1
|
Chapman JR. Mass Spectrometry-Based Proteomics for the Masses: Peptide and Protein Identification in the Hunt Laboratory During the 2000's. Mol Cell Proteomics 2024; 23:100866. [PMID: 39442692 PMCID: PMC11696785 DOI: 10.1016/j.mcpro.2024.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
There has been a rapid increase in the number of individuals utilizing mass spectrometry-based proteomics to study complex biological systems and questions since the start of the 2000's. Building off the advancements in ionization and liquid chromatography scientists continued to push towards technology that would enable in-depth analysis of biological specimen. Donald F Hunt and the Hunt laboratory were major contributors to this effort with their work on improving upon existing Fourier Transform MS, development of electron transfer dissociation, and continued work on ion-ion reactions to improve intact protein analysis. Collaboration with other instrumentation laboratories and instrument companies led to the sharing of technology and eventual commercialization providing greater access. Additionally, the Hunt laboratory spread the gospel of MS-based proteomics through collaborations that lasted decades with other scientists who were experts in immunology, cellular signaling, epigenetics, and other fascinating fields. This article attempts to highlight the many contributions of Don and the Hunt laboratory to peptide and protein identification since the year 2000.
Collapse
Affiliation(s)
- Jessica R Chapman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
2
|
β-Arrestin2 Is Critically Involved in the Differential Regulation of Phosphosignaling Pathways by Thyrotropin-Releasing Hormone and Taltirelin. Cells 2022; 11:cells11091473. [PMID: 35563779 PMCID: PMC9103620 DOI: 10.3390/cells11091473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
In recent years, thyrotropin-releasing hormone (TRH) and its analogs, including taltirelin (TAL), have demonstrated a range of effects on the central nervous system that represent potential therapeutic agents for the treatment of various neurological disorders, including neurodegenerative diseases. However, the molecular mechanisms of their actions remain poorly understood. In this study, we investigated phosphosignaling dynamics in pituitary GH1 cells affected by TRH and TAL and the putative role of β-arrestin2 in mediating these effects. Our results revealed widespread alterations in many phosphosignaling pathways involving signal transduction via small GTPases, MAP kinases, Ser/Thr- and Tyr-protein kinases, Wnt/β-catenin, and members of the Hippo pathway. The differential TRH- or TAL-induced phosphorylation of numerous proteins suggests that these ligands exhibit some degree of biased agonism at the TRH receptor. The different phosphorylation patterns induced by TRH or TAL in β-arrestin2-deficient cells suggest that the β-arrestin2 scaffold is a key factor determining phosphorylation events after TRH receptor activation. Our results suggest that compounds that modulate kinase and phosphatase activity can be considered as additional adjuvants to enhance the potential therapeutic value of TRH or TAL.
Collapse
|
3
|
Proteomic Analysis Unveils Expressional Changes in Cytoskeleton- and Synaptic Plasticity-Associated Proteins in Rat Brain Six Months after Withdrawal from Morphine. Life (Basel) 2021; 11:life11070683. [PMID: 34357055 PMCID: PMC8304287 DOI: 10.3390/life11070683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/10/2021] [Indexed: 11/17/2022] Open
Abstract
Drug withdrawal is associated with abstinence symptoms including deficits in cognitive functions that may persist even after prolonged discontinuation of drug intake. Cognitive deficits are, at least partially, caused by alterations in synaptic plasticity but the precise molecular mechanisms have not yet been fully identified. In the present study, changes in proteomic and phosphoproteomic profiles of selected brain regions (cortex, hippocampus, striatum, and cerebellum) from rats abstaining for six months after cessation of chronic treatment with morphine were determined by label-free quantitative (LFQ) proteomic analysis. Interestingly, prolonged morphine withdrawal was found to be associated especially with alterations in protein phosphorylation and to a lesser extent in protein expression. Gene ontology (GO) term analysis revealed enrichment in biological processes related to synaptic plasticity, cytoskeleton organization, and GTPase activity. More specifically, significant changes were observed in proteins localized in synaptic vesicles (e.g., synapsin-1, SV2a, Rab3a), in the active zone of the presynaptic nerve terminal (e.g., Bassoon, Piccolo, Rims1), and in the postsynaptic density (e.g., cadherin 13, catenins, Arhgap35, Shank3, Arhgef7). Other differentially phosphorylated proteins were associated with microtubule dynamics (microtubule-associated proteins, Tppp, collapsin response mediator proteins) and the actin–spectrin network (e.g., spectrins, adducins, band 4.1-like protein 1). Taken together, a six-month morphine withdrawal was manifested by significant alterations in the phosphorylation of synaptic proteins. The altered phosphorylation patterns modulating the function of synaptic proteins may contribute to long-term neuroadaptations induced by drug use and withdrawal.
Collapse
|
4
|
Guan X, Guan X, Dong C, Jiao Z. Rho GTPases and related signaling complexes in cell migration and invasion. Exp Cell Res 2020; 388:111824. [PMID: 31926148 DOI: 10.1016/j.yexcr.2020.111824] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/16/2022]
Abstract
Cell migration and invasion play an important role in the development of cancer. Cell migration is associated with several specific actin filament-based structures, including lamellipodia, filopodia, invadopodia and blebs, and with cell-cell adhesion, cell-extracellular matrix adhesion. Migration occurs via different modes, human epithelial cancer cells mainly migrate collectively, while in vivo imaging studies in laboratory animals have found that most cells migrate as single cells. Rho GTPases play an important role in the process of cell migration, and several Rho GTPase-related signaling complexes are also involved. However, the exact mechanism by which these signaling complexes act remains unclear. This paper reviews how Rho GTPases and related signaling complexes interact with other proteins, how their expression is regulated, how tumor microenvironment-related factors play a role in invasion and metastasis, and the mechanism of these complex signaling networks in cell migration and invasion.
Collapse
Affiliation(s)
- Xiaoying Guan
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Xiaoli Guan
- General Medicine Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Chi Dong
- Pathology Department, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China
| | - Zuoyi Jiao
- The First Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, 730030, Gansu, China.
| |
Collapse
|
5
|
Regulation of Microtubule Nucleation in Mouse Bone Marrow-Derived Mast Cells by Protein Tyrosine Phosphatase SHP-1. Cells 2019; 8:cells8040345. [PMID: 30979083 PMCID: PMC6523986 DOI: 10.3390/cells8040345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The antigen-mediated activation of mast cells initiates signaling events leading to their degranulation, to the release of inflammatory mediators, and to the synthesis of cytokines and chemokines. Although rapid and transient microtubule reorganization during activation has been described, the molecular mechanisms that control their rearrangement are largely unknown. Microtubule nucleation is mediated by γ-tubulin complexes. In this study, we report on the regulation of microtubule nucleation in bone marrow-derived mast cells (BMMCs) by Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 1 (SHP-1; Ptpn6). Reciprocal immunoprecipitation experiments and pull-down assays revealed that SHP-1 is present in complexes containing γ-tubulin complex proteins and protein tyrosine kinase Syk. Microtubule regrowth experiments in cells with deleted SHP-1 showed a stimulation of microtubule nucleation, and phenotypic rescue experiments confirmed that SHP-1 represents a negative regulator of microtubule nucleation in BMMCs. Moreover, the inhibition of the SHP-1 activity by inhibitors TPI-1 and NSC87877 also augmented microtubule nucleation. The regulation was due to changes in γ-tubulin accumulation. Further experiments with antigen-activated cells showed that the deletion of SHP-1 stimulated the generation of microtubule protrusions, the activity of Syk kinase, and degranulation. Our data suggest a novel mechanism for the suppression of microtubule formation in the later stages of mast cell activation.
Collapse
|
6
|
Hoque A, Williamson NA, Ameen SS, Ciccotosto GD, Hossain MI, Oakhill JS, Ng DCH, Ang CS, Cheng HC. Quantitative proteomic analyses of dynamic signalling events in cortical neurons undergoing excitotoxic cell death. Cell Death Dis 2019; 10:213. [PMID: 30824683 PMCID: PMC6397184 DOI: 10.1038/s41419-019-1445-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/20/2019] [Accepted: 02/01/2019] [Indexed: 12/23/2022]
Abstract
Excitotoxicity, caused by overstimulation or dysregulation of ionotropic glutamate receptors (iGluRs), is a pathological process directing neuronal death in many neurological disorders. The aberrantly stimulated iGluRs direct massive influx of calcium ions into the affected neurons, leading to changes in expression and phosphorylation of specific proteins to modulate their functions and direct their participation in the signalling pathways that induce excitotoxic neuronal death. To define these pathways, we used quantitative proteomic approaches to identify these neuronal proteins (referred to as the changed proteins) and determine how their expression and/or phosphorylation dynamically changed in association with excitotoxic cell death. Our data, available in ProteomeXchange with identifier PXD008353, identified over 100 changed proteins exhibiting significant alterations in abundance and/or phosphorylation levels at different time points (5–240 min) in neurons after glutamate overstimulation. Bioinformatic analyses predicted that many of them are components of signalling networks directing defective neuronal morphology and functions. Among them, the well-known neuronal survival regulators including mitogen-activated protein kinases Erk1/2, glycogen synthase kinase 3 (GSK3) and microtubule-associated protein (Tau), were selected for validation by biochemical approaches, which confirmed the findings of the proteomic analysis. Bioinformatic analysis predicted Protein Kinase B (Akt), c-Jun kinase (JNK), cyclin-dependent protein kinase 5 (Cdk5), MAP kinase kinase (MEK), Casein kinase 2 (CK2), Rho-activated protein kinase (Rock) and Serum/glucocorticoid-regulated kinase 1 (SGK1) as the potential upstream kinases phosphorylating some of the changed proteins. Further biochemical investigation confirmed the predictions of sustained changes of the activation states of neuronal Akt and CK2 in excitotoxicity. Thus, future investigation to define the signalling pathways directing the dynamic alterations in abundance and phosphorylation of the identified changed neuronal proteins will help elucidate the molecular mechanism of neuronal death in excitotoxicity.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.,Metabolic Signalling Laboratory, St. Vincent's Institute for Medical Research, University of Melbourne, Fitzroy, VIC, 3065, Australia
| | - Nicholas A Williamson
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Cell Signalling Research Laboratories, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Giuseppe D Ciccotosto
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia.,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St. Vincent's Institute for Medical Research, University of Melbourne, Fitzroy, VIC, 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, 3000, Australia
| | - Dominic C H Ng
- School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC, 3010, Australia. .,Cell Signalling Research Laboratories, University of Melbourne, Parkville, VIC, 3010, Australia. .,Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
7
|
GIT1 contributes to autophagy in osteoclast through disruption of the binding of Beclin1 and Bcl2 under starvation condition. Cell Death Dis 2018; 9:1195. [PMID: 30546041 PMCID: PMC6294144 DOI: 10.1038/s41419-018-1256-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 12/31/2022]
Abstract
Approximately 10–15% of all bone fractures do not heal properly, causing patient morbidity and additional medical care expenses. Therefore, better mechanism-based fracture repair approaches are needed. In this study, a reduced number of osteoclasts (OCs) and autophagosomes/autolysosomes in OC can be observed in GPCR kinase 2-interacting protein 1 (GIT1) knockout (KO) mice on days 21 and 28 post-fracture, compared with GIT1 wild-type (GIT1 WT) mice. Furthermore, in vitro experiments revealed that GIT1 contributes to OC autophagy under starvation conditions. Mechanistically, GIT1 interacted with Beclin1 and promoted Beclin1 phosphorylation at Thr119, which induced the disruption of Beclin1 and Bcl2 binding under starvation conditions, thereby, positively regulating autophagy. Taken together, the findings suggest a previously unappreciated role of GIT1 in autophagy of OCs during fracture repair. Targeting GIT1 may be a potential therapeutic approach for bone fractures.
Collapse
|
8
|
Functional analysis of rare variants found in schizophrenia implicates a critical role for GIT1-PAK3 signaling in neuroplasticity. Mol Psychiatry 2017; 22:417-429. [PMID: 27457813 PMCID: PMC6186433 DOI: 10.1038/mp.2016.98] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 05/02/2016] [Indexed: 01/21/2023]
Abstract
Although the pathogenesis of schizophrenia (SCZ) is proposed to involve alterations of neural circuits via synaptic dysfunction, the underlying molecular mechanisms remain poorly understood. Recent exome sequencing studies of SCZ have uncovered numerous single-nucleotide variants (SNVs); however, the majority of these SNVs have unknown functional consequences, leaving their disease relevance uncertain. Filling this knowledge gap requires systematic application of quantitative and scalable assays to assess known and novel biological functions of genes. Here we demonstrate loss-of-function effects of multiple rare coding SNVs found in SCZ subjects in the GIT1 (G protein-coupled receptor kinase interacting ArfGAP 1) gene using functional cell-based assays involving coexpression of GIT1 and PAK3 (p21 protein (Cdc42/Rac)-activated kinase 3). Most notably, a GIT1-R283W variant reported in four independent SCZ cases was defective in activating PAK3 as well as MAPK (mitogen-activated protein kinase). Similar functional deficits were found for a de novo SCZ variant GIT1-S601N. Additional assays revealed deficits in the capacity of GIT1-R283W to stimulate PAK phosphorylation in cultured hippocampal neurons. In addition, GIT1-R283W showed deficits in the induction of GAD1 (glutamate decarboxylase 1) protein expression. Extending these functional assays to 10 additional rare GIT1 variants revealed the existence of an allelic series with the majority of the SCZ case variants exhibiting loss of function toward MAPK activation in a manner correlated with loss of PAK3 activation. Taken together, we propose that rare variants in GIT1, along with other genetic and environmental factors, cause dysregulation of PAK3 leading to synaptic deficits in SCZ.
Collapse
|
9
|
GIT1/βPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1282-97. [PMID: 27012601 DOI: 10.1016/j.bbamcr.2016.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/13/2022]
Abstract
Microtubule nucleation from γ-tubulin complexes, located at the centrosome, is an essential step in the formation of the microtubule cytoskeleton. However, the signaling mechanisms that regulate microtubule nucleation in interphase cells are largely unknown. In this study, we report that γ-tubulin is in complexes containing G protein-coupled receptor kinase-interacting protein 1 (GIT1), p21-activated kinase interacting exchange factor (βPIX), and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) in various cell lines. Immunofluorescence microscopy revealed association of GIT1, βPIX and activated PAK1 with centrosomes. Microtubule regrowth experiments showed that depletion of βPIX stimulated microtubule nucleation, while depletion of GIT1 or PAK1 resulted in decreased nucleation in the interphase cells. These data were confirmed for GIT1 and βPIX by phenotypic rescue experiments, and counting of new microtubules emanating from centrosomes during the microtubule regrowth. The importance of PAK1 for microtubule nucleation was corroborated by the inhibition of its kinase activity with IPA-3 inhibitor. GIT1 with PAK1 thus represent positive regulators, and βPIX is a negative regulator of microtubule nucleation from the interphase centrosomes. The regulatory roles of GIT1, βPIX and PAK1 in microtubule nucleation correlated with recruitment of γ-tubulin to the centrosome. Furthermore, in vitro kinase assays showed that GIT1 and βPIX, but not γ-tubulin, serve as substrates for PAK1. Finally, direct interaction of γ-tubulin with the C-terminal domain of βPIX and the N-terminal domain of GIT1, which targets this protein to the centrosome, was determined by pull-down experiments. We propose that GIT1/βPIX signaling proteins with PAK1 kinase represent a novel regulatory mechanism of microtubule nucleation in interphase cells.
Collapse
|
10
|
Sulimenko V, Hájková Z, Černohorská M, Sulimenko T, Sládková V, Dráberová L, Vinopal S, Dráberová E, Dráber P. Microtubule Nucleation in Mouse Bone Marrow–Derived Mast Cells Is Regulated by the Concerted Action of GIT1/βPIX Proteins and Calcium. THE JOURNAL OF IMMUNOLOGY 2015; 194:4099-111. [DOI: 10.4049/jimmunol.1402459] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/27/2015] [Indexed: 11/19/2022]
|
11
|
Emerging properties of adhesion complexes: what are they and what do they do? Trends Cell Biol 2015; 25:388-97. [PMID: 25824971 DOI: 10.1016/j.tcb.2015.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/13/2015] [Accepted: 02/24/2015] [Indexed: 02/07/2023]
Abstract
The regulation of cell adhesion machinery is central to a wide variety of developmental and pathological processes and occurs primarily within integrin-associated adhesion complexes. Here, we review recent advances that have furthered our understanding of the composition, organisation, and dynamics of these complexes, and provide an updated view on their emerging functions. Key findings are that adhesion complexes contain both core and non-canonical components. As a result of the dramatic increase in the range of components observed in adhesion complexes by proteomics, we comment on newly emerging functions for adhesion signalling. We conclude that, from a cellular or tissue systems perspective, adhesion signalling should be viewed as an emergent property of both the core and non-canonical adhesion complex components.
Collapse
|
12
|
Specific dephosphorylation at tyr-554 of git1 by ptprz promotes its association with paxillin and hic-5. PLoS One 2015; 10:e0119361. [PMID: 25742295 PMCID: PMC4351203 DOI: 10.1371/journal.pone.0119361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/12/2015] [Indexed: 11/29/2022] Open
Abstract
G protein-coupled receptor kinase-interactor 1 (Git1) is involved in cell motility control by serving as an adaptor that links signaling proteins such as Pix and PAK to focal adhesion proteins. We previously demonstrated that Git1 was a multiply tyrosine-phosphorylated protein, its primary phosphorylation site was Tyr-554 in the vicinity of the focal adhesion targeting-homology (FAH) domain, and this site was selectively dephosphorylated by protein tyrosine phosphatase receptor type Z (Ptprz). In the present study, we showed that Tyr-554 phosphorylation reduced the association of Git1 with the FAH-domain-binding proteins, paxillin and Hic-5, based on immunoprecipitation experiments using the Tyr-554 mutants of Git1. The Tyr-554 phosphorylation of Git1 was higher, and its binding to paxillin was consistently lower in the brains of Ptprz-deficient mice than in those of wild-type mice. We then investigated the role of Tyr-554 phosphorylation in cell motility control using three different methods: random cell motility, wound healing, and Boyden chamber assays. The shRNA-mediated knockdown of endogenous Git1 impaired cell motility in A7r5 smooth muscle cells. The motility defect was rescued by the exogenous expression of wild-type Git1 and a Git1 mutant, which only retained Tyr-554 among the multiple potential tyrosine phosphorylation sites, but not by the Tyr-554 phosphorylation-defective or phosphorylation-state mimic Git1 mutant. Our results suggested that cyclic phosphorylation-dephosphorylation at Tyr-554 of Git1 was crucial for dynamic interactions between Git1 and paxillin/Hic-5 in order to ensure coordinated cell motility.
Collapse
|
13
|
Liu S, Premont RT, Rockey DC. Endothelial nitric-oxide synthase (eNOS) is activated through G-protein-coupled receptor kinase-interacting protein 1 (GIT1) tyrosine phosphorylation and Src protein. J Biol Chem 2014; 289:18163-74. [PMID: 24764294 DOI: 10.1074/jbc.m113.521203] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO) is a critical regulator of vascular tone and plays an especially prominent role in liver by controlling portal blood flow and pressure within liver sinusoids. Synthesis of NO in sinusoidal endothelial cells by endothelial nitric-oxide synthase (eNOS) is regulated in response to activation of endothelial cells by vasoactive signals such as endothelins. The endothelin B (ETB) receptor is a G-protein-coupled receptor, but the mechanisms by which it regulates eNOS activity in sinusoidal endothelial cells are not well understood. In this study, we built on two previous strands of work, the first showing that G-protein βγ subunits mediated activation of phosphatidylinositol 3-kinase and Akt to regulate eNOS and the second showing that eNOS directly bound to the G-protein-coupled receptor kinase-interacting protein 1 (GIT1) scaffold protein, and this association stimulated NO production. Here we investigated the mechanisms by which the GIT1-eNOS complex is formed and regulated. GIT1 was phosphorylated on tyrosine by Src, and Y293F and Y554F mutations reduced GIT1 phosphorylation as well as the ability of GIT1 to bind to and activate eNOS. Akt phosphorylation activated eNOS (at Ser(1177)), and Akt also regulated the ability of Src to phosphorylate GIT1 as well as GIT1-eNOS association. These pathways were activated by endothelin-1 through the ETB receptor; inhibiting receptor-activated G-protein βγ subunits blocked activation of Akt, GIT1 tyrosine phosphorylation, and ET-1-stimulated GIT1-eNOS association but did not affect Src activation. These data suggest a model in which Src and Akt cooperate to regulate association of eNOS with the GIT1 scaffold to facilitate NO production.
Collapse
Affiliation(s)
- Songling Liu
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| | - Richard T Premont
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710
| | - Don C Rockey
- From the Department of Medicine, Medical University of South Carolina, Charleston, South Carolina 29425 and
| |
Collapse
|
14
|
Totaro A, Astro V, Tonoli D, de Curtis I. Identification of two tyrosine residues required for the intramolecular mechanism implicated in GIT1 activation. PLoS One 2014; 9:e93199. [PMID: 24699139 PMCID: PMC3974724 DOI: 10.1371/journal.pone.0093199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 03/03/2014] [Indexed: 11/21/2022] Open
Abstract
GIT1 is an ArfGAP and scaffolding protein regulating cell adhesion and migration. The multidomain structure of GIT1 allows the interaction with several partners. Binding of GIT1 to some of its partners requires activation of the GIT1 polypeptide. Our previous studies indicated that binding of paxillin to GIT1 is enhanced by release of an intramolecular interaction between the amino-terminal and carboxy-terminal portions that keeps the protein in a binding-incompetent state. Here we have addressed the mechanism mediating this intramolecular inhibitory mechanism by testing the effects of the mutation of several formerly identified GIT1 phosphorylation sites on the binding to paxillin. We have identified two tyrosines at positions 246 and 293 of the human GIT1 polypeptide that are needed to keep the protein in the inactive conformation. Interestingly, mutation of these residues to phenylalanine did not affect binding to paxillin, while mutation to either alanine or glutamic acid enhanced binding to paxillin, without affecting the constitutive binding to the Rac/Cdc42 exchange factor βPIX. The involvement of the two tyrosine residues in the intramolecular interaction was supported by reconstitution experiments showing that these residues are important for the binding between the amino-terminal fragment and carboxy-terminal portions of GIT1. Either GIT1 or GIT1-N tyrosine phosphorylation by Src and pervanadate treatment to inhibit protein tyrosine phosphatases did not affect the intramolecular binding between the amino- and carboxy-terminal fragments, nor the binding of GIT1 to paxillin. Mutations increasing the binding of GIT1 to paxillin positively affected cell motility, measured both by transwell migration and wound healing assays. Altogether these results show that tyrosines 246 and 293 of GIT1 are required for the intramolecular inhibitory mechanism that prevents the binding of GIT1 to paxillin. The data also suggest that tyrosine phosphorylation may not be sufficient to release the intramolecular interaction that keeps GIT1 in the inactive conformation.
Collapse
Affiliation(s)
- Antonio Totaro
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Veronica Astro
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Diletta Tonoli
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy; Università Vita-Salute San Raffaele, Milano, Italy
| |
Collapse
|
15
|
G-protein-coupled receptor kinase interactor-1 serine 419 accelerates premature synapse formation in cortical neurons by interacting with Ca(2+)/calmodulin-dependent protein kinase IIβ. Brain Res Bull 2013; 95:70-7. [DOI: 10.1016/j.brainresbull.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 01/01/2013] [Accepted: 01/16/2013] [Indexed: 11/20/2022]
|
16
|
Huck B, Kemkemer R, Franz-Wachtel M, Macek B, Hausser A, Olayioye MA. GIT1 phosphorylation on serine 46 by PKD3 regulates paxillin trafficking and cellular protrusive activity. J Biol Chem 2012; 287:34604-13. [PMID: 22893698 DOI: 10.1074/jbc.m112.374652] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The continuous assembly and disassembly of focal adhesions is required for efficient cell spreading and migration. The G-protein-coupled receptor kinase-interacting protein 1 (GIT1) is a multidomain protein whose dynamic localization to sites of cytoskeletal remodeling is critically involved in the regulation of these processes. Here we provide evidence that the subcellular localization of GIT1 is regulated by protein kinase D3 (PKD3) through direct phosphorylation on serine 46. GIT1 phosphorylation on serine 46 was abrograted by PKD3 depletion, thereby identifying GIT1 as the first specific substrate for this kinase. A GIT1 S46D phosphomimetic mutant localized to motile, paxillin-positive cytoplasmic complexes, whereas the phosphorylation-deficient GIT1 S46A was enriched in focal adhesions. We propose that phosphorylation of GIT1 on serine 46 by PKD3 represents a molecular switch by which GIT1 localization, paxillin trafficking, and cellular protrusive activity are regulated.
Collapse
Affiliation(s)
- Bettina Huck
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|
17
|
RUI ZE, LI XIANG, FAN JIN, REN YONGXIN, YUAN YUFENG, HUA ZHENGZHE, ZHANG NING, YIN GUOYONG. GIT1Y321 phosphorylation is required for ERK1/2- and PDGF-dependent VEGF secretion from osteoblasts to promote angiogenesis and bone healing. Int J Mol Med 2012; 30:819-25. [DOI: 10.3892/ijmm.2012.1058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 04/09/2012] [Indexed: 11/05/2022] Open
|
18
|
Liu S, Premont RT, Rockey DC. G-protein-coupled receptor kinase interactor-1 (GIT1) is a new endothelial nitric-oxide synthase (eNOS) interactor with functional effects on vascular homeostasis. J Biol Chem 2012; 287:12309-20. [PMID: 22294688 DOI: 10.1074/jbc.m111.320465] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endothelial cell nitric-oxide (NO) synthase (eNOS), the enzyme responsible for synthesis of NO in the vasculature, undergoes extensive post-translational modifications that modulate its activity. Here we have identified a novel eNOS interactor, G-protein-coupled receptor (GPCR) kinase interactor-1 (GIT1), which plays an unexpected role in GPCR stimulated NO signaling. GIT1 interacted with eNOS in the endothelial cell cytoplasm, and this robust association was associated with stimulatory eNOS phosphorylation (Ser(1177)), enzyme activation, and NO synthesis. GIT1 knockdown had the opposite effect. Additionally, GIT1 expression was reduced in sinusoidal endothelial cells after liver injury, consistent with previously described endothelial dysfunction in this disease. Re-expression of GIT1 after liver injury rescued the endothelial phenotype. These data emphasize the role of GPCR signaling partners in eNOS function and have fundamental implications for vascular disorders involving dysregulated eNOS.
Collapse
Affiliation(s)
- Songling Liu
- University of Texas Southwestern Medical Center, Division of Digestive and Liver Diseases, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
19
|
Fujikawa A, Fukada M, Makioka Y, Suzuki R, Chow JPH, Matsumoto M, Noda M. Consensus substrate sequence for protein-tyrosine phosphatase receptor type Z. J Biol Chem 2011; 286:37137-46. [PMID: 21890632 DOI: 10.1074/jbc.m111.270140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein-tyrosine phosphatase receptor type Z (Ptprz) has multiple substrate proteins, including G protein-coupled receptor kinase-interactor 1 (Git1), membrane-associated guanylate kinase, WW and PDZ domain-containing 1 (Magi1), and GTPase-activating protein for Rho GTPase (p190RhoGAP). We have identified a dephosphorylation site at Tyr-1105 of p190RhoGAP; however, the structural determinants employed for substrate recognition of Ptprz have not been fully defined. In the present study, we revealed that Ptprz selectively dephosphorylates Git1 at Tyr-554, and Magi1 at Tyr-373 and Tyr-858 by in vitro and cell-based assays. Of note, the dephosphorylation of the Magi1 Tyr-858 site required PDZ domain-mediated interaction between Magi1 and Ptprz in the cellular context. Alignment of the primary sequences surrounding the target phosphotyrosine residue in these three substrates showed considerable similarity, suggesting a consensus motif for recognition by Ptprz. We then estimated the contribution of surrounding individual amino acid side chains to the catalytic efficiency by using fluorescent peptides based on the Git1 Tyr-554 sequence in vitro. The typical substrate motif for the catalytic domain of Ptprz was deduced to be Glu/Asp-Glu/Asp-Glu/Asp-Xaa-Ile/Val-Tyr(P)-Xaa (Xaa is not an acidic residue). Intriguingly, a G854D substitution of the Magi1 Tyr-858 site matching better to the motif sequence turned this site to be susceptible to dephosphorylation by Ptprz independent of the PDZ domain-mediated interaction in cells. Furthermore, we found by database screening that the substrate motif is present in several proteins, including paxillin at Tyr-118, its major phosphorylation site. Expectedly, we verified that Ptprz efficiently dephosphorylates paxillin at this site in cells. Our study thus provides key insights into the molecular basis for the substrate recognition of Ptprz.
Collapse
Affiliation(s)
- Akihiro Fujikawa
- Division of Molecular Neurobiology, National Institute for Basic Biology, The Graduate University for Advanced Studies, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Totaro A, Paris S, Asperti C, de Curtis I. Identification of an intramolecular interaction important for the regulation of GIT1 functions. Mol Biol Cell 2007; 18:5124-38. [PMID: 17898078 PMCID: PMC2096589 DOI: 10.1091/mbc.e07-06-0550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 09/07/2007] [Accepted: 09/13/2007] [Indexed: 11/11/2022] Open
Abstract
G-protein coupled receptor kinase-interacting protein (GIT) proteins include an N-terminal Arf GTPase-activating protein domain, and a C terminus that binds proteins regulating adhesion and motility. Given their ability to form large molecular assemblies, the GIT1 protein must be tightly regulated. However, the mechanisms regulating GIT1 functions are poorly characterized. We found that carboxy-terminal-truncated fragments of GIT1 bind their partners with higher efficiency compared with the full-length GIT1. We have explored the hypothesis that GIT1 is regulated by an intramolecular mechanism, and we identified two distinct intramolecular interactions between the N and C terminus of GIT1. The release of these interactions increases binding of GIT1 to paxillin and liprin-alpha, and it correlates with effects on cell spreading. Analysis of cells plated on fibronectin has shown that different deletion mutants of GIT1 either enhance or inhibit spreading, depending on their subcellular localization. Moreover, although the association between betaPIX and GIT1 is insufficient to activate GIT1 binding to paxillin, binding of a PAK1 fragment including the betaPIX-binding domain enhances paxillin binding to betaPIX/GIT1, indicating that p21-activated kinase can activate the binding of paxillin to GIT1 by a kinase-independent mechanism. The release of the identified intramolecular interaction seems to be an important mechanism for the regulation of GIT1 functions.
Collapse
Affiliation(s)
- Antonio Totaro
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Simona Paris
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Claudia Asperti
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ivan de Curtis
- Cell Adhesion Unit, Dibit, San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
21
|
Webb DJ, Zhang H, Majumdar D, Horwitz AF. alpha5 integrin signaling regulates the formation of spines and synapses in hippocampal neurons. J Biol Chem 2007; 282:6929-35. [PMID: 17213186 PMCID: PMC2750863 DOI: 10.1074/jbc.m610981200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The actin-based dynamics of dendritic spines play a key role in synaptic plasticity, which underlies learning and memory. Although it is becoming increasingly clear that modulation of actin is critical for spine dynamics, the upstream molecular signals that regulate the formation and plasticity of spines are poorly understood. In non-neuronal cells, integrins are critical modulators of the actin cytoskeleton, but their function in the nervous system is not well characterized. Here we show that alpha5 integrin regulates spine morphogenesis and synapse formation in hippocampal neurons. Knockdown of alpha5 integrin expression using small interfering RNA decreased the number of dendritic protrusions, spines, and synapses. Expression of constitutively active or dominant negative alpha5 integrin also resulted in alterations in the number of dendritic protrusions, spines, and synapses. alpha5 integrin signaling regulates spine morphogenesis and synapse formation by a mechanism that is dependent on Src kinase, Rac, and the signaling adaptor GIT1. Alterations in the activity or localization of these molecules result in a significant decrease in the number of spines and synapses. Thus, our results point to a critical role for integrin signaling in regulating the formation of dendritic spines and synapses in hippocampal neurons.
Collapse
Affiliation(s)
- Donna J Webb
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | | | |
Collapse
|
22
|
Webb DJ, Kovalenko M, Whitmore L, Horwitz AF. Phosphorylation of serine 709 in GIT1 regulates protrusive activity in cells. Biochem Biophys Res Commun 2006; 346:1284-8. [PMID: 16797488 DOI: 10.1016/j.bbrc.2006.06.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 06/08/2006] [Indexed: 11/21/2022]
Abstract
G protein-coupled receptor kinase-interacting protein (GIT)1 is a multidomain, adaptor protein that regulates cellular processes, such as migration and protrusive activity, by bringing together various signaling molecules, including PIX, PAK, and paxillin. Mutants of GIT1, which lack the C-terminal paxillin binding domain, fail to mediate its effects on migration and protrusions, suggesting that sites within this domain are critical to GIT1 function. In this study, we show that serine 709, which is located within the paxillin binding domain, regulates GIT1 function. Phosphorylation of serine 709 is necessary for GIT1-induced effects on protrusions. Phosphorylation of this site also regulates GIT1 interaction with paxillin, which could serve to target GIT1 to the leading edge of cells. As shown by an in vitro kinase assay, PAK phosphorylates GIT1 on serine 709. Taken together, our results indicate that GIT1 phosphorylation on serine 709 increases its binding to paxillin and regulates protrusive activity in cells.
Collapse
Affiliation(s)
- Donna J Webb
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | |
Collapse
|