1
|
Zanjani LS, Vafaei S, Abolhasani M, Fattahi F, Madjd Z. Prognostic value of Talin-1 in renal cell carcinoma and its association with B7-H3. Cancer Biomark 2022; 35:269-292. [DOI: 10.3233/cbm-220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
METHODS: Talin-1 protein was demonstrated as a potential prognostic marker in renal cell carcinoma (RCC) using bioinformatics analysis. We, therefore, examined the protein expression levels and prognostic significance of Talin-1 with a clinical follow-up in a total of 269 tissue specimens from three important subtypes of RCC and 30 adjacent normal samples using immunohistochemistry. Then, we used combined analysis with B7-H3 to investigate higher prognostic values. RESULTS: The results showed that high membranous and cytoplasmic expression of Talin-1 was significantly associated with advanced nucleolar grade, microvascular invasion, histological tumor necrosis, and invasion to Gerota’s fascia in clear cell RCC (ccRCC). In addition, high membranous and cytoplasmic expression of Talin-1 was found to be associated with significantly poorer disease-specific survival (DSS) and progression-free survival (PFS). Moreover, increased cytoplasmic expression of Talin-1High/B7-H3High compared to the other phenotypes was associated with tumor aggressiveness and progression of the disease, and predicted a worse clinical outcome, which may be an effective biomarker to identify ccRCC patients at high risk of recurrence and metastasis. CONCLUSIONS: Collectively, these observations indicate that Talin-1 is an important molecule involved in the spread and progression of ccRCC when expressed particularly in the cytoplasm and may serve as a novel prognostic biomarker in this subtype. Furthermore, a combined analysis of Talin-1/B7-H3 indicated an effective biomarker to predict the progression of disease and prognosis in ccRCC.
Collapse
Affiliation(s)
- Leili Saeednejad Zanjani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Somayeh Vafaei
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Maryam Abolhasani
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Hasheminejad Kidney Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Mlih M, Karpac J. Integrin-ECM interactions and membrane-associated Catalase cooperate to promote resilience of the Drosophila intestinal epithelium. PLoS Biol 2022; 20:e3001635. [PMID: 35522719 PMCID: PMC9116668 DOI: 10.1371/journal.pbio.3001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 05/18/2022] [Accepted: 04/19/2022] [Indexed: 12/04/2022] Open
Abstract
Balancing cellular demise and survival constitutes a key feature of resilience mechanisms that underlie the control of epithelial tissue damage. These resilience mechanisms often limit the burden of adaptive cellular stress responses to internal or external threats. We recently identified Diedel, a secreted protein/cytokine, as a potent antagonist of apoptosis-induced regulated cell death in the Drosophila intestinal midgut epithelium during aging. Here, we show that Diedel is a ligand for RGD-binding Integrins and is thus required for maintaining midgut epithelial cell attachment to the extracellular matrix (ECM)-derived basement membrane. Exploiting this function of Diedel, we uncovered a resilience mechanism of epithelial tissues, mediated by Integrin-ECM interactions, which shapes cell death spreading through the regulation of cell detachment and thus cell survival. Moreover, we found that resilient epithelial cells, enriched for Diedel-Integrin-ECM interactions, are characterized by membrane association of Catalase, thus preserving extracellular reactive oxygen species (ROS) balance to maintain epithelial integrity. Intracellular Catalase can relocalize to the extracellular membrane to limit cell death spreading and repair Integrin-ECM interactions induced by the amplification of extracellular ROS, which is a critical adaptive stress response. Membrane-associated Catalase, synergized with Integrin-ECM interactions, likely constitutes a resilience mechanism that helps balance cellular demise and survival within epithelial tissues.
Collapse
Affiliation(s)
- Mohamed Mlih
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, Texas, United States of America
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, Texas A&M University, College of Medicine, Bryan, Texas, United States of America
| |
Collapse
|
3
|
Wu Y, Huang Y, Zhang W, Gunst SJ. The proprotein convertase furin inhibits IL-13-induced inflammation in airway smooth muscle by regulating integrin-associated signaling complexes. Am J Physiol Lung Cell Mol Physiol 2021; 321:L102-L115. [PMID: 34009050 DOI: 10.1152/ajplung.00618.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Furin is a proprotein convertase that regulates the activation and the inactivation of multiple proteins including matrix metalloproteinases, integrins, and cytokines. It is a serine endoprotease that localizes to the plasma membrane and can be secreted into the extracellular space. The role of furin in regulating inflammation in isolated canine airway smooth muscle tissues was investigated. The treatment of airway tissues with recombinant furin (rFurin) inhibited the activation of Akt and eotaxin secretion induced by IL-13, and it prevented the IL-13-induced suppression of smooth muscle myosin heavy chain expression. rFurin promoted a differentiated phenotype by activating β1-integrin proteins and stimulating the activation of the adhesome proteins vinculin and paxillin by talin. Activated paxillin induced the binding of Akt to β-parvin IPP [integrin-linked kinase (ILK), PINCH, parvin] complexes, which inhibits Akt activation. Treatment of tissues with a furin inhibitor or the depletion of endogenous furin using shRNA resulted in Akt activation and inflammatory responses similar to those induced by IL-13. Furin inactivation or IL-13 caused talin cleavage and integrin inactivation, resulting in the inactivation of vinculin and paxillin. Paxillin inactivation resulted in the coupling of Akt to α-parvin IPP complexes, which catalyze Akt activation and an inflammatory response. The results demonstrate that furin inhibits inflammation in airway smooth muscle induced by IL-13 and that the anti-inflammatory effects of furin are mediated by activating integrin proteins and integrin-associated signaling complexes that regulate Akt-mediated pathways to the nucleus. Furin may have therapeutic potential for the treatment of inflammatory conditions of the lungs and airways.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Youliang Huang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
4
|
Revach OY, Grosheva I, Geiger B. Biomechanical regulation of focal adhesion and invadopodia formation. J Cell Sci 2020; 133:133/20/jcs244848. [DOI: 10.1242/jcs.244848] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
ABSTRACT
Integrin adhesions are a structurally and functionally diverse family of transmembrane, multi-protein complexes that link the intracellular cytoskeleton to the extracellular matrix (ECM). The different members of this family, including focal adhesions (FAs), focal complexes, fibrillar adhesions, podosomes and invadopodia, contain many shared scaffolding and signaling ‘adhesome’ components, as well as distinct molecules that perform specific functions, unique to each adhesion form. In this Hypothesis, we address the pivotal roles of mechanical forces, generated by local actin polymerization or actomyosin-based contractility, in the formation, maturation and functionality of two members of the integrin adhesions family, namely FAs and invadopodia, which display distinct structures and functional properties. FAs are robust and stable ECM contacts, associated with contractile stress fibers, while invadopodia are invasive adhesions that degrade the underlying matrix and penetrate into it. We discuss here the mechanisms, whereby these two types of adhesion utilize a similar molecular machinery to drive very different – often opposing cellular activities, and hypothesize that early stages of FAs and invadopodia assembly use similar biomechanical principles, whereas maturation of the two structures, and their ‘adhesive’ and ‘invasive’ functionalities require distinct sources of biomechanical reinforcement.
Collapse
Affiliation(s)
- Or-Yam Revach
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Inna Grosheva
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Departments of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
5
|
Gunawan F, Gentile A, Fukuda R, Tsedeke AT, Jiménez-Amilburu V, Ramadass R, Iida A, Sehara-Fujisawa A, Stainier DYR. Focal adhesions are essential to drive zebrafish heart valve morphogenesis. J Cell Biol 2019; 218:1039-1054. [PMID: 30635353 PMCID: PMC6400548 DOI: 10.1083/jcb.201807175] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/07/2018] [Accepted: 12/13/2018] [Indexed: 12/17/2022] Open
Abstract
Gunawan et al. analyze at single-cell resolution collective endocardial cell migration into the extracellular matrix and the cellular rearrangements forming leaflets during zebrafish heart valve formation. They show that focal adhesion activity driven by Integrin α5β1 and Talin1 are essential to drive cardiac valve morphogenesis in zebrafish. Elucidating the morphogenetic events that shape vertebrate heart valves, complex structures that prevent retrograde blood flow, is critical to understanding valvular development and aberrations. Here, we used the zebrafish atrioventricular (AV) valve to investigate these events in real time and at single-cell resolution. We report the initial events of collective migration of AV endocardial cells (ECs) into the extracellular matrix (ECM), and their subsequent rearrangements to form the leaflets. We functionally characterize integrin-based focal adhesions (FAs), critical mediators of cell–ECM interactions, during valve morphogenesis. Using transgenes to block FA signaling specifically in AV ECs as well as loss-of-function approaches, we show that FA signaling mediated by Integrin α5β1 and Talin1 promotes AV EC migration and overall shaping of the valve leaflets. Altogether, our investigation reveals the critical processes driving cardiac valve morphogenesis in vivo and establishes the zebrafish AV valve as a vertebrate model to study FA-regulated tissue morphogenesis.
Collapse
Affiliation(s)
- Felix Gunawan
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Alessandra Gentile
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ryuichi Fukuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Ayele Taddese Tsedeke
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vanesa Jiménez-Amilburu
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Atsuo Iida
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | | | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
6
|
Camp D, Haage A, Solianova V, Castle WM, Xu QA, Lostchuck E, Goult BT, Tanentzapf G. Direct binding of Talin to Rap1 is required for cell-ECM adhesion in Drosophila. J Cell Sci 2018; 131:jcs.225144. [PMID: 30446511 DOI: 10.1242/jcs.225144] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/08/2018] [Indexed: 12/27/2022] Open
Abstract
Attachment of cells to the extracellular matrix (ECM) via integrins is essential for animal development and tissue maintenance. The cytoplasmic protein Talin (encoded by rhea in flies) is necessary for linking integrins to the cytoskeleton, and its recruitment is a key step in the assembly of the adhesion complex. However, the mechanisms that regulate Talin recruitment to sites of adhesion in vivo are still not well understood. Here, we show that Talin recruitment to, and maintenance at, sites of integrin-mediated adhesion requires a direct interaction between Talin and the GTPase Rap1. A mutation that blocks the direct binding of Talin to Rap1 abolished Talin recruitment to sites of adhesion and the resulting phenotype phenocopies that seen with null alleles of Talin. Moreover, we show that Rap1 activity modulates Talin recruitment to sites of adhesion via its direct binding to Talin. These results identify the direct Talin-Rap1 interaction as a key in vivo mechanism for controlling integrin-mediated cell-ECM adhesion.
Collapse
Affiliation(s)
- Darius Camp
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Amanda Haage
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Veronika Solianova
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - William M Castle
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Qinyuan A Xu
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| | - Benjamin T Goult
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada V6T 1Z3
| |
Collapse
|
7
|
Richier B, Inoue Y, Dobramysl U, Friedlander J, Brown NH, Gallop JL. Integrin signaling downregulates filopodia during muscle-tendon attachment. J Cell Sci 2018; 131:jcs.217133. [PMID: 30054384 PMCID: PMC6127725 DOI: 10.1242/jcs.217133] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/12/2018] [Indexed: 11/25/2022] Open
Abstract
Cells need to sense their environment to ensure accurate targeting to specific destinations. This occurs in developing muscles, which need to attach to tendon cells before muscle contractions can begin. Elongating myotube tips form filopodia, which are presumed to have sensory roles, and are later suppressed upon building the attachment site. Here, we use live imaging and quantitative image analysis of lateral transverse (LT) myotubes in Drosophila to show that filopodia suppression occurs as a result of integrin signaling. Loss of the integrin subunits αPS2 and βPS (also known as If and Mys, respectively, in flies) increased filopodia number and length at stages when they are normally suppressed. Conversely, inducing integrin signaling, achieved by the expression of constitutively dimerised βPS cytoplasmic domain (diβ), prematurely suppressed filopodia. We discovered that the integrin signal is transmitted through the protein G protein-coupled receptor kinase interacting ArfGAP (Git) and its downstream kinase p21-activated kinase (Pak). Absence of these proteins causes profuse filopodia and prevents the filopodial inhibition mediated by diβ. Thus, integrin signaling terminates the exploratory behavior of myotubes seeking tendons, enabling the actin machinery to focus on forming a strong attachment and assembling the contractile apparatus. Summary: Integrins signal through Git and Pak to downregulate filopodia when muscles reach their target attachment site in Drosophila.
Collapse
Affiliation(s)
- Benjamin Richier
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Yoshiko Inoue
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Ulrich Dobramysl
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Jonathan Friedlander
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK.,Dept. of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Jennifer L Gallop
- The Gurdon Institute, Tennis Court Rd, Cambridge CB2 1QN, UK .,Dept. of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
8
|
Abstract
Talin has emerged as the key cytoplasmic protein that mediates integrin adhesion to the extracellular matrix. In this Review, we draw on experiments performed in mammalian cells in culture and Drosophila to present evidence that talin is the most important component of integrin adhesion complexes. We describe how the properties of this adaptor protein enable it to orchestrate integrin adhesions. Talin forms the core of integrin adhesion complexes by linking integrins directly to actin, increasing the affinity of integrin for ligands (integrin activation) and recruiting numerous proteins. It regulates the strength of integrin adhesion, senses matrix rigidity, increases focal adhesion size in response to force and serves as a platform for the building of the adhesion structure. Finally, the mechano-sensitive structure of talin provides a paradigm for how proteins transduce mechanical signals to chemical signals.
Collapse
Affiliation(s)
- Benjamin Klapholz
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Nicholas H Brown
- Dept of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
9
|
Maartens AP, Wellmann J, Wictome E, Klapholz B, Green H, Brown NH. Drosophila vinculin is more harmful when hyperactive than absent, and can circumvent integrin to form adhesion complexes. J Cell Sci 2016; 129:4354-4365. [PMID: 27737911 PMCID: PMC5201009 DOI: 10.1242/jcs.189878] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 10/07/2016] [Indexed: 12/12/2022] Open
Abstract
Vinculin is a highly conserved protein involved in cell adhesion and mechanotransduction, and both gain and loss of its activity causes defective cell behaviour. Here, we examine how altering vinculin activity perturbs integrin function within the context of Drosophila development. Whereas loss of vinculin produced relatively minor phenotypes, gain of vinculin activity, through a loss of head–tail autoinhibition, caused lethality. The minimal domain capable of inducing lethality is the talin-binding D1 domain, and this appears to require talin-binding activity, as lethality was suppressed by competition with single vinculin-binding sites from talin. Activated Drosophila vinculin triggered the formation of cytoplasmic adhesion complexes through the rod of talin, but independently of integrin. These complexes contain a subset of adhesion proteins but no longer link the membrane to actin. The negative effects of hyperactive vinculin were segregated into morphogenetic defects caused by its whole head domain and lethality caused by its D1 domain. These findings demonstrate the crucial importance of the tight control of the activity of vinculin. Summary: Development is more sensitive to gain of vinculin activity than its loss, and vinculin can promote cytoplasmic adhesion complexes independently of the usual integrin cue.
Collapse
Affiliation(s)
- Aidan P Maartens
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Jutta Wellmann
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Emma Wictome
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Benjamin Klapholz
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Hannah Green
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| | - Nicholas H Brown
- Department of Physiology, Development and Neuroscience, and the Gurdon Institute, University of Cambridge, Downing St., Cambridge CB2 1DY, UK
| |
Collapse
|
10
|
IPP Complex Reinforces Adhesion by Relaying Tension-Dependent Signals to Inhibit Integrin Turnover. Cell Rep 2016; 14:2668-82. [DOI: 10.1016/j.celrep.2016.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/05/2016] [Accepted: 02/08/2016] [Indexed: 12/19/2022] Open
|
11
|
Hákonardóttir GK, López-Ceballos P, Herrera-Reyes AD, Das R, Coombs D, Tanentzapf G. In vivo quantitative analysis of Talin turnover in response to force. Mol Biol Cell 2015; 26:4149-62. [PMID: 26446844 PMCID: PMC4710244 DOI: 10.1091/mbc.e15-05-0304] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Cell–ECM adhesion is regulated by mechanical force. Quantitative imaging and mathematical modeling are used to elucidate how the intracellular adhesion complex of integrin-based adhesions responds to force, revealing the molecular mechanisms that allow the adhesion complex to respond to force to stabilize cell–ECM adhesion over development. Cell adhesion to the extracellular matrix (ECM) allows cells to form and maintain three-dimensional tissue architecture. Cell–ECM adhesions are stabilized upon exposure to mechanical force. In this study, we used quantitative imaging and mathematical modeling to gain mechanistic insight into how integrin-based adhesions respond to increased and decreased mechanical forces. A critical means of regulating integrin-based adhesion is provided by modulating the turnover of integrin and its adhesion complex (integrin adhesion complex [IAC]). The turnover of the IAC component Talin, a known mechanosensor, was analyzed using fluorescence recovery after photobleaching. Experiments were carried out in live, intact flies in genetic backgrounds that increased or decreased the force applied on sites of adhesion. This analysis showed that when force is elevated, the rate of assembly of new adhesions increases such that cell–ECM adhesion is stabilized. Moreover, under conditions of decreased force, the overall rate of turnover, but not the proportion of adhesion complex components undergoing turnover, increases. Using point mutations, we identify the key functional domains of Talin that mediate its response to force. Finally, by fitting a mathematical model to the data, we uncover the mechanisms that mediate the stabilization of ECM-based adhesion during development.
Collapse
Affiliation(s)
- Guðlaug Katrín Hákonardóttir
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alejandra Donají Herrera-Reyes
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80204
| | - Daniel Coombs
- Department of Mathematics and Institute of Applied Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
12
|
Schardt L, Ander JJ, Lohmann I, Papagiannouli F. Stage-specific control of niche positioning and integrity in the Drosophila testis. Mech Dev 2015; 138 Pt 3:336-48. [PMID: 26226434 DOI: 10.1016/j.mod.2015.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/23/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022]
Abstract
A fundamental question is how complex structures are maintained after their initial specification. Stem cells reside in a specialized microenvironment, called niche, which provides essential signals controlling stem cell behavior. We addressed this question by studying the Drosophila male stem cell niche, called the hub. Once specified, the hub cells need to maintain their position and architectural integrity through embryonic, larval and pupal stages of testis organogenesis and during adult life. The Hox gene Abd-B, in addition to its described role in male embryonic gonads, maintains the architecture and positioning of the larval hub from the germline by affecting integrin localization in the neighboring somatic cyst cells. We find that the AbdB-Boss/Sev cascade affects integrin independent of Talin, while genetic interactions depict integrin as the central downstream player in this system. Focal adhesion and integrin-adaptor proteins within the somatic stem cells and cyst cells, such as Paxillin, Pinch and Vav, also contribute to proper hub integrity and positioning. During adult stages, hub positioning is controlled by Abd-B activity in the outer acto-myosin sheath, while Abd-B expression in adult spermatocytes exerts no effect on hub positioning and integrin localization. Our data point at a cell- and stage-specific function of Abd-B and suggest that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the whole system by reusing the same players for male stem cell niche positioning and integrity in an alternative manner.
Collapse
Affiliation(s)
- Lisa Schardt
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany; Deutsches Krebsforschungszentrum (DKFZ), D-69120, Germany
| | - Janina-Jacqueline Ander
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| | - Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany.
| |
Collapse
|
13
|
High expression of Talin-1 is associated with poor prognosis in patients with nasopharyngeal carcinoma. BMC Cancer 2015; 15:332. [PMID: 25925041 PMCID: PMC4424526 DOI: 10.1186/s12885-015-1351-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 04/22/2015] [Indexed: 01/08/2023] Open
Abstract
Background Talin-1 is a cytoskeletal protein that plays an important role in tumourgenesis, migration and metastasis in several malignant tumors. The aim of this study was to evaluate the expression and prognostic value of Talin-1 in nasopharyngeal carcinoma (NPC). Methods Talin-1 mRNA and protein expression were examined in NPC cell lines and clinical nasopharyngeal tissues by quantitative RT-PCR, agarose gel electrophoresis and western blotting. The expression of Talin-1 was analyzed by immunohistochemical staining in 233 paraffin-embedded NPC specimens with clinical follow-up data and cox regression analysis was used to identify independent prognostic factors. The functional role of Talin-1 in NPC cell lines was evaluated by small interfering RNA-mediated depletion of the protein followed by the wound healing and transwell invasion assays. Results The expression of Talin-1 was significantly upregulated in most NPC cell lines and clinical tissues at both the mRNA and protein levels. High expression of Talin-1 was significantly associated with distant metastasis (P = 0.001) and patient death (P = 0.001). In addition, high expression of Talin-1 was associated with significantly poorer overall survival (OS: HR, 2.15; 95% CI, 1.28-3.63; P = 0.003) and poorer distant metastasis-free survival (DMFS: HR, 2.39; 95% CI, 1.38-4.15; P = 0.001). Cox regression analysis indicated that high expression of Talin-1 and TNM stage were independent prognostic indicators (both P < 0.05). Stratified analysis demonstrated that high expression of Talin-1 was associated with significantly poorer survival in patients with advanced stage disease (stage III-IV, HR, 1.91; 95% CI, 1.09-3.35; P = 0.02 for OS and HR, 2.22; 95% CI, 1.24-3.99; P = 0.006 for DMFS). Furthermore, the depletion of Talin-1 suppressed the migratory and invasive ability of NPC cells in vitro. Conclusions Our data demonstrate that high expression of Talin-1 is associated with significantly poorer OS and poorer DMFS in NPC and depletion of Talin-1 expression inhibited NPC cell migration and invasion. Talin-1 may serve as novel prognostic biomarker in NPC.
Collapse
|
14
|
Klapholz B, Herbert SL, Wellmann J, Johnson R, Parsons M, Brown NH. Alternative mechanisms for talin to mediate integrin function. Curr Biol 2015; 25:847-57. [PMID: 25754646 PMCID: PMC4386027 DOI: 10.1016/j.cub.2015.01.043] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 02/06/2023]
Abstract
Cell-matrix adhesion is essential for building animals, promoting tissue cohesion, and enabling cells to migrate and resist mechanical force. Talin is an intracellular protein that is critical for linking integrin extracellular-matrix receptors to the actin cytoskeleton. A key question raised by structure-function studies is whether talin, which is critical for all integrin-mediated adhesion, acts in the same way in every context. We show that distinct combinations of talin domains are required for each of three different integrin functions during Drosophila development. The partial function of some mutant talins requires vinculin, indicating that recruitment of vinculin allows talin to duplicate its own activities. The different requirements are best explained by alternative mechanisms of talin function, with talin using one or both of its integrin-binding sites. We confirmed these alternatives by showing that the proximity between the second integrin-binding site and integrins differs, suggesting that talin adopts different orientations relative to integrins. Finally, we show that vinculin and actomyosin activity help change talin’s orientation. These findings demonstrate that the mechanism of talin function differs in each developmental context examined. The different arrangements of the talin molecule relative to integrins suggest that talin is able to sense different force vectors, either parallel or perpendicular to the membrane. This provides a paradigm for proteins whose apparent uniform function is in fact achieved by a variety of distinct mechanisms involving different molecular architectures. Integrin function requires distinct sets of talin domains in three different tissues Vinculin helps talin retain function when domains are removed Talin IBS2 is separated from integrins in muscle but not wing adhesion sites Vinculin and actomyosin contribute to separating IBS2 from integrins
Collapse
Affiliation(s)
- Benjamin Klapholz
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Samantha L Herbert
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Jutta Wellmann
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Robert Johnson
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Maddy Parsons
- Randall Division of Cell and Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Nicholas H Brown
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
15
|
Papagiannouli F, Lohmann I. Stage-specific control of stem cell niche architecture in the Drosophila testis by the posterior Hox gene Abd-B. Comput Struct Biotechnol J 2015; 13:122-30. [PMID: 25750700 PMCID: PMC4348433 DOI: 10.1016/j.csbj.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
A fundamental question in biology is how complex structures are maintained after their initial specification. We address this question by reviewing the role of the Hox gene Abd-B in Drosophila testis organogenesis, which proceeds through embryonic, larval and pupal stages to reach maturation in adult stages. The data presented in this review highlight a cell- and stage-specific function of Abd-B, since the mechanisms regulating stem cell niche positioning and architecture at different stages seem to be different despite the employment of similar factors. In addition to its described role in the male embryonic gonads, sustained activity of Abd-B in the pre-meiotic germline spermatocytes during larval stages is required to maintain the architecture of the stem cell niche by regulating βPS-integrin localization in the neighboring somatic cyst cells. Loss of Abd-B is associated with cell non-autonomous effects within the niche, leading to a dramatic reduction of pre-meiotic cell populations in adult testes. Identification of Abd-B target genes revealed that Abd-B mediates its effects by controlling the activity of the sevenless ligand Boss via its direct targets Src42A and Sec63. During adult stages, when testis morphogenesis is completed with the addition of the acto-myosin sheath originating from the genital disc, stem cell niche positioning and integrity are regulated by Abd-B activity in the acto-myosin sheath whereas integrin acts in an Abd-B independent way. It seems that the occurrence of new cell types and cell interactions in the course of testis organogenesis made it necessary to adapt the system to the new cellular conditions by reusing the same players for testis stem cell niche positioning in an alternative manner.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| | - Ingrid Lohmann
- Centre for Organismal Studies (COS) Heidelberg, Cell Networks - Cluster of Excellence, University of Heidelberg, D-69120, Germany
| |
Collapse
|
16
|
Ellis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The talin head domain reinforces integrin-mediated adhesion by promoting adhesion complex stability and clustering. PLoS Genet 2014; 10:e1004756. [PMID: 25393120 PMCID: PMC4230843 DOI: 10.1371/journal.pgen.1004756] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Talin serves an essential function during integrin-mediated adhesion in linking integrins to actin via the intracellular adhesion complex. In addition, the N-terminal head domain of talin regulates the affinity of integrins for their ECM-ligands, a process known as inside-out activation. We previously showed that in Drosophila, mutating the integrin binding site in the talin head domain resulted in weakened adhesion to the ECM. Intriguingly, subsequent studies showed that canonical inside-out activation of integrin might not take place in flies. Consistent with this, a mutation in talin that specifically blocks its ability to activate mammalian integrins does not significantly impinge on talin function during fly development. Here, we describe results suggesting that the talin head domain reinforces and stabilizes the integrin adhesion complex by promoting integrin clustering distinct from its ability to support inside-out activation. Specifically, we show that an allele of talin containing a mutation that disrupts intramolecular interactions within the talin head attenuates the assembly and reinforcement of the integrin adhesion complex. Importantly, we provide evidence that this mutation blocks integrin clustering in vivo. We propose that the talin head domain is essential for regulating integrin avidity in Drosophila and that this is crucial for integrin-mediated adhesion during animal development. Cells are the building blocks of our bodies. How do cells rearrange to form three-dimensional body plans and maintain specific tissue structures? Specialized adhesion molecules on the cell surface mediate attachment between cells and their surrounding environment to hold tissues together. Our work uses the developing fruit fly embryo to demonstrate how such connections are regulated during tissue growth. Since the genes and molecules involved in this process are highly similar between flies and humans, we can also apply our findings to our understanding of how human tissues form and are maintained. We observe that, in late developing muscles, clusters of cell adhesion molecules concentrate together to create stronger attachments between muscle cells and tendon cells. This strengthening mechanism allows the fruit fly to accommodate increasing amounts of force imposed by larger, more active muscles. We identify specific genetic mutations that disrupt these strengthening mechanisms and lead to severe developmental defects during fly development. Our results illustrate how subtle fine-tuning of the connections between cells and their surrounding environment is important to form and maintain normal tissue structure across the animal kingdom.
Collapse
Affiliation(s)
- Stephanie J. Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Emily Lostchuck
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Benjamin T. Goult
- School of Biosciences, University of Kent, Canterbury, Kent, United Kingdom
| | - Mohamed Bouaouina
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
- Carnegie Mellon University Qatar, Education City, Doha, Qatar
| | - Michael J. Fairchild
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Pablo López-Ceballos
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - David A. Calderwood
- Department of Pharmacology, Yale University, New Haven, Connecticut, United States of America
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
- * E-mail:
| |
Collapse
|
17
|
Ciobanasu C, Faivre B, Le Clainche C. Integrating actin dynamics, mechanotransduction and integrin activation: the multiple functions of actin binding proteins in focal adhesions. Eur J Cell Biol 2013; 92:339-48. [PMID: 24252517 DOI: 10.1016/j.ejcb.2013.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/10/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022] Open
Abstract
Focal adhesions are clusters of integrin transmembrane receptors that mechanically couple the extracellular matrix to the actin cytoskeleton during cell migration. Focal adhesions sense and respond to variations in force transmission along a chain of protein-protein interactions linking successively actin filaments, actin binding proteins, integrins and the extracellular matrix to adapt cell-matrix adhesion to the composition and mechanical properties of the extracellular matrix. This review focuses on the molecular mechanisms by which actin binding proteins integrate actin dynamics, mechanotransduction and integrin activation to control force transmission in focal adhesions.
Collapse
Affiliation(s)
- Corina Ciobanasu
- Laboratoire d'Enzymologie et Biochimie Structurales CNRS, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
18
|
Ellis SJ, Goult BT, Fairchild MJ, Harris NJ, Long J, Lobo P, Czerniecki S, Van Petegem F, Schöck F, Peifer M, Tanentzapf G. Talin autoinhibition is required for morphogenesis. Curr Biol 2013; 23:1825-33. [PMID: 24012314 DOI: 10.1016/j.cub.2013.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/24/2013] [Accepted: 07/16/2013] [Indexed: 11/30/2022]
Abstract
The establishment of a multicellular body plan requires coordinating changes in cell adhesion and the cytoskeleton to ensure proper cell shape and position within a tissue. Cell adhesion to the extracellular matrix (ECM) via integrins plays diverse, essential roles during animal embryogenesis and therefore must be precisely regulated. Talin, a FERM-domain containing protein, forms a direct link between integrin adhesion receptors and the actin cytoskeleton and is an important regulator of integrin function. Similar to other FERM proteins, talin makes an intramolecular interaction that could autoinhibit its activity. However, the functional consequence of such an interaction has not been previously explored in vivo. Here, we demonstrate that targeted disruption of talin autoinhibition gives rise to morphogenetic defects during fly development and specifically that dorsal closure (DC), a process that resembles wound healing, is delayed. Impairment of autoinhibition leads to reduced talin turnover at and increased talin and integrin recruitment to sites of integrin-ECM attachment. Finally, we present evidence that talin autoinhibition is regulated by Rap1-dependent signaling. Based on our data, we propose that talin autoinhibition provides a switch for modulating adhesion turnover and adhesion stability that is essential for morphogenesis.
Collapse
Affiliation(s)
- Stephanie J Ellis
- Department of Cellular and Physiological Sciences, 2350 Health Sciences Mall, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Das M, Ithychanda S, Qin J, Plow EF. Mechanisms of talin-dependent integrin signaling and crosstalk. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:579-88. [PMID: 23891718 DOI: 10.1016/j.bbamem.2013.07.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/03/2013] [Accepted: 07/15/2013] [Indexed: 01/01/2023]
Abstract
Cells undergo dynamic remodeling of the cytoskeleton during adhesion and migration on various extracellular matrix (ECM) substrates in response to physiological and pathological cues. The major mediators of such cellular responses are the heterodimeric adhesion receptors, the integrins. Extracellular or intracellular signals emanating from different signaling cascades cause inside-out signaling of integrins via talin, a cystokeletal protein that links integrins to the actin cytoskeleton. Various integrin subfamilies communicate with each other and growth factor receptors under diverse cellular contexts to facilitate or inhibit various integrin-mediated functions. Since talin is an essential mediator of integrin activation, much of the integrin crosstalk would therefore be influenced by talin. However, despite the existence of an extensive body of knowledge on the role of talin in integrin activation and as a stabilizer of ECM-actin linkage, information on its role in regulating inter-integrin communication is limited. This review will focus on the structure of talin, its regulation of integrin activation and discuss its potential role in integrin crosstalk. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.
Collapse
Affiliation(s)
- Mitali Das
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Sujay Ithychanda
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Jun Qin
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| | - Edward F Plow
- Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
20
|
Comber K, Huelsmann S, Evans I, Sánchez-Sánchez BJ, Chalmers A, Reuter R, Wood W, Martín-Bermudo MD. A dual role for the βPS integrin myospheroid in mediating Drosophila embryonic macrophage migration. J Cell Sci 2013; 126:3475-84. [PMID: 23704353 PMCID: PMC3730248 DOI: 10.1242/jcs.129700] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Throughout embryonic development, macrophages not only act as the first line of defence against infection but also help to sculpt organs and tissues of the embryo by removing dead cells and secreting extracellular matrix components. Key to their function is the ability of embryonic macrophages to migrate and disperse throughout the embryo. Despite these important developmental functions, little is known about the molecular mechanisms underlying embryonic macrophage migration in vivo. Integrins are key regulators of many of the adult macrophage responses, but their role in embryonic macrophages remains poorly characterized. Here, we have used Drosophila macrophages (haemocytes) as a model system to address the role of integrins during embryonic macrophage dispersal in vivo. We show that the main βPS integrin, myospheroid, affects haemocyte migration in two ways; by shaping the three-dimensional environment in which haemocytes migrate and by regulating the migration of haemocytes themselves. Live imaging revealed a requirement for myospheroid within haemocytes to coordinate the microtubule and actin dynamics, and to enable haemocyte developmental dispersal, contact repulsion and inflammatory migration towards wounds.
Collapse
Affiliation(s)
- Kate Comber
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Bouaouina M, Jani K, Long JY, Czerniecki S, Morse EM, Ellis SJ, Tanentzapf G, Schöck F, Calderwood DA. Zasp regulates integrin activation. J Cell Sci 2012; 125:5647-57. [PMID: 22992465 DOI: 10.1242/jcs.103291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Integrins are heterodimeric adhesion receptors that link the extracellular matrix (ECM) to the cytoskeleton. Binding of the scaffold protein, talin, to the cytoplasmic tail of β-integrin causes a conformational change of the extracellular domains of the integrin heterodimer, thus allowing high-affinity binding of ECM ligands. This essential process is called integrin activation. Here we report that the Z-band alternatively spliced PDZ-motif-containing protein (Zasp) cooperates with talin to activate α5β1 integrins in mammalian tissue culture and αPS2βPS integrins in Drosophila. Zasp is a PDZ-LIM-domain-containing protein mutated in human cardiomyopathies previously thought to function primarily in assembly and maintenance of the muscle contractile machinery. Notably, Zasp is the first protein shown to co-activate α5β1 integrins with talin and appears to do so in a manner distinct from known αIIbβ3 integrin co-activators.
Collapse
Affiliation(s)
- Mohamed Bouaouina
- Departments of Pharmacology and Cell Biology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Pines M, Das R, Ellis SJ, Morin A, Czerniecki S, Yuan L, Klose M, Coombs D, Tanentzapf G. Mechanical force regulates integrin turnover in Drosophila in vivo. Nat Cell Biol 2012; 14:935-43. [DOI: 10.1038/ncb2555] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 07/06/2012] [Indexed: 12/15/2022]
|
23
|
Papagiannouli F, Lohmann I. Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 2012; 7:723-36. [PMID: 22488937 DOI: 10.1002/biot.201100352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/31/2012] [Accepted: 02/27/2012] [Indexed: 11/12/2022]
Abstract
Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg and CellNetworks - Cluster of Excellence, Heidelberg, Germany.
| | | |
Collapse
|
24
|
Palamà IE, D'Amone S, Coluccia AML, Biasiucci M, Gigli G. Cell self-patterning on uniform PDMS-surfaces with controlled mechanical cues. Integr Biol (Camb) 2011; 4:228-36. [PMID: 22146870 DOI: 10.1039/c2ib00116k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The exploitation of cell-instructive scaffolds with uniform physical/chemical surfaces and controlled stiffness will be greatly useful in tissue engineering applications to resemble the extracellular matrix (ECM) or topographical appearance of native tissues. We herein describe a versatile and straightforward method to assemble a polydimethylsiloxane (PDMS)-composite structure in which a uniformly laminin-coated membrane is placed on top of a micropatterned substrate that applies a stiffness gradient. This 'double-sheet' structure provides soft or stiff microdomains that guide the self-patterning of different cell types [e.g. chronic myeloid leukemia (KU812), cervix carcinoma (HeLa), NIH 3T3 and BJ], thereby stimulating their cytoskeletal remodeling. More interestingly, we used these uniform PDMS surfaces with patterned rigidity for obtaining co-cultures of tumor blood cells (KU812) and adherent fibroblasts (NIH 3T3) with spatially-controlled distribution. Thus, beyond single-cell stiffening and mechanosensing, these surfaces should also be used as simple and feasible co-culture systems for mimicking and dissecting the bidirectional interactions between blood cells and specific stromal elements of their in vivo microenvironment.
Collapse
Affiliation(s)
- Ilaria E Palamà
- NNL, Institute of Nanoscience CNR, Via Arnesano, 73100 Lecce, Italy.
| | | | | | | | | |
Collapse
|
25
|
Hagemeyer CE, Ahrens I, Bassler N, Dschachutaschwili N, Chen YC, Eisenhardt SU, Bode C, Peter K. Genetic transfer of fusion proteins effectively inhibits VCAM-1-mediated cell adhesion and transmigration via inhibition of cytoskeletal anchorage. J Cell Mol Med 2011; 14:290-302. [PMID: 20414973 PMCID: PMC3837607 DOI: 10.1111/j.1582-4934.2008.00409.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The adhesion of leukocytes to endothelium plays a central role in the development of atherosclerosis and thus represents an attractive therapeutic target for anti-atherosclerotic therapies. Vascular cell adhesion molecule-1 (VCAM-1) mediates both the initial tethering and the firm adhesion of leukocytes to endothelial cells. Our work evaluates the feasibility of using the cytoskeletal anchorage of VCAM-1 as a target for gene therapy. As a proof of concept, integrin αIIbβ3-mediated cell adhesion with clearly defined cytoskeletal anchorage was tested. We constructed fusion proteins containing the intracellular domain of β3 placed at various distances to the cell membrane. Using cell adhesion assays and immunofluorescence, we established fusion constructs with competitive and dominant negative inhibition of cell adhesion. With the goal being the transfer of the dominant negative mechanism towards VCAM-1 inhibition, we constructed a fusion molecule containing the cytoplasmic domain of VCAM-1. Indeed, VCAM-1 mediated leukocyte adhesion can be inhibited via transfection of DNA encoding the designed VCAM-1 fusion protein. This is demonstrated in adhesion assays under static and flow conditions using CHO cells expressing recombinant VCAM-1 as well as activated endothelial cells. Thus, we are able to describe a novel approach for dominant negative inhibition of leukocyte adhesion to endothelial cells. This approach warrants further development as a novel gene therapeutic strategy that aims for a locally restricted effect at atherosclerotic areas of the vasculature.
Collapse
Affiliation(s)
- Christoph E Hagemeyer
- Centre for Thrombosis and Myocardial Infarction, Baker Heart Research Institute, Melbourne, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
GAI JINHONG, GONG PENGTAO, LI JIANHUA, MAN YANGAO, NI JINSONG, MA HONGXI, HAO FENYUN, ZHANG XICHEN, LIU YING. Cell budding from pre-invasive tumors: Intrinsic precursor of invasive breast lesions? Exp Ther Med 2011; 2:633-639. [PMID: 22977553 PMCID: PMC3440761 DOI: 10.3892/etm.2011.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/01/2011] [Indexed: 11/10/2022] Open
Abstract
Our previous studies showed that in patients with ductal carcinoma in situ (DCIS) of the breast, the tumor cells that overlie focal myoepithelial cell layer disruptions (FMCLDs) are generally arranged as finger-like projections that bud into the stroma. These budding cells have significantly more genetic instability and invasion-related gene expression, and less estrogen receptor (ER) expression, than their epithelial cell counterparts. This study aimed to assess these cells for potential molecular markers that are uniquely associated with cell adhesion and motility. Seventeen ER-positive DCIS cases were screened by immunostaining for ER, and 7 cases which harbored FMCLD lesions were used to examine the expression of the potential markers. Two cases with both DCIS and invasive lesions were selected for comparing the differences in molecular expression between these lesion types. The results showed that expression levels of talin, E-cadherin and focal adhesion kinase (FAK) in tumor cells overlying FMCLDs were higher than those within the corresponding duct. Integrin β1 staining was detected only in a small number of the tumor cells overlying the FMCLDs. Vinculin staining was weak (18%) or not detected (82%), and no expression was found in the tumor cells within the corresponding duct or in the pure isolated DCIS. By contrast, the expression levels of talin, vinculin and integrin β1 in the invasive tumors were distinctly higher than those in DCIS, and the expression of FAK and E-cadherin was lower. Using electron microscopy, we found that the tight junctions between tumor cells overlying the FMCLDs were reduced compared to the adjacent tumor cells in the lumen. These results indicate that the tumor cells overlying FMCLDs are likely to represent the specific precursors of invasive breast lesions. Our findings may also facilitate the identification of specific targets for further molecular profiling, which will more completely characterize this important cell population.
Collapse
Affiliation(s)
- JIN-HONG GAI
- Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070
- College of Animal Science and Veterinary Medicine, and
| | - PENG-TAO GONG
- College of Animal Science and Veterinary Medicine, and
| | - JIAN-HUA LI
- College of Animal Science and Veterinary Medicine, and
| | - YAN-GAO MAN
- Department of Gynecologic and Breast Pathology, Armed Forces Institute of Pathology and American Registry of Pathology, Washington, DC 20306-6000,
USA
| | - JIN-SONG NI
- Department of Pathologic Anatomy, School of Basic Medical Sciences, Jilin University, Changchun, Jilin
| | - HONGXI MA
- Department of Pathologic Anatomy, School of Basic Medical Sciences, Jilin University, Changchun, Jilin
| | - FEN-YUN HAO
- Department of Pathology, Weifang People's Hospital, Weifang, Shandong 261061, P.R.
China
| | - XI-CHEN ZHANG
- College of Animal Science and Veterinary Medicine, and
- Correspondence to: Dr Xi-Chen Zhang, College of Animal Science and Veterinary Medicine, Jilin University, Changchun, P.R. China, E-mail:
| | - YING LIU
- Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070
| |
Collapse
|
27
|
Ellis SJ, Pines M, Fairchild MJ, Tanentzapf G. In vivo functional analysis reveals specific roles for the integrin-binding sites of talin. J Cell Sci 2011; 124:1844-56. [PMID: 21558413 DOI: 10.1242/jcs.083337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adhesion receptors play diverse roles during animal development and require precise spatiotemporal regulation, which is achieved through the activity of their binding partners. Integrins, adhesion receptors that mediate cell attachment to the extracellular matrix (ECM), connect to the intracellular environment through the cytoplasmic adapter protein talin. Talin has two essential functions: orchestrating the assembly of the intracellular adhesion complex (IAC), which associates with integrin, and regulating the affinity of integrins for the ECM. Talin can bind to integrins through two different integrin-binding sites (IBS-1 and IBS-2, respectively). Here, we have investigated the roles of each in the context of Drosophila development. We find that although IBS-1 and IBS-2 are partially redundant, they each have specialized roles during development: IBS-1 reinforces integrin attachment to the ECM, whereas IBS-2 reinforces the link between integrins and the IAC. Disruption of each IBS has different developmental consequences, illustrating how the functional diversity of integrin-mediated adhesion is achieved.
Collapse
Affiliation(s)
- Stephanie J Ellis
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | | | | | | |
Collapse
|
28
|
Pines M, Fairchild MJ, Tanentzapf G. Distinct regulatory mechanisms control integrin adhesive processes during tissue morphogenesis. Dev Dyn 2011; 240:36-51. [PMID: 21089076 DOI: 10.1002/dvdy.22488] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cell adhesion must be precisely regulated to enable both dynamic morphogenetic processes and the subsequent transition to stable tissue maintenance. Integrins link the intracellular cytoskeleton and extracellular matrix, relaying bidirectional signals across the plasma membrane. In vitro studies have demonstrated that multiple mechanisms control integrin-mediated adhesion; however, their roles during development are poorly understood. We used mutations that activate or deactivate specific functions of vertebrate β-integrins in vitro to investigate how perturbing Drosophila βPS-integrin regulation in developing embryos regulation affects tissue morphogenesis and maintenance. We found that morphogenetic processes use various β-integrin regulatory mechanisms to differing degrees and that conformational changes associated with outside-in activation are essential for developmental integrin functions. Long-term adhesion is also sensitive to integrin dysregulation, suggesting integrins must be continuously regulated to support stable tissue maintenance. Altogether, in vivo phenotypic analyses allowed us to identify the importance of various β-integrin regulatory mechanisms during different morphogenetic processes.
Collapse
Affiliation(s)
- Mary Pines
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Sciences Institute, Vancouver, BC, Canada
| | | | | |
Collapse
|
29
|
Lai MT, Hua CH, Tsai MH, Wan L, Lin YJ, Chen CM, Chiu IW, Chan C, Tsai FJ, Jinn-Chyuan Sheu J. Talin-1 overexpression defines high risk for aggressive oral squamous cell carcinoma and promotes cancer metastasis. J Pathol 2011; 224:367-76. [PMID: 21547905 DOI: 10.1002/path.2867] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/19/2011] [Accepted: 01/30/2011] [Indexed: 01/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is highly invasive and is associated with frequent tumour recurrences and lymph node metastases. Identification of genes involved in the aggressiveness of OSCC may provide new targets for clinical intervention. A genome-wide study based on the Sty1 250K SNP array indicated the involvement of the Talin-1 (TLN1) gene in the 9p13.3 amplicon, which was further validated by dual colour fluorescence in situ hybridization (FISH). Comparative analyses revealed that TLN1 was the most highly expressed integrin-cytoskeleton cross-linker that can trigger integrin activation. IHC analyses and mouse study also revealed an association between TLN1 overexpression and advanced OSCC with invasion to adjacent tissues. Survival analyses indicated a significant association between TLN1 genetic gain/overexpression and a reduced overall survival in patients. Functional knockdown by a dominant negative TLN1 fragment reduced cell growth and invasiveness in TLN1-overexpressing cells via inactivation of downstream oncogenic signalling. The present study suggests an important role for TLN1 in oral cancer development. TLN1 overexpression could serve as a diagnostic marker for aggressive phenotypes and a potential target for treating OSCC.
Collapse
Affiliation(s)
- Ming-Tsung Lai
- Department of Pathology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The development of multicellular organisms, as well as maintenance of organ architecture and function, requires robust regulation of cell fates. This is in part achieved by conserved signaling pathways through which cells process extracellular information and translate this information into changes in proliferation, differentiation, migration, and cell shape. Gene deletion studies in higher eukaryotes have assigned critical roles for components of the extracellular matrix (ECM) and their cellular receptors in a vast number of developmental processes, indicating that a large proportion of this signaling is regulated by cell-ECM interactions. In addition, genetic alterations in components of this signaling axis play causative roles in several human diseases. This review will discuss what genetic analyses in mice and lower organisms have taught us about adhesion signaling in development and disease.
Collapse
Affiliation(s)
- Sara A Wickström
- Paul Gerson Una Group, Skin Homeostasis and Ageing, Max Planck Institute for Biology of Ageing, 50937 Cologne, Germany.
| | | | | |
Collapse
|
31
|
Abstract
Integrin adhesion receptors are essential for the development and functioning of multicellular animals. Integrins mediate cell adhesion to the extracellular matrix and to counter-receptors on adjacent cells, and the ability of integrins to bind extracellular ligands is regulated in response to intracellular signals that act on the short cytoplasmic tails of integrin subunits. Integrin activation, the rapid conversion of integrin receptors from low to high affinity, requires binding of talin to integrin β tails and, once bound, talin provides a connection from activated integrins to the actin cytoskeleton. A wide range of experimental approaches have contributed to the current understanding of the importance of talin in integrin signaling. Here, we describe two methods that have been central to our investigations of talin; a biochemical assay that has allowed characterization of interactions between integrin cytoplasmic tails and talin, and a fluorescent-activated cell-sorting procedure to assess integrin activation in cultured cells expressing talin domains, mutants, dominant negative constructs, or shRNA.
Collapse
Affiliation(s)
- Mohamed Bouaouina
- Department of Pharmacology and Interdepartmental Program in Vascular Biology and Transplantation, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
32
|
Deng H, Bell JB, Simmonds AJ. Vestigial is required during late-stage muscle differentiation in Drosophila melanogaster embryos. Mol Biol Cell 2010; 21:3304-16. [PMID: 20685961 PMCID: PMC2947467 DOI: 10.1091/mbc.e10-04-0364] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Drosophila member of the vestigial-like gene family (vestigial) is known primarily as a transcriptional activator that defines cell identity during Drosophila wing differentiation. We show that during embryo development Vestigial also has a role during specification of muscle–muscle attachments in ventral longitudinal muscles. The somatic muscles of Drosophila develop in a complex pattern that is repeated in each embryonic hemi-segment. During early development, progenitor cells fuse to form a syncytial muscle, which further differentiates via expression of muscle-specific factors that induce specific responses to external signals to regulate late-stage processes such as migration and attachment. Initial communication between somatic muscles and the epidermal tendon cells is critical for both of these processes. However, later establishment of attachments between longitudinal muscles at the segmental borders is largely independent of the muscle–epidermal attachment signals, and relatively little is known about how this event is regulated. Using a combination of null mutations and a truncated version of Sd that binds Vg but not DNA, we show that Vestigial (Vg) is required in ventral longitudinal muscles to induce formation of stable intermuscular attachments. In several muscles, this activity may be independent of Sd. Furthermore, the cell-specific differentiation events induced by Vg in two cells fated to form attachments are coordinated by Drosophila epidermal growth factor signaling. Thus, Vg is a key factor to induce specific changes in ventral longitudinal muscles 1–4 identity and is required for these cells to be competent to form stable intermuscular attachments with each other.
Collapse
Affiliation(s)
- Hua Deng
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H8, Canada
| | | | | |
Collapse
|
33
|
Distinct developmental roles for direct and indirect talin-mediated linkage to actin. Dev Biol 2010; 345:64-77. [PMID: 20599891 DOI: 10.1016/j.ydbio.2010.06.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 06/19/2010] [Accepted: 06/22/2010] [Indexed: 11/20/2022]
Abstract
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is essential to connect extracellular matrix-bound integrins to the cytoskeleton. Talin can connect to the cytoskeleton either directly, through its actin-binding motifs, or indirectly, by recruiting other actin-binding proteins. Talin's carboxy-terminal end contains a well-characterized actin-binding domain (ABD). We tested the role of the C-terminal ABD of talin in integrin function in Drosophila. We found that introduction of mutations that reduced actin binding in vitro into the isolated C-terminal Talin-ABD impaired actin binding in vivo. Moreover, when engineered into full-length talin, these mutations disrupted a subset of integrin-mediated adhesion-dependent developmental events. Specifically, morphogenetic processes that involve dynamic, short-term integrin-mediated adhesion were particularly sensitive to impaired function of the C-terminal Talin-ABD. We propose that during development talin connects integrins to the cytoskeleton in distinct ways in different types of integrin-mediated adhesion: directly in transient adhesions and indirectly in stable long-lasting adhesions. Our results provide insight into how a similar array of molecular components can contribute to diverse adhesive processes throughout development.
Collapse
|
34
|
Abstract
The interaction between cells and nanostructured materials is attracting increasing interest, because of the possibility to open up novel concepts for the design of smart nanobiomaterials with active biological functionalities. In this frame we investigated the response of human neuroblastoma cell line (SH-SY5Y) to gold surfaces with different levels of nanoroughness. To achieve a precise control of the nanoroughness with nanometer resolution, we exploited a wet chemistry approach based on spontaneous galvanic displacement reaction. We demonstrated that neurons sense and actively respond to the surface nanotopography, with a surprising sensitivity to variations of few nanometers. We showed that focal adhesion complexes, which allow cellular sensing, are strongly affected by nanostructured surfaces, leading to a marked decrease in cell adhesion. Moreover, cells adherent on nanorough surfaces exhibit loss of neuron polarity, Golgi apparatus fragmentation, nuclear condensation, and actin cytoskeleton that is not functionally organized. Apoptosis/necrosis assays established that nanoscale features induce cell death by necrosis, with a trend directly related to roughness values. Finally, by seeding SH-SY5Y cells onto micropatterned flat and nanorough gold surfaces, we demonstrated the possibility to realize substrates with cytophilic or cytophobic behavior, simply by fine-tuning their surface topography at nanometer scale. Specific and functional adhesion of cells occurred only onto flat gold stripes, with a clear self-alignment of neurons, delivering a simple and elegant approach for the design and development of biomaterials with precise nanostructure-triggered biological responses.
Collapse
|
35
|
Yuan L, Fairchild MJ, Perkins AD, Tanentzapf G. Analysis of integrin turnover in fly myotendinous junctions. J Cell Sci 2010; 123:939-46. [PMID: 20179102 DOI: 10.1242/jcs.063040] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Transient (short-term) cell adhesion underlies dynamic processes such as cell migration, whereas stable (long-term) cell adhesion maintains tissue architecture. Ongoing adhesion complex turnover is essential for transient cell adhesion, but it is not known whether turnover is also required for maintenance of long-term adhesion. We used fluorescence recovery after photobleaching to analyze the dynamics of an integrin adhesion complex (IAC) in a model of long-term cell-ECM adhesion, myotendinous junctions (MTJs), in fly embryos and larvae. We found that the IAC undergoes turnover in MTJs and that this process is mediated by clathrin-dependent endocytosis. Moreover, the small GTPase Rab5 can regulate the proportion of IAC components that undergo turnover. Also, altering Rab5 activity weakened MTJs, resulting in muscle defects. In addition, growth of MTJs was concomitant with a decrease in the proportion of IAC components undergoing turnover. We propose that IAC turnover is tightly regulated in long-term cell-ECM adhesions to allow normal tissue growth and maintenance.
Collapse
Affiliation(s)
- Lin Yuan
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
36
|
Perkins AD, Ellis SJ, Asghari P, Shamsian A, Moore EDW, Tanentzapf G. Integrin-mediated adhesion maintains sarcomeric integrity. Dev Biol 2009; 338:15-27. [PMID: 19879257 DOI: 10.1016/j.ydbio.2009.10.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/20/2009] [Accepted: 10/23/2009] [Indexed: 10/24/2022]
Abstract
Integrin-mediated adhesion to the ECM is essential for normal development of animal tissues. During muscle development, integrins provide the structural stability required to construct such a highly tensile, force generating tissue. Mutations that disrupt integrin-mediated adhesion in skeletal muscles give rise to a myopathy in humans and mice. To determine if this is due to defects in formation or defects in maintenance of muscle tissue, we used an inducible, targeted RNAi based approach to disrupt integrin-mediated adhesion in fully formed adult fly muscles. A decrease in integrin-mediated adhesion in adult muscles led to a progressive loss of muscle function due to a failure to maintain normal sarcomeric cytoarchitecture. This defect was due to a gradual, age dependent disorganization of the sarcomeric actin, Z-line, and M-line. Electron microscopic analysis showed that reduction in integrin-mediated adhesion resulted in detachment of actin filaments from the Z-lines, separation of the Z-lines from the membrane, and eventually to disintegration of the Z-lines. Our results show that integrin-mediated adhesion is essential for maintaining sarcomeric integrity and illustrate that the seemingly stable adhesive contacts underlying sarcomeric architecture are inherently dynamic.
Collapse
Affiliation(s)
- Alexander D Perkins
- Department of Cellular and Physiological Sciences, University of British Columbia, Life Science Institute, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | |
Collapse
|
37
|
Critchley DR. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin. Annu Rev Biophys 2009; 38:235-54. [PMID: 19416068 DOI: 10.1146/annurev.biophys.050708.133744] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interaction of cells with the extracellular matrix is fundamental to a wide variety of biological processes, such as cell proliferation, cell migration, embryogenesis, and organization of cells into tissues, and defects in cell-matrix interactions are an important element in many diseases. Cell-matrix interactions are frequently mediated by the integrin family of cell adhesion molecules, transmembrane alphabeta-heterodimers that are typically linked to the actin cytoskeleton by one of a number of adaptor proteins including talin, alpha-actinin, filamin, tensin, integrin-linked kinase, melusin, and skelemin. The focus of this review is talin, which appears unique among these proteins in that it also induces a conformational change in integrins that is propagated across the membrane, and increases the affinity of the extracellular domain for ligand. Particular emphasis is given to recent progress on the structure of talin, its interaction with binding partners, and its mode of regulation.
Collapse
Affiliation(s)
- David R Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK.
| |
Collapse
|
38
|
Goult BT, Bate N, Anthis NJ, Wegener KL, Gingras AR, Patel B, Barsukov IL, Campbell ID, Roberts GCK, Critchley DR. The structure of an interdomain complex that regulates talin activity. J Biol Chem 2009; 284:15097-106. [PMID: 19297334 PMCID: PMC2685691 DOI: 10.1074/jbc.m900078200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 02/27/2009] [Indexed: 11/16/2022] Open
Abstract
Talin is a large flexible rod-shaped protein that activates the integrin family of cell adhesion molecules and couples them to cytoskeletal actin. It exists in both globular and extended conformations, and an intramolecular interaction between the N-terminal F3 FERM subdomain and the C-terminal part of the talin rod contributes to an autoinhibited form of the molecule. Here, we report the solution structure of the primary F3 binding domain within the C-terminal region of the talin rod and use intermolecular nuclear Overhauser effects to determine the structure of the complex. The rod domain (residues 1655-1822) is an amphipathic five-helix bundle; Tyr-377 of F3 docks into a hydrophobic pocket at one end of the bundle, whereas a basic loop in F3 (residues 316-326) interacts with a cluster of acidic residues in the middle of helix 4. Mutation of Glu-1770 abolishes binding. The rod domain competes with beta3-integrin tails for binding to F3, and the structure of the complex suggests that the rod is also likely to sterically inhibit binding of the FERM domain to the membrane.
Collapse
Affiliation(s)
- Benjamin T Goult
- Department of Biochemistry, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Geiger B, Spatz JP, Bershadsky AD. Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 2009; 10:21-33. [DOI: 10.1038/nrm2593] [Citation(s) in RCA: 1922] [Impact Index Per Article: 120.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Helsten TL, Bunch TA, Kato H, Yamanouchi J, Choi SH, Jannuzi AL, Féral CC, Ginsberg MH, Brower DL, Shattil SJ. Differences in regulation of Drosophila and vertebrate integrin affinity by talin. Mol Biol Cell 2008; 19:3589-98. [PMID: 18508915 PMCID: PMC2488300 DOI: 10.1091/mbc.e08-01-0085] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Integrin-mediated cell adhesion is essential for development of multicellular organisms. In worms, flies, and vertebrates, talin forms a physical link between integrin cytoplasmic domains and the actin cytoskeleton. Loss of either integrins or talin leads to similar phenotypes. In vertebrates, talin is also a key regulator of integrin affinity. We used a ligand-mimetic Fab fragment, TWOW-1, to assess talin's role in regulating Drosophila alphaPS2 betaPS affinity. Depletion of cellular metabolic energy reduced TWOW-1 binding, suggesting alphaPS2 betaPS affinity is an active process as it is for vertebrate integrins. In contrast to vertebrate integrins, neither talin knockdown by RNA interference nor talin head overexpression had a significant effect on TWOW-1 binding. Furthermore, replacement of the transmembrane or talin-binding cytoplasmic domains of alphaPS2 betaPS with those of human alphaIIb beta3 failed to enable talin regulation of TWOW-1 binding. However, substitution of the extracellular and transmembrane domains of alphaPS2 betaPS with those of alphaIIb beta3 resulted in a constitutively active integrin whose affinity was reduced by talin knockdown. Furthermore, wild-type alphaIIb beta3 was activated by overexpression of Drosophila talin head domain. Thus, despite evolutionary conservation of talin's integrin/cytoskeleton linkage function, talin is not sufficient to regulate Drosophila alphaPS2 betaPS affinity because of structural features inherent in the alphaPS2 betaPS extracellular and/or transmembrane domains.
Collapse
Affiliation(s)
- Teresa L Helsten
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Smith SJ, McCann RO. A C-terminal dimerization motif is required for focal adhesion targeting of Talin1 and the interaction of the Talin1 I/LWEQ module with F-actin. Biochemistry 2007; 46:10886-98. [PMID: 17722883 DOI: 10.1021/bi700637a] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Focal adhesion complexes are plasma membrane-associated multicomponent complexes that are essential for integrin-linked signal transduction as well as cell adhesion and cell motility. The cytoskeletal protein Talin1 links integrin adhesion receptors with the actin cytoskeleton. Talin1 and the other animal and amoebozoan talins are members of the I/LWEQ module superfamily, which also includes fungal Sla2 and animal Hip1/Hip1R. The I/LWEQ module is a conserved C-terminal structural element that is critical for I/LWEQ module protein function. The I/LWEQ module of Talin1 binds to F-actin and targets the protein to focal adhesions in vivo. The I/LWEQ modules of Sla2 and Hip1 are required for the participation of these proteins in endocytosis. In addition to these roles in I/LWEQ module protein function, we have recently shown that the I/LWEQ module also contains a determinant for protein dimerization. Taken together, these results suggest that actin binding, subcellular targeting, and dimerization are associated in I/LWEQ module proteins. In this report we have used alanine-scanning mutagenesis of a putative coiled coil at the C-terminus of the Talin1 I/LWEQ module to show that the amino acids responsible for dimerization are necessary for F-actin binding, the stabilization of actin filaments, the cross-linking of actin filaments, and focal adhesion targeting. Our results suggest that this conserved dimerization motif in the I/LWEQ module plays an essential role in the function of Talin1 as a component of focal adhesions and, by extension, the other I/LWEQ module proteins in other multicomponent assemblies involved in cell adhesion and vesicle trafficking.
Collapse
Affiliation(s)
- Steven J Smith
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, 741 South Limestone Street, Lexington, Kentucky 40536-0509, USA
| | | |
Collapse
|
42
|
Devenport D, Bunch TA, Bloor JW, Brower DL, Brown NH. Mutations in the Drosophila alphaPS2 integrin subunit uncover new features of adhesion site assembly. Dev Biol 2007; 308:294-308. [PMID: 17618618 PMCID: PMC3861690 DOI: 10.1016/j.ydbio.2007.02.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 02/15/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
The Drosophila alphaPS2betaPS integrin is required for diverse development events, including muscle attachment. We characterized six unusual mutations in the alphaPS2 gene that cause a subset of the null phenotype. One mutation changes a residue in alphaPS2 that is equivalent to the residue in alphaV that contacts the arginine of RGD. This change severely reduced alphaPS2betaPS affinity for soluble ligand, abolished the ability of the integrin to recruit laminin to muscle attachment sites in the embryo and caused detachment of integrins and talin from the ECM. Three mutations that alter different parts of the alphaPS2 beta-propeller, plus a fourth that eliminated a late phase of alphaPS2 expression, all led to a strong decrease in alphaPS2betaPS at muscle ends, but, surprisingly, normal levels of talin were recruited. Thus, although talin recruitment requires alphaPS2betaPS, talin levels are not simply specified by the amount of integrin at the adhesive junction. These mutations caused detachment of talin and actin from integrins, suggesting that the integrin-talin link is weaker than the ECM-integrin link.
Collapse
Affiliation(s)
- Danelle Devenport
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Thomas A. Bunch
- Department of Molecular and Cellular Biology, University of Arizona, Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, Arizona 85724, USA
| | - James W. Bloor
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Danny L. Brower
- Department of Molecular and Cellular Biology, University of Arizona, Arizona Cancer Center, 1515 N. Campbell Ave., Tucson, Arizona 85724, USA
| | - Nicholas H. Brown
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| |
Collapse
|
43
|
Manevich E, Grabovsky V, Feigelson SW, Alon R. Talin 1 and Paxillin Facilitate Distinct Steps in Rapid VLA-4-mediated Adhesion Strengthening to Vascular Cell Adhesion Molecule 1. J Biol Chem 2007; 282:25338-48. [PMID: 17597073 DOI: 10.1074/jbc.m700089200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
VLA-4 (alpha4beta1) is a key integrin in lymphocytes, interacting with endothelial vascular cell adhesion molecule 1 (VCAM-1) on blood vessels and stroma. To dissect the contribution of the two cytoskeletal VLA-4 adaptor partners paxillin and talin to VLA-4 adhesiveness, we transiently knocked them down in Jurkat T cells and primary resting human T cells by small interfering RNA silencing. Paxillin was required for VLA-4 adhesiveness to low density VCAM-1 under shear stress conditions and was found to control mechanical stability of bonds mediated by the alpha4 subunit but did not affect the integrin affinity or avidity to VCAM-1 in shear-free conditions. Talin 1 maintained VLA-4 in a high affinity conformation, thereby promoting rapid VLA-4 adhesion strengthening to VCAM-1 under both shear stress and shear-free conditions. Talin 1, but not paxillin, was required for VLA-4 to undergo optimal stimulation by the prototypic chemokine, CXCL12, under shear stress conditions. Interestingly, talin 1 and paxillin played the same distinct roles in VLA-4 adhesions of primary T lymphocytes, although VLA-4 affinity to VCAM-1 was at least 200-fold lower in these cells than in Jurkat cells. Collectively, our results suggest that whereas paxillin is a mechanical regulator of VLA-4 bonds generated in the absence of chemokine signals and low VCAM-1 occupancy, talin 1 is a versatile VLA-4 affinity regulator implicated in both spontaneous and chemokine-triggered rapid adhesions to VCAM-1.
Collapse
Affiliation(s)
- Eugenia Manevich
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
44
|
Fernández-Miñán A, Martín-Bermudo MD, González-Reyes A. Integrin Signaling Regulates Spindle Orientation in Drosophila to Preserve the Follicular-Epithelium Monolayer. Curr Biol 2007; 17:683-8. [PMID: 17363255 DOI: 10.1016/j.cub.2007.02.052] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 02/13/2007] [Accepted: 02/15/2007] [Indexed: 01/18/2023]
Abstract
Epithelia act as important physiological barriers and as structural components of tissues and organs. In the Drosophila ovary, follicle cells envelop the germline cysts to form a monolayer epithelium. During division, the orientation of the mitotic spindle in follicle cells is such that both daughter cells remain within the same plane, and the simple structure of the follicular epithelium is thus preserved. Here we show that integrins, heterodimeric transmembrane receptors that connect the extracellular matrix to the cell's cytoskeleton [1, 2], are required for maintaining the ovarian monolayer epithelium in Drosophila. Mosaic egg chambers containing integrin mutant follicle cells develop stratified epithelia at both poles. This stratification is due neither to abnormal cell proliferation nor to defects in the apical-basal polarity of the mutant cells. Instead, integrin function is required for the correct orientation of the mitotic apparatus both in mutant cells and in their immediately adjacent wild-type neighbors. We further demonstrate that integrin-mediated signaling, rather than adhesion, is sufficient for maintaining the integrity of the follicular epithelium. The above data show that integrins are necessary for preserving the simple organization of a specialized epithelium and link integrin-mediated signaling to the correct orientation of the mitotic spindle in this epithelial cell type.
Collapse
Affiliation(s)
- Ana Fernández-Miñán
- Centro Andaluz de Biología del Desarrollo, Consejo Superior de Investigaciones Cientificas, Universidad Pablo de Olavide, Carretera de Utrera km 1, 41013 Sevilla, Spain
| | | | | |
Collapse
|
45
|
Domínguez-Giménez P, Brown NH, Martín-Bermudo MD. Integrin-ECM interactions regulate the changes in cell shape driving the morphogenesis of the Drosophila wing epithelium. J Cell Sci 2007; 120:1061-71. [PMID: 17327274 DOI: 10.1242/jcs.03404] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
During development, morphogenesis involves migration and changes in the shape of epithelial sheets, both of which require coordination of cell adhesion. Thus, while modulation of integrin-mediated adhesion to the ECM regulates epithelial motility, cell-cell adhesion via cadherins controls the remodelling of epithelial sheets. We have used the Drosophila wing epithelium to demonstrate that cell-ECM interactions mediated by integrins also regulate the changes in cell shape that underly epithelial morphogenesis. We show that integrins control the transitions from columnar to cuboidal cell shape underlying wing formation, and we demonstrate that eliminating the ECM has the same effect on cell shape as inhibiting integrin function. Furthermore, lack of integrin activity also induces detachment of the basal lamina and failure to assemble the basal matrix. Hence, we propose that integrins control epithelial cell shape by mediating adherence of these cells to the ECM. Finally, we show that the ECM has an instructive rather than a structural role, because inhibition of Raf reverses the cell shape changes caused by perturbing integrins.
Collapse
|
46
|
Li JJ, Han M, Wen JK, Li AY. Osteopontin stimulates vascular smooth muscle cell migration by inducing FAK phosphorylation and ILK dephosphorylation. Biochem Biophys Res Commun 2007; 356:13-9. [PMID: 17336930 DOI: 10.1016/j.bbrc.2007.02.092] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
Focal adhesion kinase (FAK) and integrin-linked kinase (ILK) are both involved in integrin-mediated cell migration. However, the molecular mechanism, and the relationship between FAK and ILK activity in signaling transduction for the osteopontin (OPN)-induced migration of vascular smooth muscle cells (VSMCs) remain unclear. Here, we show that treating VSMCs with OPN could result in the dissociation of FAK with ILK by inducing phosphorylation of the former and dephosphorylation of the latter. Furthermore, we demonstrate that FAK phosphorylation induced by OPN is coupled with ILK dephosphorylation. We also provide evidence that ILK acts downstream of FAK in the signaling pathways that mediate OPN-induced VSMC migration. These findings suggest that FAK phosphorylation and ILK dephosphorylation play important roles in VSMC migration induced by OPN.
Collapse
Affiliation(s)
- Jing-Jing Li
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050017, China
| | | | | | | |
Collapse
|
47
|
Delon I, Brown NH. Integrins and the actin cytoskeleton. Curr Opin Cell Biol 2007; 19:43-50. [PMID: 17184985 DOI: 10.1016/j.ceb.2006.12.013] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 12/11/2006] [Indexed: 01/08/2023]
Abstract
The ability to connect to the actin cytoskeleton is a key part of the adhesive function of integrins. This linkage between integrins and the cytoskeleton involves a large complex of integrin-associated proteins that function in both the assembly and disassembly of the link. Genetic evidence has helped to clarify the relative contributions of different components of this link. In different contexts integrins can either stimulate or suppress actin based structures, indicating the variety of pathways leading from integrins to the cytoskeleton. The cytoskeleton also contributes to the extent of the integrin junction, allowing an adhesive contact to attain sufficient strength to resist contractile forces involved in cellular movement and function.
Collapse
Affiliation(s)
- Isabelle Delon
- The Gurdon Institute and Dept of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN
| | | |
Collapse
|
48
|
Lim J, Wiedemann A, Tzircotis G, Monkley SJ, Critchley DR, Caron E. An essential role for talin during alpha(M)beta(2)-mediated phagocytosis. Mol Biol Cell 2007; 18:976-85. [PMID: 17202407 PMCID: PMC1805113 DOI: 10.1091/mbc.e06-09-0813] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The cytoskeletal, actin-binding protein talin has been previously implicated in phagocytosis in Dictyostelium discoideum and mammalian phagocytes. However, its mechanism of action during internalization is not understood. Our data confirm that endogenous talin can occasionally be found at phagosomes forming around IgG- and C3bi-opsonized red blood cells in macrophages. Remarkably, talin knockdown specifically abrogates uptake through complement receptor 3 (CR3, CD11b/CD18, alpha(M)beta(2) integrin) and not through the Fc gamma receptor. We show that talin physically interacts with CR3/alpha(M)beta(2) and that this interaction involves the talin head domain and residues W747 and F754 in the beta(2) integrin cytoplasmic domain. The CR3/alpha(M)beta(2)-talin head interaction controls not only talin recruitment to forming phagosomes but also CR3/alpha(M)beta(2) binding activity, both in macrophages and transfected fibroblasts. However, the talin head domain alone cannot support phagocytosis. Our results establish for the first time at least two distinct roles for talin during CR3/alpha(M)beta(2)-mediated phagocytosis, most noticeably activation of the CR3/alpha(M)beta(2) receptor and phagocytic uptake.
Collapse
Affiliation(s)
- Jenson Lim
- *Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Agnès Wiedemann
- *Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - George Tzircotis
- *Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Susan J. Monkley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - David R. Critchley
- Department of Biochemistry, University of Leicester, Leicester LE1 9HN, United Kingdom
| | - Emmanuelle Caron
- *Centre for Molecular Microbiology and Infection and Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, United Kingdom; and
| |
Collapse
|
49
|
Tanentzapf G, Brown NH. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nat Cell Biol 2006; 8:601-6. [PMID: 16648844 DOI: 10.1038/ncb1411] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 04/10/2006] [Indexed: 02/01/2023]
Abstract
Transmembrane adhesion receptors, such as integrins, mediate cell adhesion by interacting with intracellular proteins that connect to the cytoskeleton. Talin, one such linker protein, is thought to have two roles: mediating inside-out activation of integrins, and connecting extracellular matrix (ECM)-bound integrins to the cytoskeleton. Talin's amino-terminal head, which consists of a FERM domain, binds an NPxY motif within the cytoplasmic tail of most integrin beta subunits. This is consistent with the role of FERM domains in recruiting other proteins to the plasma membrane. We tested the role of the talin-head-NPxY interaction in integrin function in Drosophila. We found that introduction of a mutation that perturbs this binding in vitro into the isolated talin head disrupts its recruitment by integrins in vivo. Surprisingly, when engineered into the full-length talin, this mutation did not disrupt talin recruitment by integrins nor its ability to connect integrins to the cytoskeleton. However, it reduced the ability of talin to strengthen integrin adhesion to the ECM, indicating that the function of the talin-head-NPxY interaction is solely to regulate integrin adhesion.
Collapse
Affiliation(s)
- Guy Tanentzapf
- The Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|