1
|
Xiao H, Yang R, Yang F, Zhao Y, Liu Y. Construction and evaluation of an efficient C-Jun siRNA to downregulate matrix metalloproteinase in human keratinocytes and fibroblasts under UV exposure. Mol Genet Genomic Med 2019; 8:e1047. [PMID: 31729200 PMCID: PMC6978249 DOI: 10.1002/mgg3.1047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/15/2019] [Accepted: 10/25/2019] [Indexed: 11/08/2022] Open
Abstract
Background C‐Jun and EGFR have not been explored as targets via the mechanism of RNA silencing. Hence, this study designed an efficient C‐Jun‐h‐825 small interfering RNA (siRNA) and investigated its effect on matrix metalloproteinase (MMP) and collagen expression in human keratinocytes exposed to UV radiation. Methods Five C‐Jun siRNAs were designed and screened for their ability to downregulate C‐Jun expression in human fibroblasts. These constructs were used to study changes in skin cancer‐related protein expression. HaCaT cells were grouped into 5‐carboxyfluorescien (FAM‐labeled) C‐Jun‐h‐825 siRNA + 2 hr prior irradiation; mock transfected + 2 hr prior irradiation; normal control; irradiation only for 2 hr; and Blank. Twenty‐four hours posttransfection, mRNA and protein levels of MMP‐I, MMP‐III, collagen‐I and collagen‐III were determined using standard RT‐PCR and ELISA kits. Results FAM‐labeled C‐Jun siRNA showed 80%–90% transfection efficiency. There was a significant increase in MMP‐I and MMP‐III and decrease in Col‐I and III mRNA levels when the cells were exposed to UV irradiation without siRNA transfection compared to blank (p < .05). This effect was reversed upon transfection with C‐Jun‐h‐825 (p < .01). Conclusion Thus, C‐Jun‐h‐825 siRNA might help restore skin collagen by decreasing MMP expression in cells exposed to UVA. Constructs and vectors designed herein have the potential to be translated into a treatment for photoaging induced skin cancer.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming, Medical University, Kunming, Yunnan, China
| | - Ruinian Yang
- Department of Plastic Surgery, YESTAR Aesthetic Plastic Hospital, Kunming, Yunnan, China
| | - Fang Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming, Medical University, Kunming, Yunnan, China
| | - Yanan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming, Medical University, Kunming, Yunnan, China
| | - Yin Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming, Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Xiao H, Yang R, Yang F, Zhao Y, Liu Y. Construction of a plasmid vector containing epidermal growth factor receptor and C-Jun shRNA. Arch Dermatol Res 2018; 310:241-243. [PMID: 29353331 DOI: 10.1007/s00403-017-1803-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 11/28/2022]
Abstract
The objective of this study was to construct a plasmid vector for EGFR-hm-1 and C-Junh-825 small interfering RNA (siRNA). EGFR-hm-1 and C-Jun-hm-825 oligonucleotide fragments were synthesized and short hairpin RNA (shRNA) were amplified by PCR. Plasmids were isolated from E. coli TOP10 bacterium by restriction enzyme digestion using pst1 and BamH1 and oligonucleotide fragments were cloned into the pSilencer plasmid containing the U6 promoter. Recombinant clones were generated by transforming JM109 competent cells with plasmid vectors containing shRNA molecules. 58 base-paired EGFR-hm-1 and 59 base-paired C-Jun-hm-825 oligonucleotide fragments were isolated. The fragments were 100% homologous with human sequences available on GenBank. The recombinant pSilencer1.0 vector containing a 58-bp EGFR-hm-1 and 59-bp C-Jun-hm-825 fragment was constructed. These vectors have the potential to be used as treatment to combat skin photoaging under UV exposure.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650103, Yunnan, China
| | - Ruinian Yang
- Department of Plastic Surgery, YESTAR Aesthetic Plastic Hospital, Kunming, Yunnan, China
| | - Fang Yang
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650103, Yunnan, China
| | - Yanan Zhao
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650103, Yunnan, China
| | - Yin Liu
- Department of Plastic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650103, Yunnan, China.
| |
Collapse
|
3
|
A Critical Analysis of the Available In Vitro and Ex Vivo Methods to Study Retinal Angiogenesis. J Ophthalmol 2017; 2017:3034953. [PMID: 28848677 PMCID: PMC5564124 DOI: 10.1155/2017/3034953] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/20/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a biological process with a central role in retinal diseases. The choice of the ideal method to study angiogenesis, particularly in the retina, remains a problem. Angiogenesis can be assessed through in vitro and in vivo studies. In spite of inherent limitations, in vitro studies are faster, easier to perform and quantify, and typically less expensive and allow the study of isolated angiogenesis steps. We performed a systematic review of PubMed searching for original articles that applied in vitro or ex vivo angiogenic retinal assays until May 2017, presenting the available assays and discussing their applicability, advantages, and disadvantages. Most of the studies evaluated migration, proliferation, and tube formation of endothelial cells in response to inhibitory or stimulatory compounds. Other aspects of angiogenesis were studied by assessing cell permeability, adhesion, or apoptosis, as well as by implementing organotypic models of the retina. Emphasis is placed on how the methods are applied and how they can contribute to retinal angiogenesis comprehension. We also discuss how to choose the best cell culture to implement these methods. When applied together, in vitro and ex vivo studies constitute a powerful tool to improve retinal angiogenesis knowledge. This review provides support for researchers to better select the most suitable protocols in this field.
Collapse
|
4
|
Zhou Y, Wang Y, Zhao Z, Wang Y, Zhang N, Zhang H, Liu L. 37LRP induces invasion in hypoxic lung adenocarcinoma cancer cells A549 through the JNK/ERK/c-Jun signaling cascade. Tumour Biol 2017; 39:1010428317701655. [PMID: 28618937 DOI: 10.1177/1010428317701655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We previously reported that 37-kDa laminin receptor precursor involved in metastasis of lung adenocarcinoma cancer cells. In this study, we further revealed that hypoxia induced 37-kDa laminin receptor precursor expression and activation of extracellular signal-regulated protein kinase, c-Jun N-terminal kinase, and p38 mitogen-activated protein kinase in lung adenocarcinoma cancer cells. In addition, we further demonstrated that the c-Jun N-terminal kinase inhibitor SP600125 and extracellular signal-regulated protein kinase inhibitor U0126 blocked the c-Jun activity and abolished hypoxia-induced 37-kDa laminin receptor precursor expression and promoter activity in a concentration-dependent manner. However, the p38 mitogen-activated protein kinase inhibitor did not affect 37-kDa laminin receptor precursor expression and c-Jun activity in response to hypoxia. Furthermore, downregulated c-Jun expression by short interfering RNA could also inhibit hypoxia-induced 37-kDa laminin receptor precursor expression and transcriptional activity. The inhibition of 37-kDa laminin receptor precursor expression by SP600125 and U0126 could be rescued by c-Jun overexpression. Studies using luciferase promoter constructs revealed a significant increase in the activity of promoter binding in the cells exposed to hypoxia, which was lost in the cells with mutation of the activator protein 1 binding site. Electrophoresis mobility shift assay and chromatin immunoprecipitation demonstrated a functional activator protein 1 binding site within 37-kDa laminin receptor precursor gene regulatory sequence located at -271 relative to the transcriptional initiation point. Hypoxia-induced invasion of A549 cells was inhibited by the pharmacologic inhibitors of c-Jun N-terminal kinase (SP600125) and extracellular signal-regulated protein kinase (U0126) as well as 37-kDa laminin receptor precursor-specific siRNA or antibody. Our results suggest that hypoxia-elicited c-Jun/activator protein 1 regulates 37-kDa laminin receptor precursor expression, which modulates migration and invasion of lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Yongan Zhou
- 1 Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yafang Wang
- 2 Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhengwei Zhao
- 1 Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanxia Wang
- 3 Department of Pathology and Pathophysiology, The Fourth Military Medical University, Xi'an, China
| | - Ning Zhang
- 2 Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Helong Zhang
- 2 Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Lili Liu
- 2 Department of Oncology, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016; 81:254-270. [PMID: 27639680 PMCID: PMC5155701 DOI: 10.1016/j.biocel.2016.09.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
CCM proteins play pleiotropic roles in various redox-sensitive signaling pathways. CCM proteins modulate the crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses. Oxidative stress and inflammation are emerging as key focal determinants of CCM lesion formation, progression and severity. The pleiotropic functions of CCM proteins may prevent vascular dysfunctions triggered by local oxidative stress and inflammatory events. The distinct therapeutic compounds proposed so far for CCM disease share the ability to modulate redox signaling and autophagy.
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy; CCM Italia Research Network(1).
| | - Angela J Glading
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, 14642 Rochester, NY, USA.
| |
Collapse
|
6
|
Bruun J, Larsen TB, Jølck RI, Eliasen R, Holm R, Gjetting T, Andresen TL. Investigation of enzyme-sensitive lipid nanoparticles for delivery of siRNA to blood-brain barrier and glioma cells. Int J Nanomedicine 2015; 10:5995-6008. [PMID: 26451106 PMCID: PMC4590347 DOI: 10.2147/ijn.s87334] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clinical applications of siRNA for treating disorders in the central nervous system require development of systemic stable, safe, and effective delivery vehicles that are able to cross the impermeable blood–brain barrier (BBB). Engineering nanocarriers with low cellular interaction during systemic circulation, but with high uptake in targeted cells, is a great challenge and is further complicated by the BBB. As a first step in obtaining such a delivery system, this study aims at designing a lipid nanoparticle (LNP) able to efficiently encapsulate siRNA by a combination of titratable cationic lipids. The targeted delivery is obtained through the design of a two-stage system where the first step is conjugation of angiopep to the surface of the LNP for targeting the low-density lipoprotein receptor-related protein-1 expressed on the BBB. Second, the positively charged LNPs are masked with a negatively charged PEGylated (poly(ethylene glycol)) cleavable lipopeptide, which contains a recognition sequence for matrix metalloproteinases (MMPs), a class of enzymes often expressed in the tumor microenvironment and inflammatory BBB conditions. Proteolytic cleavage induces PEG release, including the release of four glutamic acid residues, providing a charge switch that triggers a shift of the LNP charge from weakly negative to positive, thus favoring cellular endocytosis and release of siRNA for high silencing efficiency. This work describes the development of this two-stage nanocarrier-system and evaluates the performance in brain endothelial and glioblastoma cells with respect to uptake and gene silencing efficiency. The ability of activation by MMP-triggered dePEGylation and charge shift is demonstrated to substantially increase the uptake and the silencing efficiency of the LNPs.
Collapse
Affiliation(s)
- Jonas Bruun
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | - Trine B Larsen
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | - Rasmus I Jølck
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | - Rasmus Eliasen
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | - René Holm
- H Lundbeck A/S, Biologics and Pharmaceutical Science, Valby, Denmark
| | - Torben Gjetting
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| | - Thomas L Andresen
- Department of Micro- and Nanotechnology, Center for Nanomedicine and Theranostics, Technical University of Denmark, DTU Nanotech, Lyngby, Denmark
| |
Collapse
|
7
|
Wang W, Bian K, Vallabhaneni S, Zhang B, Wu RC, O'Malley BW, Long W. ERK3 promotes endothelial cell functions by upregulating SRC-3/SP1-mediated VEGFR2 expression. J Cell Physiol 2014; 229:1529-37. [PMID: 24585635 DOI: 10.1002/jcp.24596] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 01/08/2023]
Abstract
Despite a regain of interest recently in ERK3 kinase signaling, the molecular regulations of both ERK3 gene expression and protein kinase activity are still largely unknown. While it is shown that disruption of ERK3 gene causes neonatal lethality, cell type-specific functions of ERK3 signaling remain to be explored. In this study, we report that ERK3 gene expression is upregulated by cytokines through c-Jun in endothelial cells; c-Jun binds to the ERK3 gene and regulates its transcription. We further reveal a new role for ERK3 in regulating endothelial cell migration, proliferation and tube formation by upregulating SRC-3/SP-1-mediated VEGFR2 expression. The underlying molecular mechanism involves ERK3-stimulated formation of a transcriptional complex involving coactivator SRC-3, transcription factor SP-1 and the secondary coactivator CBP. Taken together, our study identified a molecular regulatory mechanism of ERK3 gene expression and revealed a previously unknown role of ERK3 in regulating endothelial cell functions.
Collapse
Affiliation(s)
- Wei Wang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas
| | | | | | | | | | | | | |
Collapse
|
8
|
Improvement of functional recovery by chronic metformin treatment is associated with enhanced alternative activation of microglia/macrophages and increased angiogenesis and neurogenesis following experimental stroke. Brain Behav Immun 2014; 40:131-42. [PMID: 24632338 DOI: 10.1016/j.bbi.2014.03.003] [Citation(s) in RCA: 233] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 11/23/2022] Open
Abstract
Acute AMPK activation exacerbates ischemic brain damage experimentally. Paradoxically, the clinical use of an AMPK activator metformin reduces the incidence of stroke. We investigated whether post-stroke chronic metformin treatment promotes functional recovery and tissue repair via an M2-polarization mechanism following experimental stroke. Mice were randomly divided to receive metformin or vehicle daily beginning at 24h after middle cerebral artery occlusion (MCAO). Neurological deficits were monitored for 30days following MCAO. To characterize the polarization of the microglia and infiltrating macrophages, the expression of the M1 and M2 signature genes was analyzed with qPCR, ELISA and immunohistochemistry. Post-MCAO angiogenesis and neurogenesis were examined immunohistochemically. An in vitro angiogenesis model was employed to examine whether metformin promoted angiogenesis in a M2 polarization-dependent manner. Post-stroke chronic metformin treatment had no impact on acute infarction but enhanced cerebral AMPK activation, promoted functional recovery and skewed the microglia/macrophages toward an M2 phenotype following MCAO. Metformin also significantly increased angiogenesis and neurogenesis in the ischemic brain. Consistently, metformin-induced M2 polarization of BV2 microglial cells depended on AMPK activation in vitro. Furthermore, treatment of brain endothelial cells with conditioned media collected from metformin-polarized BV2 cells promoted angiogenesis in vitro. In conclusion, post-stroke chronic metformin treatment improved functional recovery following MCAO via AMPK-dependent M2 polarization. Modulation of microglia/macrophage polarization represents a novel therapeutic strategy for stroke.
Collapse
|
9
|
Goitre L, De Luca E, Braggion S, Trapani E, Guglielmotto M, Biasi F, Forni M, Moglia A, Trabalzini L, Retta SF. KRIT1 loss of function causes a ROS-dependent upregulation of c-Jun. Free Radic Biol Med 2014; 68:134-47. [PMID: 24291398 PMCID: PMC3994518 DOI: 10.1016/j.freeradbiomed.2013.11.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 01/04/2023]
Abstract
Loss-of-function mutations in the KRIT1 gene (CCM1) have been associated with the pathogenesis of cerebral cavernous malformations (CCM), a major cerebrovascular disease. However, KRIT1 functions and CCM pathogenetic mechanisms remain incompletely understood. Indeed, recent experiments in animal models have clearly demonstrated that the homozygous loss of KRIT1 is not sufficient to induce CCM lesions, suggesting that additional factors are necessary to cause CCM disease. Previously, we found that KRIT1 is involved in the maintenance of the intracellular reactive oxygen species (ROS) homeostasis to prevent ROS-induced cellular dysfunctions, including a reduced ability to maintain a quiescent state. Here, we show that KRIT1 loss of function leads to enhanced expression and phosphorylation of the redox-sensitive transcription factor c-Jun, as well as induction of its downstream target COX-2, in both cellular models and human CCM tissues. Furthermore, we demonstrate that c-Jun upregulation can be reversed by either KRIT1 re-expression or ROS scavenging, whereas KRIT1 overexpression prevents forced upregulation of c-Jun induced by oxidative stimuli. Taken together with the reported role of c-Jun in vascular dysfunctions triggered by oxidative stress, our findings shed new light on the molecular mechanisms underlying KRIT1 function and CCM pathogenesis.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Elisa De Luca
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Stefano Braggion
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | | | - Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy
| | - Marco Forni
- EuroClone SpA Research Laboratory, Torino, Italy
| | - Andrea Moglia
- Department of Agriculture, Forest and Food Sciences, Plant Genetics and Breeding, University of Torino, Grugliasco (Torino), Italy
| | - Lorenza Trabalzini
- Department of Biotechnologies, Chemistry, and Pharmacy, University of Siena, Siena, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano (Torino), Italy.
| |
Collapse
|
10
|
Watanabe M, Nakajima S, Ohnuki K, Ogawa S, Yamashita M, Nakayama T, Murakami Y, Tanabe K, Abe R. AP-1 is involved in ICOS gene expression downstream of TCR/CD28 and cytokine receptor signaling. Eur J Immunol 2012; 42:1850-62. [PMID: 22585681 DOI: 10.1002/eji.201141897] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
It has been proposed that sustained ICOS expression in chronic inflammatory immune conditions, such as autoimmunity and allergy, contributes to symptom exacerbation. Therefore modulation of ICOS gene expression could be a potential therapeutic strategy for such immune diseases. However, the precise molecular mechanisms controlling ICOS gene expression remain poorly understood. In this study, we explored transcription factors involving in ICOS gene expression and examined their roles in a physiological situation. Microarray analysis revealed that one AP-1 molecule, Fos-related antigen-2 (Fra2), was highly correlated with ICOS expression. Ectopic expression of Fra2 and other AP-1 molecules upregulated ICOS expression on T cells. We identified an AP-1-responsive site (AP1-RE) within the ICOS promoter region and demonstrated AP-1 actually binds to AP1-RE upon TCR/CD28 stimulation. Meanwhile, we found several cytokines could upregulate ICOS expression on both naïve and effector T cells in a manner independent of TCR/CD28 stimulation. These cytokine stimuli induced AP-1 binding to AP1-RE. Together, our results indicate AP-1 transcription factors are involved in ICOS gene expression downstream of both TCR/CD28 signaling and cytokine receptor signaling, and suggest AP-1 activation via cytokine receptor signaling may be one of the mechanisms maintaining high level ICOS expression in chronic inflammatory immune responses.
Collapse
Affiliation(s)
- Masashi Watanabe
- Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Truong A, Wong TY, Khachigian LM. Emerging therapeutic approaches in the management of retinal angiogenesis and edema. J Mol Med (Berl) 2010; 89:343-61. [DOI: 10.1007/s00109-010-0709-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 10/22/2010] [Accepted: 11/10/2010] [Indexed: 12/16/2022]
|
12
|
Wang P, Yang X, Xu W, Li K, Chu Y, Xiong S. Integrating individual functional moieties of CXCL10 and CXCL11 into a novel chimeric chemokine leads to synergistic antitumor effects: a strategy for chemokine-based multi-target-directed cancer therapy. Cancer Immunol Immunother 2010; 59:1715-26. [PMID: 20706716 PMCID: PMC11030099 DOI: 10.1007/s00262-010-0901-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
The complexity of tumor biology necessitates a multimodality approach that targets different aspects of tumor environment in order to generate the greatest benefit. IFN-inducible T cell alpha chemoattractant (ITAC)/CXCL11 and IFN-inducible protein 10 (IP10)/CXCL10 could exert antitumor effects with functional specificity and thus emerge as attractive candidates for combinatorial strategy. Disappointedly, a synergistic antitumor effect could not be observed when CXCL10 and CXCL11 were pooled together. In this regard, we seek to improve antitumor efficacy by integrating their individual functional moieties into a chemokine chimeric molecule, designated ITIP, which was engineered by substituting the N-terminal and N-loop region of CXCL10 with those of CXCL11. The functional properties of ITIP were determined by chemotaxis and angiogenesis assays. The antitumor efficacy was tested in murine CT26 colon carcinoma, 4T1 mammary carcinoma and 3LL lung carcinoma. Here we showed that ITIP not only exhibited respective functional superiority but strikingly promoted regression of established tumors and remarkably prolonged survival of mice compared with its parent chemokines, either alone or in combination. The chemokine chimera induced an augmented anti-tumor immunity and a marked decrease in tumor vasculature. Antibody neutralization studies indicated that CXCL10 and CXCL11 moieties of ITIP were responsible for anti-angiogenesis and chemotaxis in antitumor response, respectively. These results indicated that integrating individual functional moieties of CXCL10 and CXCL11 into a chimeric chemokine could lead to a synergistic antitumor effect. Thus, this integration strategy holds promise for chemokine-based multiple targeted therapy of cancer.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blotting, Western
- Calcium/metabolism
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/prevention & control
- Cell Adhesion
- Cell Movement
- Cell Proliferation
- Cells, Cultured
- Chemokine CXCL10/immunology
- Chemokine CXCL11/immunology
- Chemotaxis
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- Colonic Neoplasms/prevention & control
- Drug Synergism
- Enzyme-Linked Immunosorbent Assay
- Female
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Fluorescent Antibody Technique
- Immunoenzyme Techniques
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lung Neoplasms/prevention & control
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Wound Healing
Collapse
Affiliation(s)
- Ping Wang
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Xiuli Yang
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Wei Xu
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Kang Li
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yiwei Chu
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
| | - Sidong Xiong
- Institute for Immunobiology, Department of Immunology, Shanghai Medical College, Fudan University, Shanghai, 200032 People’s Republic of China
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, 215006 People’s Republic of China
| |
Collapse
|
13
|
Regulation of MMP-2 expression and activity by β-1,3-N-acetylglucosaminyltransferase-8 in AGS gastric cancer cells. Mol Biol Rep 2010; 38:1541-50. [PMID: 20963502 DOI: 10.1007/s11033-010-0262-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 09/02/2010] [Indexed: 01/03/2023]
Abstract
β-1,3-N-acetylglucosaminyltransferase-8(β3Gn-T8) catalyzes the transfer of GlcNAc to the non-reducing terminus of the Galβ1-4GlcNAc of tetraantennary N-glycan in vitro. It has been reported to be involved in malignant tumors, but a comprehensive understanding of how the glycolsyltransferase correlates with the invasive potential of human gastric cancer is not currently available. Therefore, we investigated the ability and possible mechanism involved with β3Gn-T8 in modulating matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in AGS gastric cancer cells. Here, we found out that siRNA-mediated suppression of the β3Gn-T8 could directly reduce the MMP-2 expression and activity as observed in RT-PCR, western blot and gelatin zymography analysis. Meanwhile, TIMP-2 expression had been increased. Cell invasion assay using matrigel matrix-coated transwell inserts showed that the invasive property was greatly suppressed in β3Gn-T8 siRNA transfected cells. Furthermore, cells overexpressing β3Gn-T8 gene (when transfected with pEGFP-C1 plasmid) also expressed MMP-2 gene, but TIMP-2 expression had been inhibited. The invasive ability of these cells was also enhanced. Protein-protein interaction analysis using STRING database showed that β3Gn-T8 and MMP-2 may have related signal pathway. In summary, our results reveal a new mechanism by which β3Gn-T8 can regulate MMP-2 and TIMP-2. We suggest that β3Gn-T8 can be used as a novel therapeutic target for human gastric treatment.
Collapse
|
14
|
Kłysik AB, Naduk-Kik J, Hrabec Z, Goś R, Hrabec E. Intraocular matrix metalloproteinase 2 and 9 in patients with diabetes mellitus with and without diabetic retinopathy. Arch Med Sci 2010; 6:375-81. [PMID: 22371774 PMCID: PMC3282515 DOI: 10.5114/aoms.2010.14258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 05/17/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION We aimed to investigate activities of metalloproteinases 2 (MMP-2) and MMP-9 in aqueous humour of patients with diabetes mellitus with various stages of diabetic retinopathy. MATERIAL AND METHODS We included 36 samples of aqueous humour of patients suffering from diabetes mellitus, undergoing routine cataract surgery. Seven of them suffered from proliferative diabetic retinopathy (PDR), 3 had diabetic maculopathy and the remaining 26 had background or minimal background retinopathy only. Metalloproteinases 2 and MMP-9 activities in aqueous humour were measured by gelatin zymography combined with the densitometric imaging system. Total protein content in aqueous humour samples was also assessed. RESULTS Metalloproteinases 2 activities were present in almost all samples of aqueous humour (32 of 36) and were 2.6-fold higher in patients who suffered from diabetic ocular complications (p < 0.0001). Activities of MMP-2 correlated well with the duration of the disease (correlation = 0.37, p = 0.03) and tended to correlate with total protein levels in aqueous humour (correlation = 0.43, p = 0.06). Metalloproteinases 9 activities were observed only in 2 of 7 patients with proliferative diabetic disease and the enzyme was absent from aqueous humour samples of patients without proliferative retinopathy. CONCLUSIONS Increased activities of MMP-2 in aqueous humour of patients with PDR may be related to the disease process and support the hypothesis that MMP-2 may be of particular importance in diabetic retinal neovascularization. MMP-9 may be activated at a certain disease stage only.
Collapse
Affiliation(s)
- Anna B. Kłysik
- Department of Ophthalmology, Medical University of Lodz, Lodz, Poland
| | - Julia Naduk-Kik
- Department of Medical Enzymology, Medical University of Lodz, Lodz, Poland
| | - Zbigniew Hrabec
- Department of Medical Enzymology, Medical University of Lodz, Lodz, Poland
| | - Roman Goś
- Department of Ophthalmology, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Hrabec
- Department of Medical Enzymology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Ni J, Waldman A, Khachigian LM. c-Jun regulates shear- and injury-inducible Egr-1 expression, vein graft stenosis after autologous end-to-side transplantation in rabbits, and intimal hyperplasia in human saphenous veins. J Biol Chem 2009; 285:4038-4048. [PMID: 19940138 DOI: 10.1074/jbc.m109.078345] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coronary artery bypass graft failure represents an unsolved problem in interventional cardiology and heart surgery. Late occlusion of autologous saphenous vein bypass grafts is a consequence of neointima formation underpinned by smooth muscle cell (SMC) migration and proliferation. Poor long term patency and the lack of pharmacologic agents that prevent graft failure necessitate effective alternative therapies. Our objective here was to evaluate the effect of targeted inhibition of the bZIP transcription factor c-Jun on intimal hyperplasia in human saphenous veins and vein graft stenosis after autologous end-to-side transplantation. DNAzymes targeting c-Jun attenuated intimal hyperplasia in human saphenous vein explants. Adenovirus-forced c-Jun expression stimulated SMC proliferation, proliferating cell nuclear antigen, and MMP-2 expression. c-Jun DNAzymes abrogated Adeno-c-Jun-inducible SMC growth and wound repair and reduced intimal thickening in jugular veins of New Zealand white rabbits 4 weeks after autologous end-to-side transplantation to carotid arteries. Conversely, in a DNAzyme-free setting, Adeno-c-Jun potentiated neointima formation in the veins compared with Adeno-LacZ. Inducible c-Jun expression is ERK1/2- and JNK-dependent but p38-independent. Injury- and shear-inducible c-Jun controls early growth response-1. These data demonstrate that strategies targeting c-Jun may be useful for the prevention of vein graft stenosis. Control of one important shear-responsive transcription factor by another indicates the existence of transcriptional amplification mechanisms that magnify the vascular response to cell injury or stress through inducible transcriptional networks.
Collapse
Affiliation(s)
- Jun Ni
- From the Centre for Vascular Research, University of New South Wales, Sydney NSW 2052, Australia
| | - Alla Waldman
- From the Centre for Vascular Research, University of New South Wales, Sydney NSW 2052, Australia
| | - Levon M Khachigian
- From the Centre for Vascular Research, University of New South Wales, Sydney NSW 2052, Australia.
| |
Collapse
|
16
|
Luo X, Cai H, Ni J, Bhindi R, Lowe HC, Chesterman CN, Khachigian LM. c-Jun DNAzymes Inhibit Myocardial Inflammation, ROS Generation, Infarct Size, and Improve Cardiac Function After Ischemia-Reperfusion Injury. Arterioscler Thromb Vasc Biol 2009; 29:1836-42. [DOI: 10.1161/atvbaha.109.189753] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objectives—
Coronary reperfusion has been the mainstay therapy for reduced infarct size after a heart attack. However, this intervention also results in myocardial injury by initiating a marked inflammatory reaction, and new treatments are keenly sought.
Methods and Results—
The basic-region leucine zipper protein, c-Jun is poorly expressed in the normal myocardium and is induced within 24 hours after myocardial ischemia-reperfusion injury. Synthetic catalytic DNA molecules (DNAzymes) targeting c-Jun (Dz13) reduce infarct size in the area-at-risk (AAR) regardless of whether it is delivered intramyocardially at the initiation of ischemia or at the time of reperfusion. Dz13 attenuates neutrophil infiltration, c-Jun and ICAM-1 expression in vascular endothelium, cardiomyocyte apoptosis, and the generation of reactive oxygen species in the reperfused myocardium. It inhibits infiltration into the AAR of complement 3 (C3), C3a receptor (C3aR), membrane attack complex-1 (Mac-1), or matrix metalloproteinase-2 (MMP-2) positive inflammatory cells. Dz13 also improves cardiac function without influencing myocardial vascularity or fibrosis.
Conclusion—
These findings demonstrate the regulatory role of c-Jun in the pathogenesis of myocardial inflammation and infarction following ischemia-reperfusion injury, and inhibition of this process using catalytic DNA.
Collapse
Affiliation(s)
- Xiao Luo
- From the Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Hong Cai
- From the Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Jun Ni
- From the Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Ravinay Bhindi
- From the Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Harry C. Lowe
- From the Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Colin N. Chesterman
- From the Centre for Vascular Research, University of New South Wales, Sydney, Australia
| | - Levon M. Khachigian
- From the Centre for Vascular Research, University of New South Wales, Sydney, Australia
| |
Collapse
|
17
|
Konishi N, Shimada K, Nakamura M, Ishida E, Ota I, Tanaka N, Fujimoto K. Function of JunB in transient amplifying cell senescence and progression of human prostate cancer. Clin Cancer Res 2008; 14:4408-16. [PMID: 18628455 DOI: 10.1158/1078-0432.ccr-07-4120] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Replicative senescence in cells acts as a barrier against excessive proliferation and carcinogenesis. Transient amplifying cells (TAC) are a subset of basal cell populations within the prostate from which cancers are thought to originate; therefore, we focused on prostate TAC to investigate the molecular mechanisms by which the TAC may be able to evade senescence. EXPERIMENTAL DESIGN TAC clones were isolated from each zone within the whole prostate and analyzed in flow cytometry. Prostate cancer cells were transfected with junB small interfering RNA (siRNA) and examined by chorioallantoic membrane assay for cancer invasion. Immunohistochemical analysis was done in primary and metastatic prostate cancer specimens. RESULTS TAC populations showed increased expression of p53, p21, p16, and pRb, resulting in senescence. TAC clones with reduced p16 expression successfully bypassed this phase. We further found close correlation between the levels of junB and p16 expression. Repeated transfection of junB siRNA in prostatic TAC allowed the cells to escape senescence presumably through inactivation of p16/pRb. The chorioallantoic membrane invasion assay showed much lower in invasive cancer cells with high expression of junB; conversely, silencing of junB by transfection with junB siRNA promoted invasion. We also found that metastatic prostate cancers, as well as cancers with high Gleason scores, showed significantly low junB immunopositivity. CONCLUSIONS JunB is an essential upstream regulator of p16 and contributes to maintain cell senescence that blocks malignant transformation of TAC. JunB thus apparently plays an important role in controlling prostate carcinogenesis and may be a new target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Noboru Konishi
- Department of Pathology, Nara Medical University School of Medicine, Nara, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Transcriptional profiling of VEGF-A and VEGF-C target genes in lymphatic endothelium reveals endothelial-specific molecule-1 as a novel mediator of lymphangiogenesis. Blood 2008; 112:2318-26. [PMID: 18614759 DOI: 10.1182/blood-2008-05-156331] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Lymphatic vessel growth and activation, mediated by vascular endothelial growth factor (VEGF)-C and/or VEGF-A, have important roles in metastasis and in chronic inflammation. We aimed to comprehensively identify downstream molecular targets induced by VEGF-A or VEGF-C in lymphatic endothelium by analyzing the time-series transcriptional profile of treated human dermal lymphatic endothelial cells (LECs). We identified a number of genes, many not previously known to be involved in lymphangiogenesis, that were characterized either as early response genes, transiently induced genes, or progressively induced genes. Endothelial-specific molecule-1 (ESM-1) was one of the genes that were most potently induced by both VEGF-A and VEGF-C. Whereas ESM-1 induction by VEGF-A was mainly dependent on activation of VEGFR-2, VEGF-C-mediated induction depended on the activity of both VEGFR-2 and VEGFR-3. Incubation of LECs with ESM-1 increased the stimulatory effects of both VEGF-A and VEGF-C on LEC proliferation and migration, whereas ESM-1 alone had no effect. Importantly, VEGF-A (or VEGF-C) induction of LEC proliferation and migration were significantly inhibited by siRNA-mediated silencing of ESM-1 in vitro and in vivo. These studies reveal ESM-1 as a novel mediator of lymphangiogenesis and as a potential target for the inhibition of pathologic lymphatic vessel activation.
Collapse
|
19
|
Abstract
Matrix metalloproteinases (MMPs) play crucial roles in a variety of normal (e.g., blood vessel formation, bone development) and pathophysiological (e.g., wound healing, cancer) processes. This is not only due to their ability to degrade the surrounding extracellular matrix (ECM), but also because MMPs function to reveal cryptic matrix binding sites, release matrix-bound growth factors inherent to these processes, and activate a variety of cell surface molecules. The process of blood vessel formation, in particular, is regulated by what is widely classified as the angiogenic switch: a mixture of both pro- and antiangiogenic factors that function to counteract each other unless the stimuli from one side exceeds the other to disrupt the quiescent state. Although it was initially thought that MMPs were strictly proangiogenic, new functions for this proteolytic family, such as mediating vascular regression and generating matrix fragments with antiangiogenic capacities, have been discovered in the last decade. These findings cast MMPs as multifaceted pro- and antiangiogenic effectors. The purpose of this review is to introduce the reader to the general structure and characterization of the MMP family and to discuss the temporal and spatial regulation of their gene expression and enzymatic activity in the following crucial steps associated with angiogenesis: degradation of the vascular basement membrane, proliferation and invasion of endothelial cells within the subjacent ECM, organization into immature tubules, maturation of these nascent vessels, and the pruning and regression of the vascular network.
Collapse
Affiliation(s)
- Cyrus M Ghajar
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697
| | - Steven C George
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697
- Department of Chemical Engineering and Materials Science, University of California, Irvine; Irvine, CA 92697
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of California, Irvine; Irvine, CA 92697
- Department of Chemical Engineering and Materials Science, University of California, Irvine; Irvine, CA 92697
- Chao Family Comprehensive Cancer Center, University of California, Irvine; Irvine, CA 92697
| |
Collapse
|