunction, oxidative stress, neuroinflammation and necroptosis. These processes not only drive motor symptoms but also contribute to early non-motor symptoms, offering insights into potential diagnostic markers. Finally, we touch upon the therapeutic potential of necroptosis inhibition in enhancing current PD treatments, such as L-Dopa. This review aims to provide a new perspective on the pathogenesis of PD and to identify avenues for the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Haoran Xiang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Neurology, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
5
|
Wadan AHS, Shaaban AH, El-Sadek MZ, Mostafa SA, Moshref AS, El-Hussein A, Ellakwa DES, Mehanny SS. Mitochondrial-based therapies for neurodegenerative diseases: a review of the current literature. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04014-0. [PMID: 40163151 DOI: 10.1007/s00210-025-04014-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
Neurodegenerative disorders present significant challenges to modern medicine because of their complex etiology, pathogenesis, and progressive nature, which complicate practical treatment approaches. Mitochondrial dysfunction is an important contributor to the pathophysiology of various neurodegenerative illnesses, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). This review paper examines the current literature highlighting the multifaceted functions of mitochondria, including energy production, calcium signaling, apoptosis regulation, mitochondrial biogenesis, mitochondrial dynamics, axonal transport, endoplasmic reticulum-mitochondrial interactions, mitophagy, mitochondrial proteostasis, and their crucial involvement in neuronal health. The literature emphasizes the increasing recognition of mitochondrial dysfunction as a critical factor in the progression of neurodegenerative disorders, marking a shift from traditional symptom management to innovative mitochondrial-based therapies. By discussing mitochondrial mechanisms, including mitochondrial quality control (MQC) processes and the impact of oxidative stress, this review highlights the need for novel therapeutic strategies to restore mitochondrial function, protect neuronal connections and integrity, and slow disease progression. This comprehensive review aims to provide insights into potential interventions that could transform the treatment landscape for neurodegenerative diseases, addressing symptoms and underlying pathophysiological changes.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt.
| | - Ahmed H Shaaban
- Department of Biology, Faculty of Science, Galala University, Galala Plateau, Attaka,, Suez Governorate, 15888, Egypt
| | - Mohamed Z El-Sadek
- Department of Biology, Faculty of Science, Galala University, Galala Plateau, Attaka,, Suez Governorate, 15888, Egypt
| | | | - Ahmed Sherief Moshref
- Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt
| | - Ahmed El-Hussein
- Department of Biology, Faculty of Science, Galala University, Galala Plateau, Attaka,, Suez Governorate, 15888, Egypt
- Department of Laser Applications in Meteorology, Photochemistry, and Biotechnology, The National Institute of Laser Enhanced Science, Cairo University, Cairo, 11316, Egypt
| | - Doha El-Sayed Ellakwa
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy for Girls, Al-Azhar University, Cairo, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Kantra Branch, Ismailia, Egypt
| | - Samah S Mehanny
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala Plateau, Attaka, Suez Governorate, 15888, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
6
|
Perez L, Ng XW, Piston DW, Mukherji S. The response of mitochondrial position to glucose stimulation in a model system of the pancreatic beta cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.637960. [PMID: 39990463 PMCID: PMC11844509 DOI: 10.1101/2025.02.13.637960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The compartmentalization of eukaryotic cells into membrane-bound organelles with specific subcellular positioning enables precise spatial and temporal control of cellular functions. While functionally significant mitochondrial localization has been demonstrated in cells such as neurons, it remains unclear how general these cell principles are. Here, we examine the spatial organization of mitochondria within MIN6 pancreatic beta cells under variable glucose conditions. We observe glucose-dependent redistributions of mitochondria, favoring peripheral localization at elevated glucose levels when insulin secretion is also elevated. Our results suggest that active mitochondrial transport along microtubules and calcium activity, but not ATP synthesis, are critical regulators of this redistribution. We derived a mathematical model that reveals a putative affinity of the mitochondria for cellular membranes competes with mitochondrial microtubule attachment to play an important role in establishing the mitochondrial spatial patterns we observe. These results suggest that mitochondrial positioning may contribute to optimizing energy delivery in response to local demand, potentially representing a general regulatory mechanism across various cell types.
Collapse
|
7
|
Maddineni P, Kodati B, Kaipa BR, Kesavan K, Cameron Millar J, Yacoub S, Kasetti RB, Clark AF, Zode GS. Genetic and pharmacological correction of impaired mitophagy in retinal ganglion cells rescues glaucomatous neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638142. [PMID: 39990391 PMCID: PMC11844533 DOI: 10.1101/2025.02.13.638142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Progressive loss of retinal ganglion cells (RGCs) and degeneration of optic nerve axons are the pathological hallmarks of glaucoma. Ocular hypertension (OHT) and mitochondrial dysfunction are linked to neurodegeneration and vision loss in glaucoma. However, the exact mechanism of mitochondrial dysfunction leading to glaucomatous neurodegeneration is poorly understood. Using multiple mouse models of OHT and human eyes from normal and glaucoma donors, we show that OHT induces impaired mitophagy in RGCs, resulting in the accumulation of dysfunctional mitochondria and contributing to glaucomatous neurodegeneration. Using mitophagy reporter mice, we show that impaired mitophagy precedes glaucomatous neurodegeneration. Notably, the pharmacological rescue of impaired mitophagy via Torin-2 or genetic upregulation of RGC-specific Parkin expression restores the structural and functional integrity of RGCs and their axons in mouse models of glaucoma and ex-vivo human retinal-explant cultures. Our study indicates that impaired mitophagy contributes to mitochondrial dysfunction and oxidative stress, leading to glaucomatous neurodegeneration. Enhancing mitophagy in RGCs represents a promising therapeutic strategy to prevent glaucomatous neurodegeneration.
Collapse
|
8
|
Guerra San Juan I, Brunner JW, Eggan K, Toonen RF, Verhage M. KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons. Neurobiol Dis 2025; 204:106759. [PMID: 39644980 DOI: 10.1016/j.nbd.2024.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024] Open
Abstract
Mutations in the microtubule-binding motor protein kinesin 5 A (KIF5A) are implicated in several adult-onset motor neuron diseases, including Amyotrophic Lateral Sclerosis, Spastic Paraplegia Type 10 and Charcot-Marie-Tooth Disease Type 2. While KIF5 family members transport a variety of cargos along axons, the specific cargos affected by KIF5A mutations remain poorly understood. Here, we generated KIF5Anull mutant human motor neurons and analyzed the impact on axonal transport and motor neuron outgrowth and regeneration in vitro. KIF5A deficiency caused reduced neurite complexity in young neurons (DIV14) and defects in axonal regeneration. KIF5A deficiency did not affect neurofilament transport but impaired mitochondrial motility and anterograde speed at DIV42. Notably, KIF5A deficiency strongly reduced anterograde transport of splicing factor proline/glutamine-rich (SFPQ)-associated RNA granules in DIV42 axons. Hence, KIF5A plays a critical role in promoting axonal regrowth after injury and in driving the anterograde transport of mitochondria and especially SFPQ-associated RNA granules in mature neurons.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Jessie W Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, the Netherlands; Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Shinno K, Miura Y, Iijima KM, Suzuki E, Ando K. Axonal distribution of mitochondria maintains neuronal autophagy during aging via eIF2β. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576435. [PMID: 38293064 PMCID: PMC10827206 DOI: 10.1101/2024.01.20.576435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Neuronal aging and neurodegenerative diseases are accompanied by proteostasis collapse, while cellular factors that trigger it are not identified. Impaired mitochondrial transport in the axon is another feature of aging and neurodegenerative diseases. Using Drosophila, we found that genetic depletion of axonal mitochondria causes dysregulation of protein degradation. Axons with mitochondrial depletion showed abnormal protein accumulation and autophagic defects. Lowering neuronal ATP levels by blocking glycolysis did not reduce autophagy, suggesting that autophagic defects are associated with mitochondrial distribution. We found that eIF2β was increased by the depletion of axonal mitochondria via proteome analysis. Phosphorylation of eIF2α, another subunit of eIF2, was lowered, and global translation was suppressed. Neuronal overexpression of eIF2β phenocopied the autophagic defects and neuronal dysfunctions, and lowering eIF2β expression rescued those perturbations caused by depletion of axonal mitochondria. These results indicate the mitochondria-eIF2β axis maintains proteostasis in the axon, of which disruption may underly the onset and progression of age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Kanako Shinno
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi, Tokyo, 173-0015, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, 467-8603, Japan
| | - Emiko Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
- Gene Network Laboratory, National Institute of Genetics and Department of Genetics, SOKENDAI, Mishima, Shizuoka, 411-8540, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
10
|
Jacobs HT, Rustin P, Bénit P, Davidi D, Terzioglu M. Mitochondria: great balls of fire. FEBS J 2024; 291:5327-5341. [PMID: 39543792 DOI: 10.1111/febs.17316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/03/2024] [Accepted: 10/22/2024] [Indexed: 11/17/2024]
Abstract
Recent experimental studies indicate that mitochondria in mammalian cells are maintained at temperatures of at least 50 °C. While acknowledging the limitations of current experimental methods and their interpretation, we here consider the ramifications of this finding for cellular functions and for evolution. We consider whether mitochondria as heat-producing organelles had a role in the origin of eukaryotes and in the emergence of homeotherms. The homeostatic responses of mitochondrial temperature to externally applied heat imply the existence of a molecular heat-sensing system in mitochondria. While current findings indicate high temperatures for the innermost compartments of mitochondria, those of the mitochondrial surface and of the immediately surrounding cytosol remain to be determined. We ask whether some aspects of mitochondrial dynamics and motility could reflect changes in the supply and demand for mitochondrial heat, and whether mitochondrial heat production could be a factor in diseases and immunity.
Collapse
Affiliation(s)
- Howard T Jacobs
- Faculty of Medicine and Health Technology, Tampere University, Finland
- Department of Environment and Genetics, La Trobe University, Melbourne, Australia
| | - Pierre Rustin
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, Paris, France
| | - Paule Bénit
- Université Paris Cité, Inserm, Maladies neurodéveloppementales et neurovasculaires, Paris, France
| | - Dan Davidi
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mügen Terzioglu
- Faculty of Medicine and Health Technology, Tampere University, Finland
| |
Collapse
|
11
|
Riboul DV, Crill S, Oliva CD, Restifo MG, Joseph R, Joseph K, Nguyen KC, Hall DH, Fily Y, Macleod GT. Ultrastructural Analysis Reveals Mitochondrial Placement Independent of Synapse Placement in Fine Caliber C. elegans Neurons. J Comp Neurol 2024; 532:e70002. [PMID: 39690920 PMCID: PMC11977862 DOI: 10.1002/cne.70002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024]
Abstract
Neurons rely on mitochondria for an efficient supply of ATP and other metabolites. However, while neurons are highly elongated, mitochondria are discrete and limited in number. Due to the slow rates of metabolite diffusion over long distances, it follows that neurons would benefit from an ability to control the distribution of mitochondria to sites of high metabolic activity such as synapses. Ultrastructural data over substantial portions of a neuron's extent that would allow for tests of such hypotheses are scarce. Here, we mined the Caenorhabditis elegans' electron micrographs of John White and Sydney Brenner and found systematic differences in average mitochondrial length (ranging from 1.3 to 2.4 µm), diameter (0.18-0.24 µm) and volume density (3.7%-6.5%) between neurons of different function and neurotransmitter type, but found limited differences in mitochondrial length, diameter, and density between axons and dendrites of the same neurons. In analyses of mitochondrial distribution, mitochondria were found to be distributed randomly with respect to presynaptic sites. Presynaptic sites were primarily localized to varicosities, but mitochondria were no more likely to be found in synaptic varicosities than non-synaptic varicosities. Consistently, mitochondrial volume density was no greater in synaptic varicosities than non-synaptic varicosities. Therefore, beyond the capacity to disperse mitochondria throughout their length, at least in C. elegans, fine caliber neurons manifest limited subcellular control of mitochondrial size and distribution.
Collapse
Affiliation(s)
- Danielle V. Riboul
- Integrative Biology & Neuroscience Graduate Program, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Sarah Crill
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Carlos D. Oliva
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | | | - Reggie Joseph
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Kerdes Joseph
- Department of Biology, C.E.S. College of Science, Florida Atlantic University, Boca Raton, FL, 33431, USA
| | - Ken C.Q. Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H. Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yaouen Fily
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Gregory T. Macleod
- Wilkes Honors College, Florida Atlantic University, Jupiter, FL, 33458, USA
- Jupiter Life Sciences Initiative, Florida Atlantic University, Jupiter, FL 33458, USA
- Brain Institute, Florida Atlantic University, Jupiter, FL 33458, USA
- Institute for Human Health & Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33458, USA
| |
Collapse
|
12
|
Nakano T, Irie K, Matsuo K, Mishima K, Nakamura Y. Molecular and cellular mechanisms of mitochondria transfer in models of central nervous system disease. J Cereb Blood Flow Metab 2024:271678X241300223. [PMID: 39539186 PMCID: PMC11565516 DOI: 10.1177/0271678x241300223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In the central nervous system (CNS), neuronal function and dysfunction are critically dependent on mitochondrial integrity and activity. In damaged or diseased brains, mitochondrial dysfunction reduces adenosine triphosphate (ATP) levels and impairs ATP-dependent neural firing and neurotransmitter dynamics. Restoring mitochondrial capacity to generate ATP may be fundamental in restoring neuronal function. Recent studies in animals and humans have demonstrated that endogenous mitochondria may be released into the extracellular environment and transported or exchanged between cells in the CNS. Under pathological conditions in the CNS, intercellular mitochondria transfer contributes to new classes of signaling and multifunctional cellular activities, thereby triggering deleterious effects or promoting beneficial responses. Therefore, to take full advantage of the beneficial effects of mitochondria, it may be useful to transplant healthy and viable mitochondria into damaged tissues. In this review, we describe recent findings on the mechanisms of mitochondria transfer and provide an overview of experimental methodologies, including tissue sourcing, mitochondrial isolation, storage, and modification, aimed at optimizing mitochondria transplantation therapy for CNS disorders. Additionally, we examine the clinical relevance and potential strategies for the therapeutic application of mitochondria transplantation.
Collapse
Affiliation(s)
- Takafumi Nakano
- Department of Oncology and Infectious Disease Pharmacy, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Keiichi Irie
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Koichi Matsuo
- Department of Oncology and Infectious Disease Pharmacy, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kenichi Mishima
- Department of Physiology and Pharmacology, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yoshihiko Nakamura
- Department of Emergency and Critical Care Medicine, Fukuoka University Hospital, Fukuoka, Japan
| |
Collapse
|
13
|
Kuznetsov AV. Effects of Time-Dependent Adenosine Triphosphate Consumption Caused by Neuron Firing on Adenosine Triphosphate Concentrations in Synaptic Boutons Containing and Lacking a Stationary Mitochondrion. J Biomech Eng 2024; 146:111002. [PMID: 38888293 DOI: 10.1115/1.4065743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
The precise mechanism behind the supply of adenosine triphosphate (ATP) to approximately half of the presynaptic release sites in axons that lack a stationary mitochondrion is not fully understood. This paper presents a mathematical model designed to simulate the transient ATP concentration in presynaptic en passant boutons. The model is utilized to investigate how the ATP concentration responds to increased ATP demand during neuronal firing in boutons with a stationary mitochondrion and those without one. The analysis suggests that neuron firing may cause oscillations in the ATP concentrations, with peak-to-peak amplitudes ranging from 0.06% to 5% of their average values. However, this does not deplete boutons lacking a mitochondrion of ATP; for physiologically relevant values of model parameters, their concentration remains approximately 3.75 times higher than the minimum concentration required for synaptic activity. The variance in average ATP concentrations between boutons containing a stationary mitochondrion and those lacking one ranges from 0.3% to 0.8%, contingent on the distance between the boutons. The model indicates that diffusion-driven ATP transport is rapid enough to adequately supply ATP molecules to boutons lacking a stationary mitochondrion.
Collapse
Affiliation(s)
- Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910
| |
Collapse
|
14
|
Martínez P, Silva M, Abarzúa S, Tevy MF, Jaimovich E, Constantine-Paton M, Bustos FJ, van Zundert B. Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death. Mol Med 2024; 30:185. [PMID: 39455931 PMCID: PMC11505737 DOI: 10.1186/s10020-024-00942-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1G93A (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2 + transients and reactive oxygen species (i.e., H2O2). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
Collapse
Affiliation(s)
- Pablo Martínez
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Mónica Silva
- Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Sebastián Abarzúa
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | | | - Enrique Jaimovich
- Center for Exercise, Metabolism and Cancer, Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago, Chile
| | - Martha Constantine-Paton
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fernando J Bustos
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Nucleus of Neuroepigenetics and Plasticity (EpiNeuro), Santiago, Chile.
- Department of Neurology, University of Massachusetts Chan Medical School (UMMS), Worcester, MA, USA.
| |
Collapse
|
15
|
Guerra San Juan I, Brunner J, Eggan K, Toonen RF, Verhage M. KIF5A regulates axonal repair and time-dependent axonal transport of SFPQ granules and mitochondria in human motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611684. [PMID: 39314491 PMCID: PMC11418931 DOI: 10.1101/2024.09.06.611684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mutations in the microtubule binding motor protein, kinesin family member 5A (KIF5A), cause the fatal motor neuron disease, Amyotrophic Lateral Sclerosis. While KIF5 family members transport a variety of cargos along axons, it is still unclear which cargos are affected by KIF5A mutations. We generated KIF5A null mutant human motor neurons to investigate the impact of KIF5A loss on the transport of various cargoes and its effect on motor neuron function at two different timepoints in vitro. The absence of KIF5A resulted in reduced neurite complexity in young motor neurons (DIV14) and significant defects in axonal regeneration capacity at all developmental stages. KIF5A loss did not affect neurofilament transport but resulted in decreased mitochondria motility and anterograde speed at DIV42. More prominently, KIF5A depletion strongly reduced anterograde transport of SFPQ-associated RNA granules in DIV42 motor neuron axons. We conclude that KIF5A most prominently functions in human motor neurons to promote axonal regrowth after injury as well as to anterogradely transport mitochondria and, to a larger extent, SFPQ-associated RNA granules in a time-dependent manner.
Collapse
Affiliation(s)
- Irune Guerra San Juan
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Jessie Brunner
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam and VU Medical Center, Amsterdam, The Netherlands
- Department of Human Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Mistry N, Hobart J, Rog D, Muhlert N, Mathews J, Baker D, Giovannoni G. Reconciling lesions, relapses and smouldering associated worsening: A unifying model for multiple sclerosis pathogenesis. Mult Scler Relat Disord 2024; 88:105706. [PMID: 38880031 DOI: 10.1016/j.msard.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
The failure of relapses and white matter lesions to properly explain long-term disability and progression in multiple sclerosis is compounded by its artificial separation into relapsing remitting, secondary progressive, and primary progressive pigeonholes. The well-known epidemiological disconnection between relapses and long-term disability progression has been rediscovered as "progression independent of relapse activity", i.e. smouldering multiple sclerosis. This smouldering associated worsening proceeds despite early and prolonged use of disease modification therapies, even those that are highly effective at preventing relapses and new/enhancing white matter lesions on MRI. We recognise that smouldering associated worsening and relapse/lesion associated worsening coexist, to varying extents. The extent of cortical demyelination has been shown to correlate significantly with the severity of diffuse injury in normal appearing white matter (post mortem histopathologically (r = 0.55; P = 0.001), and in vivo with MRI (r = -0.6874; P = 0.0006)) and does so independently of white matter lesion burden. Axon loss in the normal appearing white matter explains disability in multiple sclerosis better than focal white matter lesions do. Smouldering associated worsening typically manifests as a length-dependent central axonopathy. We propose a unifying model for multiple sclerosis pathogenesis, wherein accumulation of cortical lesion burden predisposes associated normal appearing white matter to diffuse injury, whilst also intensifying damage within white matter lesions. Our novel two-hit hypothesis implicates cortical disease as a culprit for smouldering multiple sclerosis, abetted by active focal inflammation in the white matter (and vice versa). Substantiation of the two-hit hypothesis would advance the importance of specific therapeutic intervention for (and monitoring of) cortical/meningeal inflammation in people with multiple sclerosis.
Collapse
Affiliation(s)
- Niraj Mistry
- Department of Clinical Neurosciences, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| | - Jeremy Hobart
- Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - David Rog
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Nils Muhlert
- School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Joela Mathews
- Department of Neurology, The Royal London Hospital, London, UK
| | - David Baker
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gavin Giovannoni
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
17
|
Kuznetsov IA, Kuznetsov AV. Mitochondrial transport in symmetric and asymmetric axons with multiple branching junctions: a computational study. Comput Methods Biomech Biomed Engin 2024; 27:1071-1090. [PMID: 37424316 PMCID: PMC10776827 DOI: 10.1080/10255842.2023.2226787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/10/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
Mitochondrial aging has been proposed to be involved in a variety of neurodegenerative disorders, such as Parkinson's disease. Here, we explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study examined mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We investigated how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. Additionally, we studied whether mitochondrial concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch versus the lower branch. Furthermore, we explored whether the distributions of mitochondrial mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is unevenly split at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on the mitochondrial age.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of PA, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, NC State University, Raleigh, NC, USA
| |
Collapse
|
18
|
Cai M, Wan J, Cai K, Li S, Du X, Song H, Sun W, Hu J. The mitochondrial quality control system: a new target for exercise therapeutic intervention in the treatment of brain insulin resistance-induced neurodegeneration in obesity. Int J Obes (Lond) 2024; 48:749-763. [PMID: 38379083 DOI: 10.1038/s41366-024-01490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/22/2024]
Abstract
Obesity is a major global health concern because of its strong association with metabolic and neurodegenerative diseases such as diabetes, dementia, and Alzheimer's disease. Unfortunately, brain insulin resistance in obesity is likely to lead to neuroplasticity deficits. Since the evidence shows that insulin resistance in brain regions abundant in insulin receptors significantly alters mitochondrial efficiency and function, strategies targeting the mitochondrial quality control system may be of therapeutic and practical value in obesity-induced cognitive decline. Exercise is considered as a powerful stimulant of mitochondria that improves insulin sensitivity and enhances neuroplasticity. It has great potential as a non-pharmacological intervention against the onset and progression of obesity associated neurodegeneration. Here, we integrate the current knowledge of the mechanisms of neurodegenration in obesity and focus on brain insulin resistance to explain the relationship between the impairment of neuronal plasticity and mitochondrial dysfunction. This knowledge was synthesised to explore the exercise paradigm as a feasible intervention for obese neurodegenration in terms of improving brain insulin signals and regulating the mitochondrial quality control system.
Collapse
Affiliation(s)
- Ming Cai
- Jinshan District Central Hospital affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201599, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Keren Cai
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Shuyao Li
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xinlin Du
- College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Haihan Song
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China
| | - Wanju Sun
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| | - Jingyun Hu
- Central Lab, Shanghai Key Laboratory of Pathogenic Fungi Medical Testing, Shanghai Pudong New Area People's Hospital, Shanghai, 201299, China.
| |
Collapse
|
19
|
Bhatt V, Shukla H, Tiwari AK. Parkinson's Disease and Mitotherapy-Based Approaches towards α-Synucleinopathies. J Integr Neurosci 2024; 23:109. [PMID: 38940084 DOI: 10.31083/j.jin2306109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 06/29/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra pars compacta region of the midbrain and the formation of intracellular protein aggregates known as Lewy bodies, of which a major component is the protein α-synuclein. Several studies have suggested that mitochondria play a central role in the pathogenesis of PD, encompassing both familial and sporadic forms of the disease. Mitochondrial dysfunction is attributed to bioenergetic impairment, increased oxidative stress, damage to mitochondrial DNA, and alteration in mitochondrial morphology. These alterations may contribute to improper functioning of the central nervous system and ultimately lead to neurodegeneration. The perturbation of mitochondrial function makes it a potential target, worthy of exploration for neuroprotective therapies and to improve mitochondrial health in PD. Thus, in the current review, we provide an update on mitochondria-based therapeutic approaches toward α-synucleinopathies in PD.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Halak Shukla
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics & Developmental Biology Laboratory, Department of Biotechnology & Bioengineering, Institute of Advanced Research (IAR), 382426 Gandhinagar, Gujarat, India
| |
Collapse
|
20
|
Martínez P, Silva M, Abarzúa S, Tevy MF, Jaimovich E, Constantine-Paton M, Bustos FJ, van Zundert B. Skeletal myotubes expressing ALS mutant SOD1 induce pathogenic changes, impair mitochondrial axonal transport, and trigger motoneuron death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.24.595817. [PMID: 38826246 PMCID: PMC11142234 DOI: 10.1101/2024.05.24.595817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the loss of motoneurons (MNs), and despite progress, there is no effective treatment. A large body of evidence shows that astrocytes expressing ALS-linked mutant proteins cause non-cell autonomous toxicity of MNs. Although MNs innervate muscle fibers and ALS is characterized by the early disruption of the neuromuscular junction (NMJ) and axon degeneration, there are controversies about whether muscle contributes to non-cell-autonomous toxicity to MNs. In this study, we generated primary skeletal myotubes from myoblasts derived from ALS mice expressing human mutant SOD1 G93A (termed hereafter mutSOD1). Characterization revealed that mutSOD1 skeletal myotubes display intrinsic phenotypic and functional differences compared to control myotubes generated from non-transgenic (NTg) littermates. Next, we analyzed whether ALS myotubes exert non-cell-autonomous toxicity to MNs. We report that conditioned media from mutSOD1 myotubes (mutSOD1-MCM), but not from control myotubes (NTg-MCM), induced robust death of primary MNs in mixed spinal cord cultures and compartmentalized microfluidic chambers. Our study further revealed that applying mutSOD1-MCM to the MN axonal side in microfluidic devices rapidly reduces mitochondrial axonal transport while increasing Ca2+ transients and reactive oxygen species (i.e., H 2 O 2 ). These results indicate that soluble factor(s) released by mutSOD1 myotubes cause MN axonopathy that leads to lethal pathogenic changes.
Collapse
|
21
|
Halász H, Tárnai V, Matkó J, Nyitrai M, Szabó-Meleg E. Cooperation of Various Cytoskeletal Components Orchestrates Intercellular Spread of Mitochondria between B-Lymphoma Cells through Tunnelling Nanotubes. Cells 2024; 13:607. [PMID: 38607046 PMCID: PMC11011538 DOI: 10.3390/cells13070607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
Membrane nanotubes (NTs) are dynamic communication channels connecting spatially separated cells even over long distances and promoting the transport of different cellular cargos. NTs are also involved in the intercellular spread of different pathogens and the deterioration of some neurological disorders. Transport processes via NTs may be controlled by cytoskeletal elements. NTs are frequently observed membrane projections in numerous mammalian cell lines, including various immune cells, but their functional significance in the 'antibody factory' B cells is poorly elucidated. Here, we report that as active channels, NTs of B-lymphoma cells can mediate bidirectional mitochondrial transport, promoted by the cooperation of two different cytoskeletal motor proteins, kinesin along microtubules and myosin VI along actin, and bidirectional transport processes are also supported by the heterogeneous arrangement of the main cytoskeletal filament systems of the NTs. We revealed that despite NTs and axons being different cell extensions, the mitochondrial transport they mediate may exhibit significant similarities. Furthermore, we found that microtubules may improve the stability and lifespan of B-lymphoma-cell NTs, while F-actin strengthens NTs by providing a structural framework for them. Our results may contribute to a better understanding of the regulation of the major cells of humoral immune response to infections.
Collapse
Affiliation(s)
- Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Viktória Tárnai
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - János Matkó
- Department of Immunology, Faculty of Science, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
22
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
23
|
Kuznetsov IA, Kuznetsov AV. Effect of mitochondrial circulation on mitochondrial age density distribution. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3770. [PMID: 37688421 PMCID: PMC10841163 DOI: 10.1002/cnm.3770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/02/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023]
Abstract
Recent publications report that although the mitochondria population in an axon can be quickly replaced by a combination of retrograde and anterograde axonal transport (often within less than 24 hours), the axon contains much older mitochondria. This suggests that not all mitochondria that reach the soma are degraded and that some are recirculating back into the axon. To explain this, we developed a model that simulates mitochondria distribution when a portion of mitochondria that return to the soma are redirected back to the axon rather than being destroyed in somatic lysosomes. Utilizing the developed model, we studied how the percentage of returning mitochondria affects the mean age and age density distributions of mitochondria at different distances from the soma. We also investigated whether turning off the mitochondrial anchoring switch can reduce the mean age of mitochondria. For this purpose, we studied the effect of reducing the value of a parameter that characterizes the probability of mitochondria transition to the stationary (anchored) state. The reduction in mitochondria mean age observed when the anchoring probability is reduced suggests that some injured neurons may be saved if the percentage of stationary mitochondria is decreased. The replacement of possibly damaged stationary mitochondria with newly synthesized ones may restore the energy supply in an injured axon. We also performed a sensitivity study of the mean age of stationary mitochondria to the parameter that determines what portion of mitochondria re-enter the axon and the parameter that determines the probability of mitochondria transition to the stationary state. The sensitivity of the mean age of stationary mitochondria to the mitochondria stopping probability increases linearly with the number of compartments in the axon. High stopping probability in long axons can significantly increase mitochondrial age.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
24
|
Chai E, Chen Z, Mou Y, Thakur G, Zhan W, Li XJ. Liver-X-receptor agonists rescue axonal degeneration in SPG11-deficient neurons via regulating cholesterol trafficking. Neurobiol Dis 2023; 187:106293. [PMID: 37709208 PMCID: PMC10655618 DOI: 10.1016/j.nbd.2023.106293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 07/22/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023] Open
Abstract
Spastic paraplegia type 11 (SPG11) is a common autosomal recessive form of hereditary spastic paraplegia (HSP) characterized by the degeneration of cortical motor neuron axons, leading to muscle spasticity and weakness. Impaired lipid trafficking is an emerging pathology in neurodegenerative diseases including SPG11, though its role in axonal degeneration of human SPG11 neurons remains unknown. Here, we established a pluripotent stem cell-based SPG11 model by knocking down the SPG11 gene in human embryonic stem cells (hESCs). These stem cells were then differentiated into cortical projection neurons (PNs), the cell types affected in HSP patients, to examine axonal defects and cholesterol distributions. Our data revealed that SPG11 deficiency led to reduced axonal outgrowth, impaired axonal transport, and accumulated swellings, recapitulating disease-specific phenotypes. In SPG11-knockdown neurons, cholesterol was accumulated in lysosome and reduced in plasma membrane, revealing impairments in cholesterol trafficking. Strikingly, the liver-X-receptor (LXR) agonists restored cholesterol homeostasis, leading to the rescue of subsequent axonal defects in SPG11-deficient cortical PNs. To further determine the implication of impaired cholesterol homeostasis in SPG11, we examined the cholesterol distribution in cortical PNs generated from SPG11 disease-mutation knock-in hESCs, and observed a similar cholesterol trafficking impairment. Moreover, LXR agonists rescued the aberrant cholesterol distribution and mitigated the degeneration of SPG11 disease-mutated neurons. Taken together, our data demonstrate impaired cholesterol trafficking underlying axonal degeneration of SPG11 human neurons, and highlight the therapeutic potential of LXR agonists for SPG11 through restoring cholesterol homeostasis.
Collapse
Affiliation(s)
- Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Zhenyu Chen
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Gitika Thakur
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Weihai Zhan
- Office of Research, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL 61107, USA.; Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA..
| |
Collapse
|
25
|
Lu D, Feng Y, Liu G, Yang Y, Ren Y, Chen Z, Sun X, Guan Y, Wang Z. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front Neurosci 2023; 17:1268883. [PMID: 37901436 PMCID: PMC10600463 DOI: 10.3389/fnins.2023.1268883] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Ensuring mitochondrial quality is essential for maintaining neuronal homeostasis, and mitochondrial transport plays a vital role in mitochondrial quality control. In this review, we first provide an overview of neuronal mitochondrial transport, followed by a detailed description of the various motors and adaptors associated with the anterograde and retrograde transport of mitochondria. Subsequently, we review the modest evidence involving mitochondrial transport mechanisms that has surfaced in acute neurological disorders, including traumatic brain injury, spinal cord injury, spontaneous intracerebral hemorrhage, and ischemic stroke. An in-depth study of this area will help deepen our understanding of the mechanisms underlying the development of various acute neurological disorders and ultimately improve therapeutic options.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yun Feng
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yayi Yang
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China
| | - Yubo Ren
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yixiang Guan
- Department of Neurosurgery, Hai'an People's Hospital Affiliated of Nantong University, Nantong, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
26
|
Zierfuss B, Wang Z, Jackson AN, Moezzi D, Yong VW. Iron in multiple sclerosis - Neuropathology, immunology, and real-world considerations. Mult Scler Relat Disord 2023; 78:104934. [PMID: 37579645 DOI: 10.1016/j.msard.2023.104934] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/30/2023] [Accepted: 08/08/2023] [Indexed: 08/16/2023]
Abstract
Iron is an essential element involved in a multitude of bodily processes. It is tightly regulated, as elevated deposition in tissues is associated with diseases such as multiple sclerosis (MS). Iron accumulation in the central nervous system (CNS) of MS patients is linked to neurotoxicity through mechanisms including oxidative stress, glutamate excitotoxicity, misfolding of proteins, and ferroptosis. In the past decade, the combination of MRI and histopathology has enhanced our understanding of iron deposition in MS pathophysiology, including in the pro-inflammatory and neurotoxicity of iron-laden rims of chronic active lesions. In this regard, iron accumulation may not only have an impact on different CNS-resident cells but may also promote the innate and adaptive immune dysfunctions in MS. Although there are discordant results, most studies indicate lower levels of iron but higher amounts of the iron storage molecule ferritin in the circulation of people with MS. Considering the importance of iron, there is a need for evidence-guided recommendation for dietary intake in people living with MS. Potential novel therapeutic approaches include the regulation of iron levels using next generation iron chelators, as well as therapies to interfere with toxic consequences of iron overload including antioxidants in MS.
Collapse
Affiliation(s)
- Bettina Zierfuss
- The Research Center of the Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montréal H2X 0A9, Québec, Canada
| | - Zitong Wang
- Department of Psychiatry, College of Health Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2B7, Canada
| | - Alexandra N Jackson
- School of Rehabilitation Therapy, Faculty of Health Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Dorsa Moezzi
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada
| | - V Wee Yong
- The Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Dr NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
27
|
Kuznetsov IA, Kuznetsov AV. Computation of the mitochondrial age distribution along the axon length. Comput Methods Biomech Biomed Engin 2023; 26:1582-1594. [PMID: 36226813 DOI: 10.1080/10255842.2022.2128784] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/03/2022]
Abstract
We describe a compartmental model of mitochondrial transport in axons, which we apply to compute mitochondrial age at different distances from the soma. The model predicts that at the tip of an axon that has a length of 1 cm, the average mitochondrial age is approximately 22 h. The mitochondria are youngest closest to the soma and their age scales approximately linearly with distance from the soma. To the best of the authors' knowledge, this is the first attempt to predict the spatial distribution of mitochondrial age within an axon. A sensitivity study of the mean age of mitochondria to various model parameters is also presented.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
28
|
Underwood EL, Redell JB, Hood KN, Maynard ME, Hylin M, Waxham MN, Zhao J, Moore AN, Dash PK. Enhanced presynaptic mitochondrial energy production is required for memory formation. Sci Rep 2023; 13:14431. [PMID: 37660191 PMCID: PMC10475119 DOI: 10.1038/s41598-023-40877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 08/17/2023] [Indexed: 09/04/2023] Open
Abstract
Some of the prominent features of long-term memory formation include protein synthesis, gene expression, enhanced neurotransmitter release, increased excitability, and formation of new synapses. As these processes are critically dependent on mitochondrial function, we hypothesized that increased mitochondrial respiration and dynamics would play a prominent role in memory formation. To address this possibility, we measured mitochondrial oxygen consumption (OCR) in hippocampal tissue punches from trained and untrained animals. Our results show that context fear training significantly increased basal, ATP synthesis-linked, and maximal OCR in the Shaffer collateral-CA1 synaptic region, but not in the CA1 cell body layer. These changes were recapitulated in synaptosomes isolated from the hippocampi of fear-trained animals. As dynamin-related protein 1 (Drp1) plays an important role in mitochondrial fission, we examined its role in the increased mitochondrial respiration observed after fear training. Drp1 inhibitors decreased the training-associated enhancement of OCR and impaired contextual fear memory, but did not alter the number of synaptosomes containing mitochondria. Taken together, our results show context fear training increases presynaptic mitochondria respiration, and that Drp-1 mediated enhanced energy production in CA1 pre-synaptic terminals is necessary for context fear memory that does not result from an increase in the number of synaptosomes containing mitochondria or an increase in mitochondrial mass within the synaptic layer.
Collapse
Affiliation(s)
- Erica L Underwood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - John B Redell
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA.
| | - Kimberly N Hood
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Mark E Maynard
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Michael Hylin
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
- Department of Psychology, Southern Illinois University, Carbondale, IL, USA
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Jing Zhao
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Anthony N Moore
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| | - Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas McGovern Medical School, P.O. Box 20708, Houston, TX, 77225, USA
| |
Collapse
|
29
|
Chen L, Zhou M, Li H, Liu D, Liao P, Zong Y, Zhang C, Zou W, Gao J. Mitochondrial heterogeneity in diseases. Signal Transduct Target Ther 2023; 8:311. [PMID: 37607925 PMCID: PMC10444818 DOI: 10.1038/s41392-023-01546-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/21/2023] [Accepted: 06/13/2023] [Indexed: 08/24/2023] Open
Abstract
As key organelles involved in cellular metabolism, mitochondria frequently undergo adaptive changes in morphology, components and functions in response to various environmental stresses and cellular demands. Previous studies of mitochondria research have gradually evolved, from focusing on morphological change analysis to systematic multiomics, thereby revealing the mitochondrial variation between cells or within the mitochondrial population within a single cell. The phenomenon of mitochondrial variation features is defined as mitochondrial heterogeneity. Moreover, mitochondrial heterogeneity has been reported to influence a variety of physiological processes, including tissue homeostasis, tissue repair, immunoregulation, and tumor progression. Here, we comprehensively review the mitochondrial heterogeneity in different tissues under pathological states, involving variant features of mitochondrial DNA, RNA, protein and lipid components. Then, the mechanisms that contribute to mitochondrial heterogeneity are also summarized, such as the mutation of the mitochondrial genome and the import of mitochondrial proteins that result in the heterogeneity of mitochondrial DNA and protein components. Additionally, multiple perspectives are investigated to better comprehend the mysteries of mitochondrial heterogeneity between cells. Finally, we summarize the prospective mitochondrial heterogeneity-targeting therapies in terms of alleviating mitochondrial oxidative damage, reducing mitochondrial carbon stress and enhancing mitochondrial biogenesis to relieve various pathological conditions. The possibility of recent technological advances in targeted mitochondrial gene editing is also discussed.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengnan Zhou
- Department of Pathogenic Biology, School of Basic Medical Science, China Medical University, Shenyang, 110001, China
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Shanghai Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
| |
Collapse
|
30
|
Atkinson KC, Osunde M, Tiwari-Woodruff SK. The complexities of investigating mitochondria dynamics in multiple sclerosis and mouse models of MS. Front Neurosci 2023; 17:1144896. [PMID: 37559701 PMCID: PMC10409489 DOI: 10.3389/fnins.2023.1144896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/23/2023] [Indexed: 08/11/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating, degenerating disorder of the central nervous system (CNS) that is accompanied by mitochondria energy production failure. A loss of myelin paired with a deficit in energy production can contribute to further neurodegeneration and disability in patients in MS. Mitochondria are essential organelles that produce adenosine triphosphate (ATP) via oxidative phosphorylation in all cells in the CNS, including neurons, oligodendrocytes, astrocytes, and immune cells. In the context of demyelinating diseases, mitochondria have been shown to alter their morphology and undergo an initial increase in metabolic demand. This is followed by mitochondrial respiratory chain deficiency and abnormalities in mitochondrial transport that contribute to progressive neurodegeneration and irreversible disability. The current methodologies to study mitochondria are limiting and are capable of providing only a partial snapshot of the true mitochondria activity at a particular timepoint during disease. Mitochondrial functional studies are mostly performed in cell culture or whole brain tissue, which prevents understanding of mitochondrial pathology in distinct cell types in vivo. A true understanding of cell-specific mitochondrial pathophysiology of MS in mouse models is required. Cell-specific mitochondria morphology, mitochondria motility, and ATP production studies in animal models of MS will help us understand the role of mitochondria in the normal and diseased CNS. In this review, we present currently used methods to investigate mitochondria function in MS mouse models and discuss the current advantages and caveats with using each technique. In addition, we present recently developed mitochondria transgenic mouse lines expressing Cre under the control of CNS specific promoters to relate mitochondria to disease in vivo.
Collapse
Affiliation(s)
| | | | - Seema K. Tiwari-Woodruff
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
31
|
Tamada H. Three-dimensional ultrastructure analysis of organelles in injured motor neuron. Anat Sci Int 2023; 98:360-369. [PMID: 37071350 PMCID: PMC10256651 DOI: 10.1007/s12565-023-00720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/23/2023] [Indexed: 04/19/2023]
Abstract
Morphological analysis of organelles is one of the important clues for understanding the cellular conditions and mechanisms occurring in cells. In particular, nanoscale information within crowded intracellular organelles of tissues provide more direct implications when compared to analyses of cells in culture or isolation. However, there are some difficulties in detecting individual shape using light microscopy, including super-resolution microscopy. Transmission electron microscopy (TEM), wherein the ultrastructure can be imaged at the membrane level, cannot determine the whole structure, and analyze it quantitatively. Volume EM, such as focused ion beam/scanning electron microscopy (FIB/SEM), can be a powerful tool to explore the details of three-dimensional ultrastructures even within a certain volume, and to measure several parameters from them. In this review, the advantages of FIB/SEM analysis in organelle studies are highlighted along with the introduction of mitochondrial analysis in injured motor neurons. This would aid in understanding the morphological details of mitochondria, especially those distributed in the cell bodies as well as in the axon initial segment (AIS) in mouse tissues. These regions have not been explored thus far due to the difficulties encountered in accessing their images by conditional microscopies. Some mechanisms of nerve regeneration have also been discussed with reference to the obtained findings. Finally, future perspectives on FIB/SEM are introduced. The combination of biochemical and genetic understanding of organelle structures and a nanoscale understanding of their three-dimensional distribution and morphology will help to match achievements in genomics and structural biology.
Collapse
Affiliation(s)
- Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
- Anatomy, Graduate School of Medicines, University of Fukui, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-Gun, Fukui, 910-1193, Japan.
| |
Collapse
|
32
|
Bruno S, Lamberty A, McCoy M, Mark Z, Daphtary N, Aliyeva M, Butnor K, Poynter ME, Anathy V, Cunniff B. Deletion of Miro1 in airway club cells potentiates allergic asthma phenotypes. FRONTIERS IN ALLERGY 2023; 4:1187945. [PMID: 37377691 PMCID: PMC10291198 DOI: 10.3389/falgy.2023.1187945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Mitochondria are multifaceted organelles necessary for numerous cellular signaling and regulatory processes. Mitochondria are dynamic organelles, trafficked and anchored to subcellular sites depending upon the cellular and tissue requirements. Precise localization of mitochondria to apical and basolateral membranes in lung epithelial cells is important for key mitochondrial processes. Miro1 is an outer mitochondrial membrane GTPase that associates with adapter proteins and microtubule motors to promote intracellular movement of mitochondria. We show that deletion of Miro1 in lung epithelial cells leads to perinuclear clustering of mitochondria. However, the role of Miro1 in epithelial cell response to allergic insults remains unknown. We generated a conditional mouse model to delete Miro1 in Club Cell Secretory Protein (CCSP) positive lung epithelial cells to examine the potential roles of Miro1 and mitochondrial trafficking in the lung epithelial response to the allergen, house dust mite (HDM). Our data show that Miro1 suppresses epithelial induction and maintenance of the inflammatory response to allergen, as Miro1 deletion modestly induces increases in pro-inflammatory signaling, specifically IL-6, IL-33, CCL20 and eotaxin levels, tissue reorganization, and airway hyperresponsiveness. Furthermore, loss of Miro1 in CCSP+ lung epithelial cells blocks resolution of the asthmatic insult. This study further demonstrates the important contribution of mitochondrial dynamic processes to the airway epithelial allergen response and the pathophysiology of allergic asthma.
Collapse
Affiliation(s)
- Sierra Bruno
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Amelia Lamberty
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Margaret McCoy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Zoe Mark
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Nirav Daphtary
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Minara Aliyeva
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Kelly Butnor
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Matthew E. Poynter
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| | - Brian Cunniff
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, United States
| |
Collapse
|
33
|
Kuznetsov IA, Kuznetsov AV. Mitochondrial Transport in Symmetric and Asymmetric Axons with Multiple Branching Junctions: A Computational Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.22.529604. [PMID: 36865162 PMCID: PMC9980112 DOI: 10.1101/2023.02.22.529604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
We explore the impact of multiple branching junctions in axons on the mean age of mitochondria and their age density distributions in demand sites. The study looked at mitochondrial concentration, mean age, and age density distribution in relation to the distance from the soma. We developed models for a symmetric axon containing 14 demand sites and an asymmetric axon containing 10 demand sites. We examined how the concentration of mitochondria changes when an axon splits into two branches at the branching junction. We also studied whether mitochondria concentrations in the branches are affected by what proportion of mitochondrial flux enters the upper branch and what proportion of flux enters the lower branch. Additionally, we explored whether the distributions of mitochondria mean age and age density in branching axons are affected by how the mitochondrial flux splits at the branching junction. When the mitochondrial flux is split unevenly at the branching junction of an asymmetric axon, with a greater proportion of the flux entering the longer branch, the average age of mitochondria (system age) in the axon increases. Our findings elucidate the effects of axonal branching on mitochondria age. Mitochondria aging is the focus of this study as recent research suggests it may be involved in neurodegenerative disorders, such as Parkinson's disease.
Collapse
|
34
|
Kuznetsov IA, Kuznetsov AV. ATP diffusional gradients are sufficient to maintain bioenergetic homeostasis in synaptic boutons lacking mitochondria. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3696. [PMID: 36872253 DOI: 10.1002/cnm.3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 05/13/2023]
Abstract
Previous work on mitochondrial distribution in axons has shown that approximately half of the presynaptic release sites do not contain mitochondria, raising the question of how the boutons that do not contain mitochondria are supplied with ATP. Here, we develop and apply a mathematical model to study this question. Specifically, we investigate whether diffusive transport of ATP is sufficient to support the exocytic functionality in synaptic boutons which lack mitochondria. Our results demonstrate that the difference in ATP concentration between a bouton containing a mitochondrion and a neighboring bouton lacking a mitochondrion is only approximately 0.4%, which is still 3.75 times larger than the ATP concentration minimally required to support synaptic vesicle release. This work therefore suggests that passive diffusion of ATP is sufficient to maintain the functionality of boutons which do not contain mitochondria.
Collapse
Affiliation(s)
- Ivan A Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrey V Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
35
|
Overmeyer C, Jorgensen K, Vohra BPS. The Translocase of the Outer Mitochondrial Membrane (TOM40) is required for mitochondrial dynamics and neuronal integrity in Dorsal Root Ganglion Neurons. Mol Cell Neurosci 2023; 125:103853. [PMID: 37100265 DOI: 10.1016/j.mcn.2023.103853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/28/2023] Open
Abstract
Polymorphisms and altered expression of the Translocase of the Outer Mitochondrial Membrane - 40 kD (Tom40) are observed in neurodegenerative disease subjects. We utilized in vitro cultured dorsal root ganglion (DRG) neurons to investigate the association of TOM40 depletion to neurodegeneration, and to unravel the mechanism of neurodegeneration induced by decreased levels of TOM40 protein. We provide evidence that severity of neurodegeneration induced in the TOM40 depleted neurons increases with the increase in the depletion of TOM40 and is exacerbated by an increase in the duration of TOM40 depletion. We also demonstrate that TOM40 depletion causes a surge in neuronal calcium levels, decreases mitochondrial motility, increases mitochondrial fission, and decreases neuronal ATP levels. We observed that alterations in the neuronal calcium homeostasis and mitochondrial dynamics precede BCL-xl and NMNAT1 dependent neurodegenerative pathways in the TOM40 depleted neurons. This data also suggests that manipulation of BCL-xl and NMNAT1 may be of therapeutic value in TOM40 associated neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kylie Jorgensen
- Department of Biology, William Jewell College Liberty, MO 64068
| | | |
Collapse
|
36
|
Varte V, Munkelwitz JW, Rincon-Limas DE. Insights from Drosophila on Aβ- and tau-induced mitochondrial dysfunction: mechanisms and tools. Front Neurosci 2023; 17:1184080. [PMID: 37139514 PMCID: PMC10150963 DOI: 10.3389/fnins.2023.1184080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 03/31/2023] [Indexed: 05/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative dementia in older adults worldwide. Sadly, there are no disease-modifying therapies available for treatment due to the multifactorial complexity of the disease. AD is pathologically characterized by extracellular deposition of amyloid beta (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Increasing evidence suggest that Aβ also accumulates intracellularly, which may contribute to the pathological mitochondrial dysfunction observed in AD. According with the mitochondrial cascade hypothesis, mitochondrial dysfunction precedes clinical decline and thus targeting mitochondria may result in new therapeutic strategies. Unfortunately, the precise mechanisms connecting mitochondrial dysfunction with AD are largely unknown. In this review, we will discuss how the fruit fly Drosophila melanogaster is contributing to answer mechanistic questions in the field, from mitochondrial oxidative stress and calcium dysregulation to mitophagy and mitochondrial fusion and fission. In particular, we will highlight specific mitochondrial insults caused by Aβ and tau in transgenic flies and will also discuss a variety of genetic tools and sensors available to study mitochondrial biology in this flexible organism. Areas of opportunity and future directions will be also considered.
Collapse
Affiliation(s)
- Vanlalrinchhani Varte
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Jeremy W. Munkelwitz
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Diego E. Rincon-Limas
- Department of Neurology, McKnight Brain Institute, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
Kikuchi S, Kohno T, Kojima T, Tatsumi H, Ohsaki Y, Ninomiya T. Oxygen-Glucose Deprivation Decreases the Motility and Length of Axonal Mitochondria in Cultured Dorsal Root Ganglion Cells of Rats. Cell Mol Neurobiol 2023; 43:1267-1280. [PMID: 35771293 PMCID: PMC11414435 DOI: 10.1007/s10571-022-01247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/20/2022] [Indexed: 11/03/2022]
Abstract
Controlling axonal mitochondria is important for maintaining normal function of the neural network. Oxygen-glucose deprivation (OGD), a model used for mimicking ischemia, eventually induces neuronal cell death similar to axonal degeneration. Axonal mitochondria are disrupted during OGD-induced neural degeneration; however, the mechanism underlying mitochondrial dysfunction has not been completely understood. We focused on the dynamics of mitochondria in axons exposed to OGD; we observed that the number of motile mitochondria significantly reduced in 1 h following OGD exposure. In our observation, the decreased length of stationary mitochondria was affected by the following factors: first, the halt of motile mitochondria; second, the fission of longer stationary mitochondria; and third, a transformation from tubular to spherical shape in OGD-exposed axons. Motile mitochondria reduction preceded stationary mitochondria fragmentation in OGD exposure; these conditions induced the decrease of stationary mitochondria in three different ways. Our results suggest that mitochondrial morphological changes precede the axonal degeneration while ischemia-induced neurodegeneration.
Collapse
Affiliation(s)
- Shin Kikuchi
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Takayuki Kohno
- Department of Cell Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Sciences, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Haruyuki Tatsumi
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yuki Ohsaki
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takafumi Ninomiya
- Department of Anatomy 1, Sapporo Medical University School of Medicine, West 17, South 1, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
38
|
Yokota S, Shah SH, Huie EL, Wen RR, Luo Z, Goldberg JL. Kif5a Regulates Mitochondrial Transport in Developing Retinal Ganglion Cells In Vitro. Invest Ophthalmol Vis Sci 2023; 64:4. [PMID: 36862119 PMCID: PMC9983700 DOI: 10.1167/iovs.64.3.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Purpose Axon transport of organelles and neurotrophic factors is necessary for maintaining cellular function and survival of retinal ganglion cells (RGCs). However, it is not clear how trafficking of mitochondria, essential for RGC growth and maturation, changes during RGC development. The purpose of this study was to understand the dynamics and regulation of mitochondrial transport during RGC maturation using acutely purified RGCs as a model system. Methods Primary RGCs were immunopanned from rats of either sex during three stages of development. MitoTracker dye and live-cell imaging were used to quantify mitochondrial motility. Analysis of single-cell RNA sequencing was used to identify Kinesin family member 5A (Kif5a) as a relevant motor candidate for mitochondrial transport. Kif5a expression was manipulated with either short hairpin RNA (shRNA) or exogenous expression adeno-associated virus viral vectors. Results Anterograde and retrograde mitochondrial trafficking and motility decreased through RGC development. Similarly, the expression of Kif5a, a motor protein that transports mitochondria, also decreased during development. Kif5a knockdown decreased anterograde mitochondrial transport, while Kif5a expression increased general mitochondrial motility and anterograde mitochondrial transport. Conclusions Our results suggested that Kif5a directly regulates mitochondrial axonal transport in developing RGCs. Future work exploring the role of Kif5a in vivo in RGCs is indicated.
Collapse
Affiliation(s)
- Satoshi Yokota
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States.,Kobe City Eye Hospital, Kobe, Hyogo, Japan
| | - Sahil H Shah
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Emma Lee Huie
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Runxia Rain Wen
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Ziming Luo
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research, Byers Eye Institute, Stanford University, Palo Alto, California, United States
| |
Collapse
|
39
|
Onikanni SA, Lawal B, Oyinloye BE, Ajiboye BO, Ulziijargal S, Wang CH, Emran TB, Simal-Gandara J. Mitochondrial defects in pancreatic beta-cell dysfunction and neurodegenerative diseases: Pathogenesis and therapeutic applications. Life Sci 2023; 312:121247. [PMID: 36450327 DOI: 10.1016/j.lfs.2022.121247] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Mitochondria malfunction is linked to the development of β-cell failure and a variety of neurodegenerative disorders. Pancreatic β-cells are normally configured to detect glucose and other food secretagogues in order to adjust insulin exocytosis and maintain glucose homeostasis. As a result of the increased glucose level, mitochondria metabolites and nucleotides are produced, which operate in concert with cytosolic Ca2+ to stimulate insulin secretion. Furthermore, mitochondria are the primary generators of adenosine triphosphate (ATP), reactive oxygen species (ROS), and apoptosis regulation. Mitochondria are concentrated in synapses, and any substantial changes in synaptic mitochondria location, shape, quantity, or function might cause oxidative stress, resulting in faulty synaptic transmission, a symptom of various degenerative disorders at an early stage. However, a greater understanding of the role of mitochondria in the etiology of β-cell dysfunction and neurodegenerative disorder should pave the way for a more effective approach to addressing these health issues. This review looks at the widespread occurrence of mitochondria depletion in humans, and its significance to mitochondria biogenesis in signaling and mitophagy. Proper understanding of the processes might be extremely beneficial in ameliorating the rising worries about mitochondria biogenesis and triggering mitophagy to remove depleted mitochondria, therefore reducing disease pathogenesis.
Collapse
Affiliation(s)
- Sunday Amos Onikanni
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan; Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria.
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan; Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Babatunji Emmanuel Oyinloye
- Department of Chemical Sciences, Biochemistry Unit, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria; Biotechnology and Structural Biology (BSB) Group, Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa; Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria
| | - Basiru Olaitan Ajiboye
- Institute of Drug Research and Development, SE Bogoro Center, Afe Babalola University, PMB 5454, Ado-Ekiti 360001, Nigeria; Phytomedicine and Molecular Toxicology Research Laboratory, Department of Biochemistry, Federal University of Technology, Oye-Ekiti, Ekiti State, Nigeria
| | - Sukhbat Ulziijargal
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Hao Wang
- Graduate Institute of Biomedical Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh.
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, E32004 Ourense, Spain.
| |
Collapse
|
40
|
Kalra J. Crosslink between mutations in mitochondrial genes and brain disorders: implications for mitochondrial-targeted therapeutic interventions. Neural Regen Res 2023. [PMID: 35799515 PMCID: PMC9241418 DOI: 10.4103/1673-5374.343884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022] Open
|
41
|
Liu Y, Shuai K, Sun Y, Zhu L, Wu XM. Advances in the study of axon-associated vesicles. Front Mol Neurosci 2022; 15:1045778. [PMID: 36545123 PMCID: PMC9760877 DOI: 10.3389/fnmol.2022.1045778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is the most important and difficult to study system in the human body and is known for its complex functions, components, and mechanisms. Neurons are the basic cellular units realizing neural functions. In neurons, vesicles are one of the critical pathways for intracellular material transport, linking information exchanges inside and outside cells. The axon is a vital part of neuron since electrical and molecular signals must be conducted through axons. Here, we describe and explore the formation, trafficking, and sorting of cellular vesicles within axons, as well as related-diseases and practical implications. Furthermore, with deepening of understanding and the development of new approaches, accumulating evidence proves that besides signal transmission between synapses, the material exchange and vesicular transmission between axons and extracellular environment are involved in physiological processes, and consequently to neural pathology. Recent studies have also paid attention to axonal vesicles and their physiological roles and pathological effects on axons themselves. Therefore, this review mainly focuses on these two key nodes to explain the role of intracellular vesicles and extracellular vesicles migrated from cells on axons and neurons, providing innovative strategy for future researches.
Collapse
Affiliation(s)
- Yanling Liu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Ke Shuai
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yiyan Sun
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China
| | - Li Zhu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xiao-Mei Wu
- Institute of Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China,*Correspondence: Xiao-Mei Wu,
| |
Collapse
|
42
|
Badal KK, Puthanveettil SV. Axonal transport deficits in neuropsychiatric disorders. Mol Cell Neurosci 2022; 123:103786. [PMID: 36252719 DOI: 10.1016/j.mcn.2022.103786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/02/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Axonal transport is a major cellular process that mediates bidirectional signaling between the soma and synapse, enabling both intracellular and intercellular communications. Cellular materials, such as proteins, RNAs, and organelles, are transported by molecular motor proteins along cytoskeletal highways in a highly regulated manner. Several studies have demonstrated that axonal transport is central to normal neuronal function, plasticity, and memory storage. Importantly, disruptions in axonal transport result in neuronal dysfunction and are associated with several neurodegenerative disorders. However, we do not know much about axonal transport deficits in neuropsychiatric disorders. Here, we briefly discuss our current understanding of the role of axonal transport in schizophrenia, bipolar and autism.
Collapse
Affiliation(s)
- Kerriann K Badal
- Department of Neuroscience, UF Scripps Biomedical Research, University of Florida, 130 Scripps Way, Jupiter, FL 33458, USA; Integrative Biology PhD Program, Charles E. Schmidt College of Science, Florida Atlantic University, Jupiter, FL 33458, USA
| | | |
Collapse
|
43
|
Saavedra J, Nascimento M, Liz MA, Cardoso I. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol 2022; 10:1036123. [PMID: 36523504 PMCID: PMC9745159 DOI: 10.3389/fcell.2022.1036123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/14/2022] [Indexed: 06/22/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide, with the two major hallmarks being the deposition of extracellular β-amyloid (Aβ) plaques and of intracellular neurofibrillary tangles (NFTs). Additionally, early pathological events such as cerebrovascular alterations, a compromised blood-brain barrier (BBB) integrity, neuroinflammation and synaptic dysfunction, culminate in neuron loss and cognitive deficits. AD symptoms reflect a loss of neuronal circuit integrity in the brain; however, neurons do not operate in isolation. An exclusively neurocentric approach is insufficient to understand this disease, and the contribution of other brain cells including astrocytes, microglia, and vascular cells must be integrated in the context. The delicate balance of interactions between these cells, required for healthy brain function, is disrupted during disease. To design successful therapies, it is critical to understand the complex brain cellular connections in AD and the temporal sequence of their disturbance. In this review, we discuss the interactions between different brain cells, from physiological conditions to their pathological reactions in AD, and how this basic knowledge can be crucial for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Joana Saavedra
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Nascimento
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Márcia A. Liz
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Isabel Cardoso
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
44
|
Kuznetsov IA, Kuznetsov AV. Effects of axon branching and asymmetry between the branches on transport, mean age, and age density distributions of mitochondria in neurons: A computational study. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3648. [PMID: 36125402 PMCID: PMC9643662 DOI: 10.1002/cnm.3648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/17/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
We report a computational study of mitochondria transport in a branched axon with two branches of different sizes. For comparison, we also investigate mitochondria transport in an axon with symmetric branches and in a straight (unbranched) axon. The interest in understanding mitochondria transport in branched axons is motivated by the large size of arbors of dopaminergic neurons, which die in Parkinson's disease. Since the failure of energy supply of multiple demand sites located in various axonal branches may be a possible reason for the death of these neurons, we were interested in investigating how branching affects mitochondria transport. Besides investigating mitochondria fluxes between the demand sites and mitochondria concentrations, we also studied how the mean age of mitochondria and mitochondria age densities depend on the distance from the soma. We established that if the axon splits into two branches of unequal length, the mean ages of mitochondria and age density distributions in the demand sites are affected by how the mitochondria flux splits at the branching junction (what portion of mitochondria enter the shorter branch and what portion enter the longer branch). However, if the axon splits into two branches of equal length, the mean ages and age densities of mitochondria are independent of how the mitochondria flux splits at the branching junction. This even holds for the case when all mitochondria enter one branch, which is equivalent to a straight axon. Because the mitochondrial membrane potential (which many researchers view as a proxy for mitochondrial health) decreases with mitochondria age, the independence of mitochondria age on whether the axon is symmetrically branched or straight (providing the two axons are of the same length), and on how the mitochondria flux splits at the branching junction, may explain how dopaminergic neurons can sustain very large arbors and still maintain mitochondrial health across branch extremities.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrey V. Kuznetsov
- Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
45
|
Kim YJ, Cho MJ, Yu WD, Kim MJ, Kim SY, Lee JH. Links of Cytoskeletal Integrity with Disease and Aging. Cells 2022; 11:cells11182896. [PMID: 36139471 DOI: 10.3390/cells11182896] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Min Jeong Cho
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Won Dong Yu
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| |
Collapse
|
46
|
Chustecki JM, Etherington RD, Gibbs DJ, Johnston IG. Altered collective mitochondrial dynamics in the Arabidopsis msh1 mutant compromising organelle DNA maintenance. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5428-5439. [PMID: 35662332 PMCID: PMC9467644 DOI: 10.1093/jxb/erac250] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/01/2022] [Indexed: 05/19/2023]
Abstract
Mitochondria form highly dynamic populations in the cells of plants (and almost all eukaryotes). The characteristics and benefits of this collective behaviour, and how it is influenced by nuclear features, remain to be fully elucidated. Here, we use a recently developed quantitative approach to reveal and analyse the physical and collective 'social' dynamics of mitochondria in an Arabidopsis msh1 mutant where the organelle DNA maintenance machinery is compromised. We use a newly created line combining the msh1 mutant with mitochondrially targeted green fluorescent protein (GFP), and characterize mitochondrial dynamics with a combination of single-cell time-lapse microscopy, computational tracking, and network analysis. The collective physical behaviour of msh1 mitochondria is altered from that of the wild type in several ways: mitochondria become less evenly spread, and networks of inter-mitochondrial encounters become more connected, with greater potential efficiency for inter-organelle exchange-reflecting a potential compensatory mechanism for the genetic challenge to the mitochondrial DNA population, supporting more inter-organelle exchange. We find that these changes are similar to those observed in friendly, where mitochondrial dynamics are altered by a physical perturbation, suggesting that this shift to higher connectivity may reflect a general response to mitochondrial challenges, where physical dynamics of mitochondria may be altered to control the genetic structure of the mtDNA population.
Collapse
Affiliation(s)
| | | | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
47
|
Zhang L, Li C, Wang S, Avtanski D, Hadzi-Petrushev N, Mitrokhin V, Mladenov M, Wang F. Tetrahydrocurcumin-Related Vascular Protection: An Overview of the Findings from Animal Disease Models. Molecules 2022; 27:5100. [PMID: 36014335 PMCID: PMC9412611 DOI: 10.3390/molecules27165100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/05/2023] Open
Abstract
Tetrahydrocurcumin (THC), one of the major metabolites of CUR, possesses several CUR-like pharmacological effects; however, its mechanisms of action are largely unknown. This manuscript aims to summarize the literature on the preventive role of THC on vascular dysfunction and the development of hypertension by exploring the effects of THC on hemodynamic status, aortic elasticity, and oxidative stress in vasculature in different animal models. We review the protective effects of THC against hypertension induced by heavy metals (cadmium and iron), as well as its impact on arterial stiffness and vascular remodeling. The effects of THC on angiogenesis in CaSki xenografted mice and the expression of vascular endothelial growth factor (VEGF) are well documented. On the other hand, as an anti-inflammatory and antioxidant compound, THC is involved in enhancing homocysteine-induced mitochondrial remodeling in brain endothelial cells. The experimental evidence regarding the mechanism of mitochondrial dysfunction during cerebral ischemic/reperfusion injury and the therapeutic potential of THC to alleviate mitochondrial cerebral dysmorphic dysfunction patterns is also scrutinized and explored. Overall, the studies on different animal models of disease suggest that THC can be used as a dietary supplement to protect against cardiovascular changes caused by various factors (such as heavy metal overload, oxidative stress, and carcinogenesis). Additionally, the reviewed literature data seem to confirm THC's potential to improve mitochondrial dysfunction in cerebral vasculature during ischemic stroke through epigenetic mechanisms. We suggest that further preclinical studies should be implemented to demonstrate THC's vascular-protective, antiangiogenic, and anti-tumorigenic effects in humans. Applying the methods used in the presently reviewed studies would be useful and will help define the doses and methods of THC administration in various disease settings.
Collapse
Affiliation(s)
- Li Zhang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Changhu Li
- Cancer Center, Division of Radiation Physics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Sicheng Wang
- Medical Department, 6th City Clinical Hospital, 220037 Minsk, Belarus
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
| | - Vadim Mitrokhin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, P.O. Box 162, 1000 Skopje, North Macedonia
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, 117997 Moscow, Russia
| | - Feng Wang
- Cancer Center, Department of Medical Oncology, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Wang S, Tian W, Pan D, Liu L, Xu C, Ma Y, Wang D, Jiang L. A Comprehensive Analysis of the Myocardial Transcriptome in ZBED6-Knockout Bama Xiang Pigs. Genes (Basel) 2022; 13:genes13081382. [PMID: 36011293 PMCID: PMC9407500 DOI: 10.3390/genes13081382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
The ZBED6 gene is a transcription factor that regulates the expression of IGF2 and affects muscle growth and development. However, its effect on the growth and development of the heart is still unknown. Emerging evidence suggests that long noncoding RNAs (lncRNAs) can regulate genes at the epigenetic, transcriptional, and posttranscriptional levels and play an important role in the development of eukaryotes. To investigate the function of ZBED6 in the cardiac development of pigs, we constructed the expression profiles of mRNAs and lncRNAs in myocardial tissue obtained from Bama Xiang pigs in the ZBED6 knockout group (ZBED6-KO) and the wild-type group (ZBED6-WT). A total of 248 differentially expressed genes (DEGs) and 209 differentially expressed lncRNAs (DELs) were detected, and 105 potential cis target genes of DELs were identified. The functional annotation analysis based on the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) databases revealed two GO items related to muscle development by the cis target genes of DELs. Moreover, IGF2 was the direct target gene of ZBED6 by ChIP-PCR experiment. Our results explored the mechanism and expression profile of mRNAs and lncRNAs of ZBED6 gene knockout on myocardium tissue development, mining the key candidate genes in that process like IGF2.
Collapse
Affiliation(s)
- Shengnan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
| | - Wenjie Tian
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Dengke Pan
- Institute of Organ Transplantation, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu 610072, China;
| | - Ling Liu
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao 266109, China
| | - Cheng Xu
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
| | - Yuehui Ma
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
| | - Dandan Wang
- Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (S.W.); (C.X.); (Y.M.)
- Correspondence: (D.W.); (L.J.)
| | - Lin Jiang
- National Germplasm Center of Domestic Animal Resources, Ministry of Science and Technology of the People’s Republic of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.T.); (L.L.)
- Correspondence: (D.W.); (L.J.)
| |
Collapse
|
49
|
Pekkurnaz G, Wang X. Mitochondrial heterogeneity and homeostasis through the lens of a neuron. Nat Metab 2022; 4:802-812. [PMID: 35817853 PMCID: PMC11151822 DOI: 10.1038/s42255-022-00594-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022]
Abstract
Mitochondria are vital organelles with distinct morphological features and functional properties. The dynamic network of mitochondria undergoes structural and functional adaptations in response to cell-type-specific metabolic demands. Even within the same cell, mitochondria can display wide diversity and separate into functionally distinct subpopulations. Mitochondrial heterogeneity supports unique subcellular functions and is crucial to polarized cells, such as neurons. The spatiotemporal metabolic burden within the complex shape of a neuron requires precisely localized mitochondria. By travelling great lengths throughout neurons and experiencing bouts of immobility, mitochondria meet distant local fuel demands. Understanding mitochondrial heterogeneity and homeostasis mechanisms in neurons provides a framework to probe their significance to many other cell types. Here, we put forth an outline of the multifaceted role of mitochondria in regulating neuronal physiology and cellular functions more broadly.
Collapse
Affiliation(s)
- Gulcin Pekkurnaz
- Neurobiology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Xinnan Wang
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Maternal & Child Health Research Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
50
|
Lee JE, Shin YJ, Kim YS, Kim HN, Kim DY, Chung SJ, Yoo HS, Shin JY, Lee PH. Uric Acid Enhances Neurogenesis in a Parkinsonian Model by Remodeling Mitochondria. Front Aging Neurosci 2022; 14:851711. [PMID: 35721028 PMCID: PMC9201452 DOI: 10.3389/fnagi.2022.851711] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/06/2022] [Indexed: 12/02/2022] Open
Abstract
Background Adult neurogenesis is the process of generating new neurons to enter neural circuits and differentiate into functional neurons. However, it is significantly reduced in Parkinson’s disease (PD). Uric acid (UA), a natural antioxidant, has neuroprotective properties in patients with PD. This study aimed to investigate whether UA would enhance neurogenesis in PD. Methods We evaluated whether elevating serum UA levels in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonian mouse model would restore neurogenesis in the subventricular zone (SVZ). For a cellular model, we primary cultured neural precursor cells (NPCs) from post-natal day 1 rat and evaluated whether UA treatment promoted cell proliferation against 1-methyl-4-phenylpyridinium (MPP+). Results Uric acid enhanced neurogenesis in both in vivo and in vitro parkinsonian model. UA-elevating therapy significantly increased the number of bromodeoxyuridine (BrdU)-positive cells in the SVZ of PD animals as compared to PD mice with normal UA levels. In a cellular model, UA treatment increased the expression of Ki-67. In the process of modulating neurogenesis, UA elevation up-regulated the expression of mitochondrial fusion markers. Conclusion In MPTP-induced parkinsonian model, UA probably enhanced neurogenesis via regulating mitochondrial dynamics, promoting fusion machinery, and inhibiting fission process.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yu Jin Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yi Seul Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Ha Na Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong Yeol Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea
| | - Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
- Severance Biomedical Science Institute, Yonsei University, Seoul, South Korea
- *Correspondence: Phil Hyu Lee,
| |
Collapse
|