1
|
Apelt K, Lans H, Schärer OD, Luijsterburg MS. Nucleotide excision repair leaves a mark on chromatin: DNA damage detection in nucleosomes. Cell Mol Life Sci 2021; 78:7925-7942. [PMID: 34731255 PMCID: PMC8629891 DOI: 10.1007/s00018-021-03984-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 11/28/2022]
Abstract
Global genome nucleotide excision repair (GG-NER) eliminates a broad spectrum of DNA lesions from genomic DNA. Genomic DNA is tightly wrapped around histones creating a barrier for DNA repair proteins to access DNA lesions buried in nucleosomal DNA. The DNA-damage sensors XPC and DDB2 recognize DNA lesions in nucleosomal DNA and initiate repair. The emerging view is that a tight interplay between XPC and DDB2 is regulated by post-translational modifications on the damage sensors themselves as well as on chromatin containing DNA lesions. The choreography between XPC and DDB2, their interconnection with post-translational modifications such as ubiquitylation, SUMOylation, methylation, poly(ADP-ribos)ylation, acetylation, and the functional links with chromatin remodelling activities regulate not only the initial recognition of DNA lesions in nucleosomes, but also the downstream recruitment and necessary displacement of GG-NER factors as repair progresses. In this review, we highlight how nucleotide excision repair leaves a mark on chromatin to enable DNA damage detection in nucleosomes.
Collapse
Affiliation(s)
- Katja Apelt
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
2
|
Strickfaden H. Reflections on the organization and the physical state of chromatin in eukaryotic cells. Genome 2020; 64:311-325. [PMID: 33306433 DOI: 10.1139/gen-2020-0132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years, our perception of chromatin structure and organization in the cell nucleus has changed in fundamental ways. The 30 nm chromatin fiber has lost its status as an essential in vivo structure. Hi-C and related biochemical methods, advanced electron and super-resolved fluorescence microscopy, together with concepts from soft matter physics, have revolutionized the field. A comprehensive understanding of the structural and functional interactions that regulate cell cycle and cell type specific nuclear functions appears within reach, but it requires the integration of top-down and bottom-up approachs. In this review, I present an update on nuclear architecture studies with an emphasis on organization and the controversy regarding the physical state of chromatin in cells.
Collapse
Affiliation(s)
- Hilmar Strickfaden
- Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Departments of Cell Biology and Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Cremer T, Cremer M, Hübner B, Silahtaroglu A, Hendzel M, Lanctôt C, Strickfaden H, Cremer C. The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. Bioessays 2020; 42:e1900132. [PMID: 31994771 DOI: 10.1002/bies.201900132] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/24/2019] [Indexed: 12/11/2022]
Abstract
This article focuses on the role of the interchromatin compartment (IC) in shaping nuclear landscapes. The IC is connected with nuclear pore complexes (NPCs) and harbors splicing speckles and nuclear bodies. It is postulated that the IC provides routes for imported transcription factors to target sites, for export routes of mRNA as ribonucleoproteins toward NPCs, as well as for the intranuclear passage of regulatory RNAs from sites of transcription to remote functional sites (IC hypothesis). IC channels are lined by less-compacted euchromatin, called the perichromatin region (PR). The PR and IC together form the active nuclear compartment (ANC). The ANC is co-aligned with the inactive nuclear compartment (INC), comprising more compacted heterochromatin. It is postulated that the INC is accessible for individual transcription factors, but inaccessible for larger macromolecular aggregates (limited accessibility hypothesis). This functional nuclear organization depends on still unexplored movements of genes and regulatory sequences between the two compartments.
Collapse
Affiliation(s)
- Thomas Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Marion Cremer
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Barbara Hübner
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilians University (LMU), Biocenter, Grosshadernerstr. 2, 82152, Martinsried, Germany
| | - Asli Silahtaroglu
- Department of Cellular and Molecular Medicine Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Alle 14, Byg.18.03, 2200, Copenhagen N, Denmark
| | - Michael Hendzel
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christian Lanctôt
- Integration Santé, 1250 Avenue de la Station local 2-304, Shawinigan, Québec, G9N 8K9, Canada
| | - Hilmar Strickfaden
- Department of Oncology, Cross Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, T6G 1Z2, Canada
| | - Christoph Cremer
- Institute of Molecular Biology (IMB) Ackermannweg 4, 55128 Mainz, Germany, and Institute of Pharmacy & Molecular Biotechnology (IPMB), University Heidelberg, Im Neuenheimer Feld 364, 69120, Heidelberg, Germany
| |
Collapse
|
4
|
Gsell C, Richly H, Coin F, Naegeli H. A chromatin scaffold for DNA damage recognition: how histone methyltransferases prime nucleosomes for repair of ultraviolet light-induced lesions. Nucleic Acids Res 2020; 48:1652-1668. [PMID: 31930303 PMCID: PMC7038933 DOI: 10.1093/nar/gkz1229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The excision of mutagenic DNA adducts by the nucleotide excision repair (NER) pathway is essential for genome stability, which is key to avoiding genetic diseases, premature aging, cancer and neurologic disorders. Due to the need to process an extraordinarily high damage density embedded in the nucleosome landscape of chromatin, NER activity provides a unique functional caliper to understand how histone modifiers modulate DNA damage responses. At least three distinct lysine methyltransferases (KMTs) targeting histones have been shown to facilitate the detection of ultraviolet (UV) light-induced DNA lesions in the difficult to access DNA wrapped around histones in nucleosomes. By methylating core histones, these KMTs generate docking sites for DNA damage recognition factors before the chromatin structure is ultimately relaxed and the offending lesions are effectively excised. In view of their function in priming nucleosomes for DNA repair, mutations of genes coding for these KMTs are expected to cause the accumulation of DNA damage promoting cancer and other chronic diseases. Research on the question of how KMTs modulate DNA repair might pave the way to the development of pharmacologic agents for novel therapeutic strategies.
Collapse
Affiliation(s)
- Corina Gsell
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Holger Richly
- Boehringer Ingelheim Pharma, Department of Molecular Biology, Birkendorfer Str. 65, 88397 Biberach an der Riß, Germany
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Equipe Labélisée Ligue contre le Cancer, Illkirch Cedex, Strasbourg, France
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
5
|
Lahari T, Lazaro J, Marcus JM, Schroeder DF. RAD7 homologues contribute to Arabidopsis UV tolerance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 277:267-277. [PMID: 30466592 DOI: 10.1016/j.plantsci.2018.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/07/2018] [Accepted: 09/21/2018] [Indexed: 06/09/2023]
Abstract
Frequent exposure of plants to solar ultraviolet radiation (UV) results in damaged DNA. One mechanism of DNA repair is the light independent pathway Global Genomic Nucleotide Excision Repair (GG-NER), which repairs UV damaged DNA throughout the genome. In mammals, GG-NER DNA damage recognition is performed by the Damaged DNA Binding protein 1 and 2 (DDB1/2) complex which recruits the Xeroderma Pigmentosa group C (XPC) / RAD23D complex. In the yeast Saccharomyces cerevisiae, distinct proteins, Radiation sensitive 7 and 16 (Rad7p and Rad16p), recognize the damaged DNA strand and then recruit the XPC homologue, Rad4p, and Rad23p. The remainder of the proteins involved GG-NER are well conserved. DDB1, DDB2, XPC/RAD4, and RAD23 homologues have been described in the model plant Arabidopsis thaliana. In this study we characterize three Arabidopsis RAD7 homologues, RAD7a, RAD7b, and RAD7c. Loss of function alleles of each of the three RAD7 homologues result in increased UV sensitivity. In addition, RAD7b and RAD7c overexpression lines exhibited increased UV tolerance. Thus RAD7 homologues contribute to UV tolerance in plants as well as in yeast. This is the first time any system has been shown to utilize both the DDB1/2 and RAD7/16 damage recognition complexes.
Collapse
Affiliation(s)
- Triparna Lahari
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Janelle Lazaro
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Jeffrey M Marcus
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Dana F Schroeder
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
6
|
Masiello I, Siciliani S, Biggiogera M. Perichromatin region: a moveable feast. Histochem Cell Biol 2018; 150:227-233. [DOI: 10.1007/s00418-018-1703-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2018] [Indexed: 02/07/2023]
|
7
|
RAD4 and RAD23/HMR Contribute to Arabidopsis UV Tolerance. Genes (Basel) 2017; 9:genes9010008. [PMID: 29283431 PMCID: PMC5793161 DOI: 10.3390/genes9010008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 11/16/2022] Open
Abstract
In plants, exposure to solar ultraviolet (UV) light is unavoidable, resulting in DNA damage. Damaged DNA causes mutations, replication arrest, and cell death, thus efficient repair of the damaged DNA is essential. A light-independent DNA repair pathway called nucleotide excision repair (NER) is conserved throughout evolution. For example, the damaged DNA-binding protein Radiation sensitive 4 (Rad4) in Saccharomyces cerevisiae is homologous to the mammalian NER protein Xeroderma Pigmentosum complementation group C (XPC). In this study, we examined the role of the Arabidopsis thaliana Rad4/XPC homologue (AtRAD4) in plant UV tolerance by generating overexpression lines. AtRAD4 overexpression, both with and without an N-terminal yellow fluorescent protein (YFP) tag, resulted in increased UV tolerance. YFP-RAD4 localized to the nucleus, and UV treatment did not alter this localization. We also used yeast two-hybrid analysis to examine the interaction of AtRAD4 with Arabidopsis RAD23 and found that RAD4 interacted with RAD23B as well as with the structurally similar protein HEMERA (HMR). In addition, we found that hmr and rad23 mutants exhibited increased UV sensitivity. Thus, our analysis suggests a role for RAD4 and RAD23/HMR in plant UV tolerance.
Collapse
|
8
|
Nuclear topology modulates the mutational landscapes of cancer genomes. Nat Struct Mol Biol 2017; 24:1000-1006. [PMID: 28967881 PMCID: PMC5744871 DOI: 10.1038/nsmb.3474] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/28/2017] [Indexed: 01/18/2023]
Abstract
Nuclear organization of genomic DNA affects DNA damage and repair processes, and yet its impact on mutational landscapes in cancer genomes remains unclear. Here we analyzed genome-wide somatic mutations from 366 samples of 6 cancer types. We found that lamina-associated regions, which are typically localized at the nuclear periphery, displayed higher somatic mutation frequencies compared to the inter-lamina regions at the nuclear core. This effect remained even after adjusting for features such as GC%, chromatin, and replication timing. Furthermore, mutational signatures differed between the nuclear core and periphery, indicating differences in the patterns of DNA damage and/or DNA repair processes. For instance, smoking and UV-related signatures were more enriched in the nuclear periphery. Substitutions at certain motifs were also more common in the nuclear periphery. Taken together, we found that the nuclear architecture influences mutational landscapes in cancer genomes beyond the effects already captured by chromatin and replication timing.
Collapse
|
9
|
Pierzyńska-Mach A, Szczurek A, Cella Zanacchi F, Pennacchietti F, Drukała J, Diaspro A, Cremer C, Darzynkiewicz Z, Dobrucki JW. Subnuclear localization, rates and effectiveness of UVC-induced unscheduled DNA synthesis visualized by fluorescence widefield, confocal and super-resolution microscopy. Cell Cycle 2017; 15:1156-67. [PMID: 27097376 DOI: 10.1080/15384101.2016.1158377] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Unscheduled DNA synthesis (UDS) is the final stage of the process of repair of DNA lesions induced by UVC. We detected UDS using a DNA precursor, 5-ethynyl-2'-deoxyuridine (EdU). Using wide-field, confocal and super-resolution fluorescence microscopy and normal human fibroblasts, derived from healthy subjects, we demonstrate that the sub-nuclear pattern of UDS detected via incorporation of EdU is different from that when BrdU is used as DNA precursor. EdU incorporation occurs evenly throughout chromatin, as opposed to just a few small and large repair foci detected by BrdU. We attribute this difference to the fact that BrdU antibody is of much larger size than EdU, and its accessibility to the incorporated precursor requires the presence of denatured sections of DNA. It appears that under the standard conditions of immunocytochemical detection of BrdU only fragments of DNA of various length are being denatured. We argue that, compared with BrdU, the UDS pattern visualized by EdU constitutes a more faithful representation of sub-nuclear distribution of the final stage of nucleotide excision repair induced by UVC. Using the optimized integrated EdU detection procedure we also measured the relative amount of the DNA precursor incorporated by cells during UDS following exposure to various doses of UVC. Also described is the high degree of heterogeneity in terms of the UVC-induced EdU incorporation per cell, presumably reflecting various DNA repair efficiencies or differences in the level of endogenous dT competing with EdU within a population of normal human fibroblasts.
Collapse
Affiliation(s)
- Agnieszka Pierzyńska-Mach
- a Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland
| | | | | | | | - Justyna Drukała
- d Department of Cell Biology , Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland
| | - Alberto Diaspro
- c Nanoscopy, Istituto Italiano di Tecnologia , Genova , Italy
| | | | - Zbigniew Darzynkiewicz
- e Brander Cancer Research Institute and Department of Pathology, New York Medical College , Valhalla , NY , USA
| | - Jurek W Dobrucki
- a Laboratory of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków , Poland
| |
Collapse
|
10
|
Musich PR, Li Z, Zou Y. Xeroderma Pigmentosa Group A (XPA), Nucleotide Excision Repair and Regulation by ATR in Response to Ultraviolet Irradiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 996:41-54. [PMID: 29124689 DOI: 10.1007/978-3-319-56017-5_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The sensitivity of Xeroderma pigmentosa (XP) patients to sunlight has spurred the discovery and genetic and biochemical analysis of the eight XP gene products (XPA-XPG plus XPV) responsible for this disorder. These studies also have served to elucidate the nucleotide excision repair (NER) process, especially the critical role played by the XPA protein. More recent studies have shown that NER also involves numerous other proteins normally employed in DNA metabolism and cell cycle regulation. Central among these is ataxia telangiectasia and Rad3-related (ATR), a protein kinase involved in intracellular signaling in response to DNA damage, especially DNA damage-induced replicative stresses. This review summarizes recent findings on the interplay between ATR as a DNA damage signaling kinase and as a novel ligand for intrinsic cell death proteins to delay damage-induced apoptosis, and on ATR's regulation of XPA and the NER process for repair of UV-induced DNA adducts. ATR's regulatory role in the cytosolic-to-nuclear translocation of XPA will be discussed. In addition, recent findings elucidating a non-NER role for XPA in DNA metabolism and genome stabilization at ds-ssDNA junctions, as exemplified in prematurely aging progeroid cells, also will be reviewed.
Collapse
Affiliation(s)
- Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Zhengke Li
- Department of Cancer Genetics and Epigenetics, City of Hope Comprehensive Cancer Center, 1500 E Duarte Rd, Duarte, CA, 91007, USA
| | - Yue Zou
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA.
| |
Collapse
|
11
|
Puumalainen MR, Rüthemann P, Min JH, Naegeli H. Xeroderma pigmentosum group C sensor: unprecedented recognition strategy and tight spatiotemporal regulation. Cell Mol Life Sci 2016; 73:547-66. [PMID: 26521083 PMCID: PMC4713717 DOI: 10.1007/s00018-015-2075-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
The cellular defense system known as global-genome nucleotide excision repair (GG-NER) safeguards genome stability by eliminating a plethora of structurally unrelated DNA adducts inflicted by chemical carcinogens, ultraviolet (UV) radiation or endogenous metabolic by-products. Xeroderma pigmentosum group C (XPC) protein provides the promiscuous damage sensor that initiates this versatile NER reaction through the sequential recruitment of DNA helicases and endonucleases, which in turn recognize and excise insulting base adducts. As a DNA damage sensor, XPC protein is very unique in that it (a) displays an extremely wide substrate range, (b) localizes DNA lesions by an entirely indirect readout strategy, (c) recruits not only NER factors but also multiple repair players, (d) interacts avidly with undamaged DNA, (e) also interrogates nucleosome-wrapped DNA irrespective of chromatin compaction and (f) additionally functions beyond repair as a co-activator of RNA polymerase II-mediated transcription. Many recent reports highlighted the complexity of a post-translational circuit that uses polypeptide modifiers to regulate the spatiotemporal activity of this multiuse sensor during the UV damage response in human skin. A newly emerging concept is that stringent regulation of the diverse XPC functions is needed to prioritize DNA repair while avoiding the futile processing of undamaged genes or silent genomic sequences.
Collapse
Affiliation(s)
- Marjo-Riitta Puumalainen
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057, Zurich, Switzerland
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Peter Rüthemann
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057, Zurich, Switzerland
| | - Jun-Hyun Min
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057, Zurich, Switzerland.
| |
Collapse
|
12
|
Gao S, Xiong J, Zhang C, Berquist BR, Yang R, Zhao M, Molascon AJ, Kwiatkowski SY, Yuan D, Qin Z, Wen J, Kapler GM, Andrews PC, Miao W, Liu Y. Impaired replication elongation in Tetrahymena mutants deficient in histone H3 Lys 27 monomethylation. Genes Dev 2013; 27:1662-79. [PMID: 23884606 DOI: 10.1101/gad.218966.113] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Replication of nuclear DNA occurs in the context of chromatin and is influenced by histone modifications. In the ciliate Tetrahymena thermophila, we identified TXR1, encoding a histone methyltransferase. TXR1 deletion resulted in severe DNA replication stress, manifested by the accumulation of ssDNA, production of aberrant replication intermediates, and activation of robust DNA damage responses. Paired-end Illumina sequencing of ssDNA revealed intergenic regions, including replication origins, as hot spots for replication stress in ΔTXR1 cells. ΔTXR1 cells showed a deficiency in histone H3 Lys 27 monomethylation (H3K27me1), while ΔEZL2 cells, deleting a Drosophila E(z) homolog, were deficient in H3K27 di- and trimethylation, with no detectable replication stress. A point mutation in histone H3 at Lys 27 (H3 K27Q) mirrored the phenotype of ΔTXR1, corroborating H3K27me1 as a key player in DNA replication. Additionally, we demonstrated interactions between TXR1 and proliferating cell nuclear antigen (PCNA). These findings support a conserved pathway through which H3K27me1 facilitates replication elongation.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
UV-induced nuclear import of XPA is mediated by importin-α4 in an ATR-dependent manner. PLoS One 2013; 8:e68297. [PMID: 23861882 PMCID: PMC3704644 DOI: 10.1371/journal.pone.0068297] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 05/28/2013] [Indexed: 12/29/2022] Open
Abstract
Xeroderma pigmentosum Group A (XPA) is a crucial factor in mammalian nucleotide excision repair (NER) and nuclear import of XPA from the cytoplasm for NER is regulated in cellular DNA damage responses in S-phase. In this study, experiments were carried out to determine the transport mechanisms that are responsible for the UV (ultraviolet)-induced nuclear import of XPA. We found that, in addition to the nuclear localization signal (NLS) of XPA, importin-α4 or/and importin-α7 are required for the XPA nuclear import. Further investigation indicated that, importin-α4 and importin-α7 directly interacted with XPA in cells. Interestingly, the binding of importin-α4 to XPA was dependent on UV-irradiation, while the binding of importin-α7 was not, suggesting a role for importin-α7 in nuclear translocation of XPA in the absence of DNA damage, perhaps with specificity to certain non-S-phases of the cell-cycle. Consistent with the previous report of a dependence of UV-induced XPA nuclear import on ataxia telangiectasia and Rad3-related protein (ATR) in S-phase, knockdown of ATR reduced the amount of XPA interacting with importin-α4. In contrast, the GTPase XPA binding protein 1 (XAB1), previously proposed to be required for XPA nuclear import, showed no effect on the nuclear import of XPA in our siRNA knockdown analysis. In conclusion, our results suggest that upon DNA damage transport adaptor importin-α4 imports XPA into the nucleus in an ATR-dependent manner, while XAB1 has no role in this process. In addition, these findings reveal a potential new therapeutic target for the sensitization of cancer cells to chemotherapy.
Collapse
|
14
|
Mathieu N, Kaczmarek N, Rüthemann P, Luch A, Naegeli H. DNA quality control by a lesion sensor pocket of the xeroderma pigmentosum group D helicase subunit of TFIIH. Curr Biol 2013; 23:204-12. [PMID: 23352696 DOI: 10.1016/j.cub.2012.12.032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/13/2012] [Accepted: 12/19/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Nucleotide excision repair is a versatile DNA repair reaction that removes bulky adducts generated by environmental mutagens such as the UV spectrum of sunlight or chemical carcinogens. Current multistep models of this excision repair pathway accommodate its broad substrate repertoire but fail to explain the stringent selectivity toward damaged nucleotides among excess native DNA. To understand the mechanism of bulky lesion recognition, we postulated that it is necessary to analyze the function of xeroderma pigmentosum group D (XPD) protein beyond its well-known role in the unwinding of double-stranded DNA. RESULTS We engineered two new XPD mutants (Y192A and R196E), involving amino acid substitutions near its central protein pore, that confer defective DNA repair despite normal transcription. In situ fluorescence-based protein dynamics studies in living cells demonstrated that both new mutants were unable to recognize DNA damage and failed to form stable associations with lesion sites. However, when their biochemical properties were tested in the framework of an archaeal protein homolog, they both retained ATPase and DNA-unwinding activity. The outstanding difference versus the wild-type control was that their directional 5'-3' translocation along DNA was not stopped by a bulky lesion, and moreover, they were unable to build long-lived demarcation complexes at damaged sites. CONCLUSIONS By uncoupling for the first time the unwinding and damage sensor activities of XPD, we describe an unprecedented genome quality control process whereby a recognition pocket near the central DNA helicase pore scans individual substrate strands to capture base adducts.
Collapse
Affiliation(s)
- Nadine Mathieu
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, 8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
15
|
Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP. DDB2 promotes chromatin decondensation at UV-induced DNA damage. ACTA ACUST UNITED AC 2012; 197:267-81. [PMID: 22492724 PMCID: PMC3328393 DOI: 10.1083/jcb.201106074] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its role in DNA lesion recognition, the damaged DNA-binding protein DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Seiler DM, Rouquette J, Schmid VJ, Strickfaden H, Ottmann C, Drexler GA, Mazurek B, Greubel C, Hable V, Dollinger G, Cremer T, Friedl AA. Double-strand break-induced transcriptional silencing is associated with loss of tri-methylation at H3K4. Chromosome Res 2011; 19:883-99. [PMID: 21987186 DOI: 10.1007/s10577-011-9244-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/20/2011] [Accepted: 09/16/2011] [Indexed: 01/16/2023]
Abstract
Epigenetic alterations induced by ionizing radiation may contribute to radiation carcinogenesis. To detect relative accumulations or losses of constitutive post-translational histone modifications in chromatin regions surrounding DNA double-strand breaks (DSB), we developed a method based on ion microirradiation and correlation of the signal intensities after immunofluorescence detection of the histone modification in question and the DSB marker γ-H2AX. We observed after ionizing irradiation markers for transcriptional silencing, such as accumulation of H3K27me3 and loss of active RNA polymerase II, at chromatin regions labeled by γ-H2AX. Confocal microscopy of whole nuclei and of ultrathin nuclear sections revealed that the histone modification H3K4me3, which labels transcriptionally active regions, is underrepresented in γ-H2AX foci. While some exclusion of H3K4me3 is already evident at the earliest time amenable to this kind of analysis, the anti-correlation apparently increases with time after irradiation, suggesting an active removal process. Focal accumulation of the H3K4me3 demethylase, JARID1A, was observed at damaged regions inflicted by laser irradiation, suggesting involvement of this enzyme in the DNA damage response. Since no accumulation of the repressive mark H3K9me2 was found at damaged sites, we suggest that DSB-induced transcriptional silencing resembles polycomb-mediated silencing rather than heterochromatic silencing.
Collapse
Affiliation(s)
- Doris M Seiler
- Department of Radiation Oncology, University Hospital of Munich, Schillerstr. 42, 80336, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Mutation rates vary significantly within the genome and across species. Recent studies revealed a long suspected replication-timing effect on mutation rate, but the mechanisms that regulate the increase in mutation rate as the genome is replicated remain unclear. Evidence is emerging, however, that DNA repair systems, in general, are less efficient in late replicating heterochromatic regions compared to early replicating euchromatic regions of the genome. At the same time, mutation rates in both vertebrates and invertebrates have been shown to vary with generation time (GT). GT is correlated with genome size, which suggests a possible nucleotypic effect on species-specific mutation rates. These and other observations all converge on a role for DNA replication checkpoints in modulating generation times and mutation rates during the DNA synthetic phase (S phase) of the cell cycle. The following will examine the potential role of the intra-S checkpoint in regulating cell cycle times (GT) and mutation rates in eukaryotes. This article was published online on August 5, 2011. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected October 4, 2011.
Collapse
Affiliation(s)
- John Herrick
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada.
| |
Collapse
|
18
|
Rad10-YFP focus induction in response to UV depends on RAD14 in yeast. Acta Histochem 2011; 113:409-15. [PMID: 20546858 DOI: 10.1016/j.acthis.2010.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 11/20/2022]
Abstract
Rad14 is a DNA damage recognition protein in yeast Nucleotide Excision Repair (NER) and believed to function early in the cascade of events. The function of Rad14 presumably precedes that of the Rad1-Rad10 endonuclease complex, which functions in a downstream step incising DNA 5' to the site of DNA damage. We investigated whether recruitment of Rad10 to UV-induced DNA damage sites in live cells is dependent on Rad14 using fluorescence microscopy. Experiments were carried out using Saccharomyces cerevisiae strains in which the gene for Rad14 was fused to Cyan Fluorescent Protein (Rad14-CFP) and that of Rad10 was fused to Yellow Fluorescent Protein (Rad10-YFP). Rad14-CFP forms nuclear localized CFP fluorescent foci in response to UV irradiation with the peak induction occurring 15min post-irradiation. In contrast, Rad10-YFP foci form in response to UV with the peak induction occurring 2h post-irradiation. Recruitment of Rad14-CFP is not dependent on the RAD10 gene but Rad10-YFP is recruited to UV-induced YFP foci in a RAD14-dependent fashion. Time-lapse experiments indicate that Rad14-CFP foci are transient, typically persisting less than 6min. Together these data support the model that yeast NER protein assembly is step-wise whereas Rad14 required to recruit Rad10 and Rad14 involvement is transient.
Collapse
|
19
|
Abstract
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics, Erasmus University Medical Center, GE Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Abstract
Chromosome territories (CTs) constitute a major feature of nuclear architecture. In a brief statement, the possible contribution of nuclear architecture studies to the field of epigenomics is considered, followed by a historical account of the CT concept and the final compelling experimental evidence of a territorial organization of chromosomes in all eukaryotes studied to date. Present knowledge of nonrandom CT arrangements, of the internal CT architecture, and of structural interactions with other CTs is provided as well as the dynamics of CT arrangements during cell cycle and postmitotic terminal differentiation. The article concludes with a discussion of open questions and new experimental strategies to answer them.
Collapse
Affiliation(s)
- Thomas Cremer
- Biozentrum, Department of Biology II, Ludwig-Maximilians-University, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | |
Collapse
|
21
|
Rouquette J, Cremer C, Cremer T, Fakan S. Functional nuclear architecture studied by microscopy: present and future. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 282:1-90. [PMID: 20630466 DOI: 10.1016/s1937-6448(10)82001-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this review we describe major contributions of light and electron microscopic approaches to the present understanding of functional nuclear architecture. The large gap of knowledge, which must still be bridged from the molecular level to the level of higher order structure, is emphasized by differences of currently discussed models of nuclear architecture. Molecular biological tools represent new means for the multicolor visualization of various nuclear components in living cells. New achievements offer the possibility to surpass the resolution limit of conventional light microscopy down to the nanometer scale and require improved bioinformatics tools able to handle the analysis of large amounts of data. In combination with the much higher resolution of electron microscopic methods, including ultrastructural cytochemistry, correlative microscopy of the same cells in their living and fixed state is the approach of choice to combine the advantages of different techniques. This will make possible future analyses of cell type- and species-specific differences of nuclear architecture in more detail and to put different models to critical tests.
Collapse
Affiliation(s)
- Jacques Rouquette
- Biocenter, Ludwig Maximilians University (LMU), Martinsried, Germany
| | | | | | | |
Collapse
|
22
|
Meggendorfer M, Weierich C, Wolff H, Brack-Werner R, Cremer T. Functional nuclear topography of transcriptionally inducible extra-chromosomal transgene clusters. Chromosome Res 2010; 18:401-17. [PMID: 20532610 DOI: 10.1007/s10577-010-9133-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/26/2010] [Accepted: 04/27/2010] [Indexed: 12/27/2022]
Abstract
A new experimental approach was designed to test different predictions of current models of the nuclear architecture with respect to the topography of transcription. We constructed a plasmid, termed pIndi, which carries a reporter gene coding for a red cytoplasmic fluorescent reporter protein. Transcription of the reporter gene is regulated by the inducible promoter of the human immunodeficiency virus (HIV) and is strongly dependent on the HIV-1 Tat protein. Expressing the red fluorescent reporter protein allowed us to distinguish between cells with active and silent reporter genes. Importantly, transient transfection resulted in the clustering of plasmids, forming one or several extra-chromosomal pIndi bodies. Repetitive lac operator sequences in pIndi allowed us to visualize these bodies in living cells by the binding of LacI proteins tagged with a fluorescent protein. Using this model, we analyzed the three-dimensional nuclear topography of pIndi bodies with active or silent reporter genes. Our results are compatible with predictions of the chromosome territory-interchromatin compartment (CT-IC) model. We demonstrate that pIndi bodies localize in the IC, both in the silent and active state. Activation of transgene transcription resulted in the recruitment of RNA polymerase II and NFkappaB and a closer positioning to splicing speckles.
Collapse
Affiliation(s)
- Manja Meggendorfer
- Institute of Virology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | | | | | | | | |
Collapse
|
23
|
Venkitaraman AR. Modifying chromatin architecture during the response to DNA breakage. Crit Rev Biochem Mol Biol 2010; 45:2-13. [PMID: 19874211 DOI: 10.3109/10409230903325446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The human genome is compacted in a dynamic macromolecular complex, chromatin, whose structure presents a considerable barrier to the cellular machinery which responds to DNA double-strand breaks. This review discusses current understanding of the processes that modify chromatin architecture to enable, first, the sensing of DNA breakage, next, the assembly of the protein complexes that resolve the lesion, and finally, the restoration of epigenetic marks after its repair. The importance of these fundamental biological processes is underscored by the growing appreciation that they are aberrant in human diseases, and that their modulation could provide new approaches to disease therapy.
Collapse
Affiliation(s)
- Ashok R Venkitaraman
- University of Cambridge, Department of Oncology & The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, UK
| |
Collapse
|
24
|
Rechkunova NI, Lavrik OI. Nucleotide excision repair in higher eukaryotes: mechanism of primary damage recognition in global genome repair. Subcell Biochem 2010; 50:251-277. [PMID: 20012586 DOI: 10.1007/978-90-481-3471-7_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nucleotide excision repair (NER) is one of the major DNA repair pathways in eukaryotic cells that counteract the formation of genetic damage. NER removes structurally diverse lesions such as pyrimidine dimers, arising upon UV irradiation, and bulky chemical adducts, arising upon exposure to carcinogens and some chemotherapeutic drugs. NER defects lead to severe diseases, including some forms of cancer. In view of the broad substrate specificity of NER, it is of interest to understand how a certain set of proteins recognizes various DNA lesions in the contest of a large excess of intact DNA. This review focuses on DNA damage recognition, the key and, as yet, most questionable step of NER. Understanding of mechanism of this step of NER may give a key contribution to study of similar processes of DNA damage recognition (base excision repair, mismatch repair) and regulation of assembly of various DNA repair machines. The major models of primary damage recognition and pre-incision complex assembly are considered. The model of a sequential loading of repair proteins on damaged DNA seems most reasonable in the light of the available data. The possible contribution of affinity labeling technique in study of this process is discussed.
Collapse
Affiliation(s)
- N I Rechkunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
| | | |
Collapse
|
25
|
Hübner B, Strickfaden H, Müller S, Cremer M, Cremer T. Chromosome shattering: a mitotic catastrophe due to chromosome condensation failure. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2009; 38:729-47. [PMID: 19536536 DOI: 10.1007/s00249-009-0496-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/19/2009] [Accepted: 05/19/2009] [Indexed: 11/25/2022]
Abstract
Chromosome shattering has been described as a special form of mitotic catastrophe, which occurs in cells with unrepaired DNA damage. The shattered chromosome phenotype was detected after application of a methanol/acetic acid (MAA) fixation protocol routinely used for the preparation of metaphase spreads. The corresponding phenotype in the living cell and the mechanism leading to this mitotic catastrophe have remained speculative so far. In the present study, we used V79 Chinese hamster cells, stably transfected with histone H2BmRFP for live-cell observations, and induced generalized chromosome shattering (GCS) by the synergistic effect of UV irradiation and caffeine posttreatment. We demonstrate that GCS can be derived from abnormal mitotic cells with a parachute-like chromatin configuration (PALCC) consisting of a bulky chromatin mass and extended chromatin fibers that tether centromeres at a remote, yet normally shaped spindle apparatus. This result hints at a chromosome condensation failure, yielding a "shattered" chromosome complement after MAA fixation. Live mitotic cells with PALCCs proceeded to interphase within a period similar to normal mitotic cells but did not divide. Instead they formed cells with highly abnormal nuclear configurations subject to apoptosis after several hours. We propose a factor depletion model where a limited pool of proteins is involved both in DNA repair and chromatin condensation. Chromosome condensation failure occurs when this pool becomes depleted.
Collapse
Affiliation(s)
- B Hübner
- Department Biology II (Anthropology and Human Genetics), LMU Biozentrum, Martinsried, Germany
| | | | | | | | | |
Collapse
|
26
|
Luijsterburg MS, Dinant C, Lans H, Stap J, Wiernasz E, Lagerwerf S, Warmerdam DO, Lindh M, Brink MC, Dobrucki JW, Aten JA, Fousteri MI, Jansen G, Dantuma NP, Vermeulen W, Mullenders LHF, Houtsmuller AB, Verschure PJ, van Driel R. Heterochromatin protein 1 is recruited to various types of DNA damage. ACTA ACUST UNITED AC 2009; 185:577-86. [PMID: 19451271 PMCID: PMC2711568 DOI: 10.1083/jcb.200810035] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterochromatin protein 1 (HP1) family members are chromatin-associated proteins involved in transcription, replication, and chromatin organization. We show that HP1 isoforms HP1-α, HP1-β, and HP1-γ are recruited to ultraviolet (UV)-induced DNA damage and double-strand breaks (DSBs) in human cells. This response to DNA damage requires the chromo shadow domain of HP1 and is independent of H3K9 trimethylation and proteins that detect UV damage and DSBs. Loss of HP1 results in high sensitivity to UV light and ionizing radiation in the nematode Caenorhabditis elegans, indicating that HP1 proteins are essential components of DNA damage response (DDR) systems. Analysis of single and double HP1 mutants in nematodes suggests that HP1 homologues have both unique and overlapping functions in the DDR. Our results show that HP1 proteins are important for DNA repair and may function to reorganize chromatin in response to damage.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Swammerdam Institute for Life Sciences, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1012 WX Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|