1
|
Zurita M, Murillo-Maldonado JM. Drosophila as a Model Organism to Understand the Effects during Development of TFIIH-Related Human Diseases. Int J Mol Sci 2020; 21:ijms21020630. [PMID: 31963603 PMCID: PMC7013941 DOI: 10.3390/ijms21020630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Human mutations in the transcription and nucleotide excision repair (NER) factor TFIIH are linked with three human syndromes: xeroderma pigmentosum (XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS). In particular, different mutations in the XPB, XPD and p8 subunits of TFIIH may cause one or a combination of these syndromes, and some of these mutations are also related to cancer. The participation of TFIIH in NER and transcription makes it difficult to interpret the different manifestations observed in patients, particularly since some of these phenotypes may be related to problems during development. TFIIH is present in all eukaryotic cells, and its functions in transcription and DNA repair are conserved. Therefore, Drosophila has been a useful model organism for the interpretation of different phenotypes during development as well as the understanding of the dynamics of this complex. Interestingly, phenotypes similar to those observed in humans caused by mutations in the TFIIH subunits are present in mutant flies, allowing the study of TFIIH in different developmental processes. Furthermore, studies performed in Drosophila of mutations in different subunits of TFIIH that have not been linked to any human diseases, probably because they are more deleterious, have revealed its roles in differentiation and cell death. In this review, different achievements made through studies in the fly to understand the functions of TFIIH during development and its relationship with human diseases are analysed and discussed.
Collapse
|
2
|
Hu Z, Ghosh A, Stolze SC, Horváth M, Bai B, Schaefer S, Zündorf S, Liu S, Harzen A, Hajheidari M, Sarnowski TJ, Nakagami H, Koncz Z, Koncz C. Gene modification by fast-track recombineering for cellular localization and isolation of components of plant protein complexes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:411-429. [PMID: 31276249 PMCID: PMC6852550 DOI: 10.1111/tpj.14450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/14/2019] [Accepted: 06/26/2019] [Indexed: 05/04/2023]
Abstract
To accelerate the isolation of plant protein complexes and study cellular localization and interaction of their components, an improved recombineering protocol is described for simple and fast site-directed modification of plant genes in bacterial artificial chromosomes (BACs). Coding sequences of fluorescent and affinity tags were inserted into genes and transferred together with flanking genomic sequences of desired size by recombination into Agrobacterium plant transformation vectors using three steps of E. coli transformation with PCR-amplified DNA fragments. Application of fast-track recombineering is illustrated by the simultaneous labelling of CYCLIN-DEPENDENT KINASE D (CDKD) and CYCLIN H (CYCH) subunits of kinase module of TFIIH general transcription factor and the CDKD-activating CDKF;1 kinase with green fluorescent protein (GFP) and mCherry (green and red fluorescent protein) tags, and a PIPL (His18 -StrepII-HA) epitope. Functionality of modified CDKF;1 gene constructs is verified by complementation of corresponding T-DNA insertion mutation. Interaction of CYCH with all three known CDKD homologues is confirmed by their co-localization and co-immunoprecipitation. Affinity purification and mass spectrometry analyses of CDKD;2, CYCH, and DNA-replication-coupled HISTONE H3.1 validate their association with conserved TFIIH subunits and components of CHROMATIN ASSEMBLY FACTOR 1, respectively. The results document that simple modification of plant gene products with suitable tags by fast-track recombineering is well suited to promote a wide range of protein interaction and proteomics studies.
Collapse
Affiliation(s)
- Zhoubo Hu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Ajit Ghosh
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhet3114, Bangladesh
| | - Sara C. Stolze
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mihály Horváth
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Bing Bai
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Sabine Schaefer
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Simone Zündorf
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Shanda Liu
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Anne Harzen
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Mohsen Hajheidari
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Botanical InstituteCologne Biocenter, Cluster of Excellence on Plant Sciences, University of CologneD‐50674CologneGermany
| | - Tomasz J. Sarnowski
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesPawińskiego 5A02‐106WarsawPoland
| | - Hirofumi Nakagami
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Zsuzsa Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
| | - Csaba Koncz
- Max‐Planck Institute for Plant Breeding ResearchCarl‐von‐Linné‐Weg 10D‐50829CologneGermany
- Institute of Plant BiologyBiological Research Center of Hungarian Academy of SciencesTemesvári krt. 62H‐6726SzegedHungary
| |
Collapse
|
3
|
Cruz-Becerra G, Valerio-Cabrera S, Juárez M, Bucio-Mendez A, Zurita M. TFIIH localization is highly dynamic during zygotic genome activation in Drosophila, and its depletion causes catastrophic mitosis. J Cell Sci 2018; 131:jcs.211631. [PMID: 29643118 DOI: 10.1242/jcs.211631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
In Drosophila, zygotic genome activation occurs in pre-blastoderm embryos during rapid mitotic divisions. How the transcription machinery is coordinated to achieve this goal in a very brief time span is still poorly understood. Transcription factor II H (TFIIH) is fundamental for transcription initiation by RNA polymerase II (RNAPII). Herein, we show the in vivo dynamics of TFIIH at the onset of transcription in Drosophila embryos. TFIIH shows an oscillatory behaviour between the nucleus and cytoplasm. TFIIH foci are observed from interphase to metaphase, and colocalize with those for RNAPII phosphorylated at serine 5 (RNAPIIS5P) at prophase, suggesting that transcription occurs during the first mitotic phases. Furthermore, embryos with defects in subunits of either the CAK or the core subcomplexes of TFIIH show catastrophic mitosis. Although, transcriptome analyses show altered expression of several maternal genes that participate in mitosis, the global level of RNAPIIS5P in TFIIH mutant embryos is similar to that in the wild type, therefore, a direct role for TFIIH in mitosis cannot be ruled out. These results provide important insights regarding the role of a basal transcription machinery component when the zygotic genome is activated.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Sarai Valerio-Cabrera
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mandy Juárez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Alyeri Bucio-Mendez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| | - Mario Zurita
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología. Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, México
| |
Collapse
|
4
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
5
|
ARCH domain of XPD, an anchoring platform for CAK that conditions TFIIH DNA repair and transcription activities. Proc Natl Acad Sci U S A 2013; 110:E633-42. [PMID: 23382212 DOI: 10.1073/pnas.1213981110] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The xeroderma pigmentosum group D (XPD) helicase is a subunit of transcription/DNA repair factor, transcription factor II H (TFIIH) that catalyzes the unwinding of a damaged DNA duplex during nucleotide excision repair. Apart from two canonical helicase domains, XPD is composed of a 4Fe-S cluster domain involved in DNA damage recognition and a module of uncharacterized function termed the "ARCH domain." By investigating the consequences of a mutation found in a patient with trichothiodystrophy, we show that the ARCH domain is critical for the recruitment of the cyclin-dependent kinase (CDK)-activating kinase (CAK) complex. Indeed, this mutation not only affects the interaction with the MAT1 CAK subunit, thereby decreasing the in vitro basal transcription activity of TFIIH itself and impeding the efficient recruitment of the transcription machinery on the promoter of an activated gene, but also impairs the DNA unwinding activity of XPD and the nucleotide excision repair activity of TFIIH. We further demonstrate the role of CAK in downregulating the XPD helicase activity within TFIIH. Taken together, our results identify the ARCH domain of XPD as a platform for the recruitment of CAK and as a potential molecular switch that might control TFIIH composition and play a key role in the conversion of TFIIH from a factor active in transcription to a factor involved in DNA repair.
Collapse
|
6
|
Bedez F, Linard B, Brochet X, Ripp R, Thompson JD, Moras D, Lecompte O, Poch O. Functional insights into the core-TFIIH from a comparative survey. Genomics 2012; 101:178-86. [PMID: 23147676 DOI: 10.1016/j.ygeno.2012.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
Abstract
TFIIH is a eukaryotic complex composed of two subcomplexes, the CAK (Cdk activating kinase) and the core-TFIIH. The core-TFIIH, composed of seven subunits (XPB, XPD, P62, P52, P44, P34, and P8), plays a crucial role in transcription and repair. Here, we performed an extended sequence analysis to establish the accurate phylogenetic distribution of the core-TFIIH in 63 eukaryotic organisms. In spite of the high conservation of the seven subunits at the sequence and genomic levels, the non-enzymatic P8, P34, P52 and P62 are absent from one or a few unicellular species. To gain insight into their respective roles, we undertook a comparative genomic analysis of the whole proteome to identify the gene sets sharing similar presence/absence patterns. While little information was inferred for P8 and P62, our studies confirm the known role of P52 in repair and suggest for the first time the implication of the core TFIIH in mRNA splicing via P34.
Collapse
Affiliation(s)
- Florence Bedez
- Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS, INSERM, UDS), BP163, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Herrera-Cruz M, Cruz G, Valadez-Graham V, Fregoso-Lomas M, Villicaña C, Vázquez M, Reynaud E, Zurita M. Physical and functional interactions between Drosophila homologue of Swc6/p18Hamlet subunit of the SWR1/SRCAP chromatin-remodeling complex with the DNA repair/transcription factor TFIIH. J Biol Chem 2012; 287:33567-80. [PMID: 22865882 DOI: 10.1074/jbc.m112.383505] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The multisubunit DNA repair and transcription factor TFIIH maintains an intricate cross-talk with different factors to achieve its functions. The p8 subunit of TFIIH maintains the basal levels of the complex by interacting with the p52 subunit. Here, we report that in Drosophila, the homolog of the p8 subunit (Dmp8) is encoded in a bicistronic transcript with the homolog of the Swc6/p18(Hamlet) subunit (Dmp18) of the SWR1/SRCAP chromatin remodeling complex. The SWR1 and SRCAP complexes catalyze the exchange of the canonical histone H2A with the H2AZ histone variant. In eukaryotic cells, bicistronic transcripts are not common, and in some cases, the two encoded proteins are functionally related. We found that Dmp18 physically interacts with the Dmp52 subunit of TFIIH and co-localizes with TFIIH in the chromatin. We also demonstrated that Dmp18 genetically interacts with Dmp8, suggesting that a cross-talk might exist between TFIIH and a component of a chromatin remodeler complex involved in histone exchange. Interestingly, our results also show that when the level of one of the two proteins is decreased and the other maintained, a specific defect in the fly is observed, suggesting that the organization of these two genes in a bicistronic locus has been selected during evolution to allow co-regulation of both genes.
Collapse
Affiliation(s)
- Mariana Herrera-Cruz
- Department of Developmental Genetics, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos, México
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Reyes-Carmona S, Valadéz-Graham V, Aguilar-Fuentes J, Zurita M, León-Del-Río A. Trafficking and chromatin dynamics of holocarboxylase synthetase during development of Drosophila melanogaster. Mol Genet Metab 2011; 103:240-8. [PMID: 21463962 DOI: 10.1016/j.ymgme.2011.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/05/2011] [Accepted: 03/05/2011] [Indexed: 11/26/2022]
Abstract
This work examines the cellular localization of holocarboxylase synthetase (HCS) and its association to chromatin during different stages of development of Drosophila melanogaster. While HCS is well known for its role in the attachment of biotin to biotin-dependent carboxylase, it also regulates the transcription of HCS and carboxylases genes by triggering a cGMP-dependent signal transduction cascade. Further, its presence in the nucleus of cells suggests additional regulatory roles, but the mechanism involved has remained elusive. In this study, we show in D. melanogaster that HCS migrates to the nucleus at the gastrulation stage. In polytene chromosomes, it is associated to heterochromatin bands where it co-localizes with histone 3 trimethylated at lysine 9 (H3K9met3) but not with the euchromatin mark histone 3 acetylated at lysine 9 (H3K9ac). Further, we demonstrate the association of HCS with the hsp70 promoter by immunofluorescence and chromatin immuno-precipitation (ChIP) of associated DNA sequences. We demonstrate the occupancy of HCS to the core promoter region of the transcriptionally inactive hsp70 gene. On heat-shock activation of the hsp70 promoter, HCS is displaced and the promoter region becomes enriched with the TFIIH subunits XPD and XPB and elongating RNA pol II, the latter also demonstrated using ChIP assays. We suggest that HCS may have a role in the repression of gene expression through a mechanism involving its trafficking to the nucleus and interaction with heterochromatic sites coincident with H3K9met3.
Collapse
Affiliation(s)
- Sandra Reyes-Carmona
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México DF 04510, Mexico.
| | | | | | | | | |
Collapse
|
9
|
Patel SA, Simon MC. Functional analysis of the Cdk7.cyclin H.Mat1 complex in mouse embryonic stem cells and embryos. J Biol Chem 2010; 285:15587-15598. [PMID: 20231280 PMCID: PMC2865308 DOI: 10.1074/jbc.m109.081687] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 02/22/2010] [Indexed: 01/27/2023] Open
Abstract
The trimeric Cdk7.cyclin H.Mat1 complex functions in cell cycle regulation, as the Cdk-activating kinase, and in transcription, as a module of the general transcription factor TFIIH. As a component of TFIIH, Cdk7 phosphorylates serines 5 and 7 of the carboxyl-terminal domain of RNA polymerase II and can also directly phosphorylate transcription factors to regulate gene expression. Here we have investigated the function of the Cdk7.cyclin H.Mat1 complex in murine embryonic stem (ES) cells and preimplantation embryos to determine whether it regulates the unique cell cycle structure and transcriptional network of pluripotent cells. We demonstrate that depletion of cyclin H leads to differentiation of ES cells independent of changes in cell cycle progression. In contrast, we observed that developmental genes are acutely up-regulated after cyclin H down-regulation, likely perturbing normal ES self-renewal pathways. We further demonstrate that Spt5, a known phosphorylation target of Cdk7, similarly regulates ES pluripotency and gene expression. Consistent with its function in ES cells, cyclin H depletion from mouse embryos also leads to defects in the expansion of the inner cell mass of blastocysts, a transient pluripotent stem cell population in vivo. Our findings indicate that cyclin H has an essential function in promoting the self-renewal of the pluripotent stem cells of blastocyst stage embryos. Collectively, these studies demonstrate a critical and novel role for cyclin H in maintaining ES cell identity and suggest that cyclin H has important functions in early embryonic development.
Collapse
Affiliation(s)
- Shetal A Patel
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104; School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Howard Hughes Medical Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
10
|
Drosophila Xpd regulates Cdk7 localization, mitotic kinase activity, spindle dynamics, and chromosome segregation. PLoS Genet 2010; 6:e1000876. [PMID: 20300654 PMCID: PMC2837399 DOI: 10.1371/journal.pgen.1000876] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 02/06/2010] [Indexed: 12/04/2022] Open
Abstract
The trimeric CAK complex functions in cell cycle control by phosphorylating and activating Cdks while TFIIH-linked CAK functions in transcription. CAK also associates into a tetramer with Xpd, and our analysis of young Drosophila embryos that do not require transcription now suggests a cell cycle function for this interaction. xpd is essential for the coordination and rapid progression of the mitotic divisions during the late nuclear division cycles. Lack of Xpd also causes defects in the dynamics of the mitotic spindle and chromosomal instability as seen in the failure to segregate chromosomes properly during ana- and telophase. These defects appear to be also nucleotide excision repair (NER)–independent. In the absence of Xpd, misrouted spindle microtubules attach to chromosomes of neighboring mitotic figures, removing them from their normal location and causing multipolar spindles and aneuploidy. Lack of Xpd also causes changes in the dynamics of subcellular and temporal distribution of the CAK component Cdk7 and local mitotic kinase activity. xpd thus functions normally to re-localize Cdk7(CAK) to different subcellular compartments, apparently removing it from its cell cycle substrate, the mitotic Cdk. This work proves that the multitask protein Xpd also plays an essential role in cell cycle regulation that appears to be independent of transcription or NER. Xpd dynamically localizes Cdk7/CAK to and away from subcellular substrates, thereby controlling local mitotic kinase activity. Possibly through this activity, xpd controls spindle dynamics and chromosome segregation in our model system. This novel role of xpd should also lead to new insights into the understanding of the neurological and cancer aspects of the human XPD disease phenotypes. Mutations in human xpd cause three different syndromes—XP (xeroderma pigmentosum), TTD (trichothiodystrophy), and CS (Cockayne syndrome)—and various different phenotypes, such as sun-induced hyperpigmentation of the skin, cutaneous abnormalities, neuronal degeneration, and developmental retardation. In addition, while some mutations cause a highly elevated cancer risk, others do not. The multitask protein Xpd functions in transcription, nucleotide excision repair (NER), and in cell cycle regulation. In a situation where transcription is not required and NER not induced, we specifically analyzed the cell cycle function of Xpd in Drosophila. In this situation Xpd locally controls the dynamic localization of Cdk7, the catalytic subunit of the Cdk activating kinase (CAK) to and away from its cellular targets, thereby regulating mitotic kinase activity and mitotic exit. Xpd also controls spindle dynamics to prevent formation of multipolar and promiscuous spindles and aneuploidy. Through multitask proteins like Xpd and Cdk7 cells regulate different cellular pathways in a coordinated fashion. In addition to the basic research relevance, the newly gained knowledge about the cell cycle function of Xpd and its control of spindle dynamics is also relevant for human xpd patients because it shows a possible pathway that could lead to highly increased cancer risk and neurological defects.
Collapse
|
11
|
Mat1 inhibits peroxisome proliferator-activated receptor gamma-mediated adipocyte differentiation. Mol Cell Biol 2008; 29:315-23. [PMID: 18981214 DOI: 10.1128/mcb.00347-08] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mammalian Cdk7, cyclin H, and Mat1 form the kinase submodule of transcription factor IIH (TFIIH) and have been considered ubiquitously expressed elements of the transcriptional machinery. Here we found that Mat1 and Cdk7 levels are undetectable in adipose tissues in vivo and downregulated during adipogenesis, where activation of peroxisome proliferator-activated receptor gamma (PPARgamma) acts as a critical differentiation switch. Using both Mat1(-/-) mouse embryonic fibroblasts and Cdk7 knockdown approaches, we show that the Cdk7 complex is an inhibitor of adipogenesis and is required for inactivation of PPARgamma through the phosphorylation of PPARgamma-S112. The results demonstrate that the Cdk7 submodule of TFIIH acts as a physiological roadblock to adipogenesis by inhibiting PPARgamma activity. The observation that components of TFIIH are absent from transcriptionally active adipose tissue prompts a reevaluation of the ubiquitous nature of basal transcription factors in mammalian tissues.
Collapse
|