1
|
Chen D, Hu H, He W, Zhang S, Tang M, Xiang S, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen X, Xing J. Endocytic protein Pal1 regulates appressorium formation and is required for full virulence of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:133-147. [PMID: 34636149 PMCID: PMC8659611 DOI: 10.1111/mpp.13149] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.
Collapse
Affiliation(s)
- Deng Chen
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hong Hu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenhui He
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shimei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mengxi Tang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shikun Xiang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xuan Cai
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ahmed Hendy
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Muhammad Kamran
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junbing Huang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| |
Collapse
|
2
|
Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 2020; 21:ijms21145038. [PMID: 32708832 PMCID: PMC7403958 DOI: 10.3390/ijms21145038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.
Collapse
|
3
|
Yu SC, Kuemmel F, Skoufou-Papoutsaki MN, Spanu PD. Yeast transformation efficiency is enhanced by TORC1- and eisosome-dependent signaling. Microbiologyopen 2018; 8:e00730. [PMID: 30311441 PMCID: PMC6528558 DOI: 10.1002/mbo3.730] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022] Open
Abstract
Transformation of baker's yeast (Saccharomyces cerevisiae) plays a key role in several experimental techniques, yet the molecular mechanisms underpinning transformation are still unclear. The addition of amino acids to the growth and transformation medium increases transformation efficiency. Here, we show that target of rapamycin complex 1 (TORC1) activated by amino acids enhances transformation via ubiquitin‐mediated endocytosis. We created mutants of the TORC1 pathway, alpha‐arrestins, and eisosome‐related genes. Our results demonstrate that the TORC1‐Npr1‐Art1/Rsp5 pathway regulates yeast transformation. Based on our previous study, activation of this pathway results in up to a 200‐fold increase in transformation efficiency, or greater. Additionally, we suggest DNA may be taken up by domains at the membrane compartment of Can1 (MCC) in the plasma membrane formed by eisosomes. Yeast studies on transformation could be used as a platform to understand the mechanism of DNA uptake in mammalian systems, which is clinically relevant to optimize gene therapy.
Collapse
Affiliation(s)
- Sheng-Chun Yu
- Department of Life Sciences, Imperial College London, London, UK
| | - Florian Kuemmel
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Pietro D Spanu
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
4
|
Live-cell imaging of early coat protein dynamics during clathrin-mediated endocytosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1566-1578. [PMID: 30077636 DOI: 10.1016/j.bbamcr.2018.07.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/23/2018] [Accepted: 07/25/2018] [Indexed: 12/30/2022]
Abstract
Clathrin-mediated endocytosis is an essential process that is mediated by the stepwise appearance or disappearance of many different proteins at the plasma membrane. In the budding yeast, these proteins are categorized into at least five modules, according to their spatiotemporal dynamics. Among them, the dynamics of proteins in the late coat module are well characterized, but those in the early coat module still remain unclear because of the lack of a suitable fluorescent marker with sufficient brightness to allow analysis. To examine the dynamics of early coat proteins, in this study we tagged four representative early coat proteins with 3GFP, and expressed them in a single cell. This cell exhibited a significant increase in the fluorescence intensity of early coat proteins relative to that of each 3GFP-tagged protein. Using this strain, we performed a detailed analysis of early coat proteins, including their precise lifetime, changes in fluorescence intensity, and motility on the plasma membrane. We found that early coat proteins move on the plasma membrane before internalization. Additionally, we expressed these 3GFP-tagged proteins in mutants with deletion of genes related to endocytosis, and found four mutants - end3Δ, las17Δ, sla2Δ, and clc1Δ- in which the lifetime of early coat proteins was markedly increased. Interestingly, deletion of the CLC1 gene dramatically reduced the internalization of early coat proteins whereas internalization of actin patches was largely unchanged, suggesting that the clc1Δ mutant might have a defect in the link between the early coat and actin modules.
Collapse
|
5
|
Muriel O, Tomas A, Scott CC, Gruenberg J. Moesin and cortactin control actin-dependent multivesicular endosome biogenesis. Mol Biol Cell 2016; 27:3305-3316. [PMID: 27605702 PMCID: PMC5170863 DOI: 10.1091/mbc.e15-12-0853] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 08/31/2016] [Indexed: 11/11/2022] Open
Abstract
Moesin and cortactin on early endosomes are necessary for the formation of F-actin networks that mediate multivesicular endosome biogenesis and transport through the degradative pathway toward lysosomes. Presumably, this mechanism helps segregate recycling membranes from the maturing multivesicular endosomes. We used in vivo and in vitro strategies to study the mechanisms of multivesicular endosome biogenesis. We found that, whereas annexinA2 and ARP2/3 mediate F-actin nucleation and branching, respectively, the ERM protein moesin supports the formation of F-actin networks on early endosomes. We also found that moesin plays no role during endocytosis and recycling to the plasma membrane but is absolutely required, much like actin, for early-to-late-endosome transport and multivesicular endosome formation. Both actin network formation in vitro and early-to-late endosome transport in vivo also depend on the F-actin–binding protein cortactin. Our data thus show that moesin and cortactin are necessary for formation of F-actin networks that mediate endosome biogenesis or maturation and transport through the degradative pathway. We propose that the primary function of endosomal F-actin is to control the membrane remodeling that accompanies endosome biogenesis. We also speculate that this mechanism helps segregate tubular and multivesicular membranes along the recycling and degradation pathways, respectively.
Collapse
Affiliation(s)
- Olivia Muriel
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Alejandra Tomas
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cameron C Scott
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Wang PS, Chou FS, Ramachandran S, Xia S, Chen HY, Guo F, Suraneni P, Maher BJ, Li R. Crucial roles of the Arp2/3 complex during mammalian corticogenesis. Development 2016; 143:2741-52. [PMID: 27385014 PMCID: PMC5004905 DOI: 10.1242/dev.130542] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023]
Abstract
The polarity and organization of radial glial cells (RGCs), which serve as both stem cells and scaffolds for neuronal migration, are crucial for cortical development. However, the cytoskeletal mechanisms that drive radial glial outgrowth and maintain RGC polarity remain poorly understood. Here, we show that the Arp2/3 complex – the unique actin nucleator that produces branched actin networks – plays essential roles in RGC polarity and morphogenesis. Disruption of the Arp2/3 complex in murine RGCs retards process outgrowth toward the basal surface and impairs apical polarity and adherens junctions. Whereas the former is correlated with an abnormal actin-based leading edge, the latter is consistent with blockage in membrane trafficking. These defects result in altered cell fate, disrupted cortical lamination and abnormal angiogenesis. In addition, we present evidence that the Arp2/3 complex is a cell-autonomous regulator of neuronal migration. Our data suggest that Arp2/3-mediated actin assembly might be particularly important for neuronal cell motility in a soft or poorly adhesive matrix environment. Summary: During mouse cortical development, the Arp2/3 actin branching complex regulates process formation and the maintenance of radial glial cell polarity, as well as affecting neuronal migration.
Collapse
Affiliation(s)
- Pei-Shan Wang
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Fu-Sheng Chou
- Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave., Boston, MA 02115, USA
| | - Sreekumar Ramachandran
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Sheng Xia
- Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Huei-Ying Chen
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA
| | - Fengli Guo
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | - Praveen Suraneni
- Division of Hematology/Oncology, Robert Lurie Comprehensive Cancer Center, Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, 4940 Eastern Ave., Baltimore, MD 21224, USA Department of Neuroscience, Johns Hopkins School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Rong Li
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA Department of Cell Biology, Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, USA Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
7
|
Jain S, Bader GD. Predicting physiologically relevant SH3 domain mediated protein-protein interactions in yeast. Bioinformatics 2016; 32:1865-72. [PMID: 26861823 PMCID: PMC4908317 DOI: 10.1093/bioinformatics/btw045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/05/2015] [Accepted: 01/20/2016] [Indexed: 12/02/2022] Open
Abstract
MOTIVATION Many intracellular signaling processes are mediated by interactions involving peptide recognition modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which can be identified using high-throughput experimental screens such as phage display. Binding motif patterns can then be used to computationally predict protein interactions mediated by these domains. While many protein-protein interaction prediction methods exist, most do not work with peptide recognition module mediated interactions or do not consider many of the known constraints governing physiologically relevant interactions between two proteins. RESULTS A novel method for predicting physiologically relevant SH3 domain-peptide mediated protein-protein interactions in S. cerevisae using phage display data is presented. Like some previous similar methods, this method uses position weight matrix models of protein linear motif preference for individual SH3 domains to scan the proteome for potential hits and then filters these hits using a range of evidence sources related to sequence-based and cellular constraints on protein interactions. The novelty of this approach is the large number of evidence sources used and the method of combination of sequence based and protein pair based evidence sources. By combining different peptide and protein features using multiple Bayesian models we are able to predict high confidence interactions with an overall accuracy of 0.97. AVAILABILITY AND IMPLEMENTATION Domain-Motif Mediated Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available under GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred The DoMo-Pred command line tool is implemented using Python 2.7 and C ++. CONTACT gary.bader@utoronto.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shobhit Jain
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
de León N, Valdivieso MH. The long life of an endocytic patch that misses AP-2. Curr Genet 2016; 62:765-770. [PMID: 27126383 DOI: 10.1007/s00294-016-0605-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 10/21/2022]
Abstract
Endocytosis is the process by which cells regulate extracellular fluid uptake and internalize molecules bound to their plasma membrane. This process requires the generation of protein-coated vesicles. In clathrin-mediated endocytosis (CME) the assembly polypeptide 2 (AP-2) adaptor facilitates rapid endocytosis of some plasma membrane receptors by mediating clathrin recruitment to the endocytic site and by connecting cargoes to the clathrin coat. While this adaptor is essential for early embryonic development in mammals, initial results suggested that it is dispensable for endocytosis in unicellular eukaryotes. The drastic effect of depleting AP-2 in metazoa and the mild effect of deleting AP-2 subunits in Saccharomyces cerevisiae have prevented a detailed analysis of the dynamics of endocytic patches in the absence of this adaptor. Using live-cell imaging of Schizosaccharomyces pombe endocytic sites we have shown that eliminating AP-2 perturbs the dynamics of endocytic patches beyond the moment of coat assembly. These perturbations affect the cell growth pattern and cell wall synthesis. Our results highlight the importance of using different model organisms to address the study of conserved aspects of CME.
Collapse
Affiliation(s)
- Nagore de León
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.,Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - M-Henar Valdivieso
- Departamento de Microbiología y Genética/Instituto de Biología Funcional y Genómica (IBFG), University of Salamanca/CSIC, Calle Zacarías González 2, 37007, Salamanca, Spain.
| |
Collapse
|
9
|
Sydor AM, Czymmek KJ, Puchner EM, Mennella V. Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies. Trends Cell Biol 2015; 25:730-748. [DOI: 10.1016/j.tcb.2015.10.004] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
|
10
|
Carrillo L, Cucu B, Bandmann V, Homann U, Hertel B, Hillmer S, Thiel G, Bertl A. High-Resolution Membrane Capacitance Measurements for Studying Endocytosis and Exocytosis in Yeast. Traffic 2015; 16:760-72. [DOI: 10.1111/tra.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Lucia Carrillo
- Technische Universität Darmstadt; Fachbereich Biologie; Schnittspahnstrasse 10 64287 Darmstadt Germany
| | - Bayram Cucu
- Technische Universität Darmstadt; Fachbereich Biologie; Schnittspahnstrasse 10 64287 Darmstadt Germany
| | - Vera Bandmann
- Technische Universität Darmstadt; Fachbereich Biologie; Schnittspahnstrasse 10 64287 Darmstadt Germany
- Present address: INM-Leibniz-Institute for New Materials; Biomineralization, Campus D2 2; 66123 Saarbrücken Germany
| | - Ulrike Homann
- Technische Universität Darmstadt; Fachbereich Biologie; Schnittspahnstrasse 10 64287 Darmstadt Germany
| | - Brigitte Hertel
- Technische Universität Darmstadt; Fachbereich Biologie; Schnittspahnstrasse 10 64287 Darmstadt Germany
| | - Stefan Hillmer
- Electron Microscopy Core Facility (EMCF), COS; Universität Heidelberg; Im Neuenheimer Feld 230 69120 Heidelberg Germany
| | - Gerhard Thiel
- Technische Universität Darmstadt; Fachbereich Biologie; Schnittspahnstrasse 10 64287 Darmstadt Germany
| | - Adam Bertl
- Technische Universität Darmstadt; Fachbereich Biologie; Schnittspahnstrasse 10 64287 Darmstadt Germany
| |
Collapse
|
11
|
Aghamohammadzadeh S, Smaczynska-de Rooij II, Ayscough KR. An Abp1-dependent route of endocytosis functions when the classical endocytic pathway in yeast is inhibited. PLoS One 2014; 9:e103311. [PMID: 25072293 PMCID: PMC4114835 DOI: 10.1371/journal.pone.0103311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 06/30/2014] [Indexed: 12/04/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) is a well characterized pathway in both yeast and mammalian cells. An increasing number of alternative endocytic pathways have now been described in mammalian cells that can be both clathrin, actin, and Arf6- dependent or independent. In yeast, a single clathrin-mediated pathway has been characterized in detail. However, disruption of this pathway in many mutant strains indicates that other uptake pathways might exist, at least for bulk lipid and fluid internalization. Using a combination of genetics and live cell imaging, here we show evidence for a novel endocytic pathway in S. cerevisiae that does not involve several of the proteins previously shown to be associated with the ‘classic’ pathway of endocytosis. This alternative pathway functions in the presence of low levels of the actin-disrupting drug latrunculin-A which inhibits movement of the proteins Sla1, Sla2, and Sac6, and is independent of dynamin function. We reveal that in the absence of the ‘classic’ pathway, the actin binding protein Abp1 is now essential for bulk endocytosis. This novel pathway appears to be distinct from another described alternative endocytic route in S. cerevisiae as it involves at least some proteins known to be associated with cortical actin patches rather than being mediated at formin-dependent endocytic sites. These data indicate that cells have the capacity to use overlapping sets of components to facilitate endocytosis under a range of conditions.
Collapse
Affiliation(s)
| | | | - Kathryn R. Ayscough
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Miyazaki J, Kuriyama Y, Miyamoto A, Tokumoto H, Konishi Y, Nomura T. Adhesion and internalization of functionalized polystyrene latex nanoparticles toward the yeast Saccharomyces cerevisiae. ADV POWDER TECHNOL 2014. [DOI: 10.1016/j.apt.2014.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Abstract
There are many pathways of endocytosis at the cell surface that apparently operate at the same time. With the advent of new molecular genetic and imaging tools, an understanding of the different ways by which a cell may endocytose cargo is increasing by leaps and bounds. In this review we explore pathways of endocytosis that occur in the absence of clathrin. These are referred to as clathrin-independent endocytosis (CIE). Here we primarily focus on those pathways that function at the small scale in which some have distinct coats (caveolae) and others function in the absence of specific coated intermediates. We follow the trafficking itineraries of the material endocytosed by these pathways and finally discuss the functional roles that these pathways play in cell and tissue physiology. It is likely that these pathways will play key roles in the regulation of plasma membrane area and tension and also control the availability of membrane during cell migration.
Collapse
Affiliation(s)
- Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, and Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, Queensland 4072, Brisbane, Australia
| | - Julie G Donaldson
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Zhang W, Liu J, Zhang Q, Li X, Yu S, Yang X, Kong J, Pan W. Enhanced cellular uptake and anti-proliferating effect of chitosan hydrochlorides modified genistein loaded NLC on human lens epithelial cells. Int J Pharm 2014; 471:118-26. [PMID: 24858387 DOI: 10.1016/j.ijpharm.2014.05.030] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 04/20/2014] [Accepted: 05/18/2014] [Indexed: 12/18/2022]
Abstract
This study was attempted to increase the cellular uptake of developed genistein loaded nanostructured lipid carriers (NLC) into human lens epithelial (HLE) cells by chitosan hydrochlorides coatings when applied in post lens capsule (PCO) treatment, and to provide further understanding of the uptake and anti-proliferation mechanisms inside. NLCs were produced using melt-emulsification method and were subsequently coated with chitosan hydrochlorides by adsorption. The uptake of various particle sizes were evaluated and visualized by confocal laser scanning microscopy (CLSM), showing a size-dependent manner. The uptake of NLC was proved to be endocytosed in an energy dependent and clathrin-mediated endocytosis to HLE cells by the decrease in uptake at lower temperature, when pre-saturated by blank NLC and in the presence of NaN3 and sucrose. CH coating improved the uptake percentage of NLC irrespective of the particle size, without influencing the uptake mechanism. Cell apoptosis was tested using PI and Annexin V-FITC/PI staining, followed by flow cytometer analysis. Higher anti-proliferation effect was observed for CH-NLC in inhibiting the growth of HLE cells by causing more apoptosis. Results above indicate that GEN-NLC surface modified by chitosan hydrochlorides could enhance the trans-cellular performance and anti-proliferating effect as PCO therapy.
Collapse
Affiliation(s)
- Wenji Zhang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jinlu Liu
- Department of ophthalmology, Affiliated Fourth Hospital of China Medical University, Shenyang 110005, China
| | - Qi Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xuedong Li
- Department of ophthalmology, Affiliated Fourth Hospital of China Medical University, Shenyang 110005, China
| | - Shihui Yu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xinggang Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jun Kong
- Department of ophthalmology, Affiliated Fourth Hospital of China Medical University, Shenyang 110005, China
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
15
|
Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions. FEMS Microbiol Rev 2013; 38:326-44. [PMID: 24236638 DOI: 10.1111/1574-6976.12053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/30/2022] Open
Abstract
Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways, and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
16
|
Wang J, Du Y, Zhang H, Zhou C, Qi Z, Zheng X, Wang P, Zhang Z. The actin-regulating kinase homologue MoArk1 plays a pleiotropic function in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2013; 14:470-82. [PMID: 23384308 PMCID: PMC3642230 DOI: 10.1111/mpp.12020] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Endocytosis is an essential cellular process in eukaryotic cells that involves concordant functions of clathrin and adaptor proteins, various protein and lipid kinases, phosphatases and the actin cytoskeleton. In Saccharomyces cerevisiae, Ark1p is a member of the serine/threonine protein kinase (SPK) family that affects profoundly the organization of the cortical actin cytoskeleton. To study the function of MoArk1, an Ark1p homologue identified in Magnaporthe oryzae, we disrupted the MoARK1 gene and characterized the ΔMoark1 mutant strain. The ΔMoark1 mutant exhibited various defects ranging from mycelial growth and conidial formation to appressorium-mediated host infection. The ΔMoark1 mutant also exhibited decreased appressorium turgor pressure and attenuated virulence on rice and barley. In addition, the ΔMoark1 mutant displayed defects in endocytosis and formation of the Spitzenkörper, and was hyposensitive to exogenous oxidative stress. Moreover, a MoArk1-green fluorescent protein (MoArk1-GFP) fusion protein showed an actin-like localization pattern by localizing to the apical regions of hyphae. This pattern of localization appeared to be regulated by the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins MoSec22 and MoVam7. Finally, detailed analysis revealed that the proline-rich region within the MoArk1 serine/threonine kinase (S_TKc) domain was critical for endocytosis, subcellular localization and pathogenicity. These results collectively suggest that MoArk1 exhibits conserved functions in endocytosis and actin cytoskeleton organization, which may underlie growth, cell wall integrity and virulence of the fungus.
Collapse
Affiliation(s)
- Jiamei Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Nanotechnology has the potential to produce a variety of new materials in the coming years, as a result of the design of novel nanoparticles with new physicochemical characteristics. However, their potential to adversely affect the environment and human health must be addressed. The toxicity of polystyrene latex (PSL) nanoparticles with various functional groups toward Escherichia coli KP7600 strain was investigated using the colony count method, and confocal microscopy observations. It was found that the positively charged PSL nanoparticles led to the death of the bacterial cells. Confocal observations of the bacterial cells after 1 h of exposure to the amine-modified, positively-charged PSL nanoparticles in an aqueous NaCl solution showed that the surfaces of the dead cells were almost entirely covered with the nanoparticles. No uptake of the nanoparticles into the bacterial cells was observed, regardless of the cell viability. It is likely that the adhesion of the positively charged nanoparticles onto the surface of the bacterial cells (due to the electrostatic attractive force) caused a decrease in the fluidity of the cell membrane, and the inhibition of metabolism through the cell membrane led to the death of the bacterial cells.
Collapse
|
18
|
Matsuo K, Higuchi Y, Kikuma T, Arioka M, Kitamoto K. Functional analysis of Abp1p-interacting proteins involved in endocytosis of the MCC component in Aspergillus oryzae. Fungal Genet Biol 2013; 56:125-34. [PMID: 23597630 DOI: 10.1016/j.fgb.2013.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/15/2022]
Abstract
We have investigated the functions of three endocytosis-related proteins in the filamentous fungus Aspergillus oryzae. Yeast two-hybrid screening using the endocytic marker protein AoAbp1 (A.oryzae homolog of Saccharomyces cerevisiae Abp1p) as a bait identified four interacting proteins named Aip (AoAbp1 interacting proteins). In mature hyphae, EGFP (enhanced green fluorescent protein) fused to Aips colocalized with AoAbp1 at the hyphal tip region and the plasma membrane, suggesting that Aips function in endocytosis. aipA is a putative AAA ATPase and its function has been dissected (Higuchi et al., 2011). aipB, the homolog of A. nidulans myoA, encodes an essential class I myosin and its conditional mutant showed a germination defect. aipC and aipD do not contain any recognizable domains except some proline-rich regions which may interact with two SH3 (Src homology 3) domains of AoAbp1. Neither aipC nor aipD disruptants showed any defects in their growth, but the aipC disruptant formed less conidia compared with the control strain. In addition, the aipC disruptant was resistant to the triazole antifungal drugs that inhibit ergosterol biosynthesis. Although no aip disruptants showed any defects in the uptake of the fluorescent dye FM4-64, the endocytosis of the arginine permease AoCan1, one of the MCC (membrane compartment of Can1p) components, was delayed in both aipC and aipD disruptants. In A. oryzae, AoCan1 localized mainly at the plasma membrane in the basal region of hyphae, suggesting that different endocytic mechanisms exist in apical and basal regions of highly polarized cells.
Collapse
Affiliation(s)
- Kento Matsuo
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
19
|
Patel FB, Soto MC. WAVE/SCAR promotes endocytosis and early endosome morphology in polarized C. elegans epithelia. Dev Biol 2013; 377:319-32. [PMID: 23510716 DOI: 10.1016/j.ydbio.2013.03.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 12/20/2022]
Abstract
Cells can use the force of actin polymerization to drive intracellular transport, but the role of actin in endocytosis is not clear. Studies in single-celled yeast demonstrate the essential role of the branched actin nucleator, Arp2/3, and its activating nucleation promoting factors (NPFs) in the process of invagination from the cell surface through endocytosis. However, some mammalian studies have disputed the need for F-actin and Arp2/3 in Clathrin-Mediated Endocytosis (CME) in multicellular organisms. We investigate the role of Arp2/3 during endocytosis in Caenorhabditis elegans, a multicellular organism with polarized epithelia. Arp2/3 and its NPF, WAVE/SCAR, are essential for C. elegans embryonic morphogenesis. We show that WAVE/SCAR and Arp2/3 regulate endocytosis and early endosome morphology in diverse tissues of C. elegans. Depletion of WAVE/SCAR or Arp2/3, but not of the NPF Wasp, severely disrupts the distribution of molecules proposed to be internalized via CME, and alters the subcellular enrichment of the early endosome regulator RAB-5. Loss of WAVE/SCAR or of the GEFs that regulate RAB-5 results in similar defects in endocytosis in the intestine and coelomocyte cells. This study in a multicellular organism supports an essential role for branched actin regulators in endocytosis, and identifies WAVE/SCAR as a key NPF that promotes Arp2/3 endocytic function in C. elegans.
Collapse
Affiliation(s)
- Falshruti B Patel
- Department of Pathology and Laboratory Medicine, UMDNJ--Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | |
Collapse
|
20
|
Higuchi Y, Arioka M, Kitamoto K. Endocytic recycling at the tip region in the filamentous fungus Aspergillus oryzae. Commun Integr Biol 2013; 2:327-8. [PMID: 19721880 DOI: 10.4161/cib.2.4.8385] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 03/06/2009] [Indexed: 11/19/2022] Open
Abstract
Recent live cell imaging analyzing the components required for endocytosis has elucidated that endocytosis actively occurs at the hyphal tip region in filamentous fungi. To examine further the physiological roles of endocytosis we investigated a conditional mutant of endocytosis in Aspergillus oryzae. Endocytosis-deficient hyphae displayed retarded apical growth, abnormal hyphal morphology, mislocalization of a vesicle- SNARE, which is thought to undergo endocytic recycling to the tip region, and aberrant accumulation of cell wall components at large invaginated structures. These results suggest that endocytosis is crucial for apical growth and for recycling components, which should be re-transported to the tip region. In this report, we discuss the endocytic recycling pathway and present its possible mechanism in filamentous fungi.
Collapse
Affiliation(s)
- Yujiro Higuchi
- Department of Biotechnology; The University of Tokyo; Bunkyo-ku, Tokyo Japan
| | | | | |
Collapse
|
21
|
Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol 2012; 2:140. [PMID: 23087902 PMCID: PMC3467458 DOI: 10.3389/fonc.2012.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023] Open
Abstract
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
22
|
Reiter W, Anrather D, Dohnal I, Pichler P, Veis J, Grøtli M, Posas F, Ammerer G. Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins. Proteomics 2012; 12:3030-43. [PMID: 22890988 DOI: 10.1002/pmic.201200185] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/17/2012] [Accepted: 07/25/2012] [Indexed: 11/07/2022]
Abstract
Global phosphoproteomic studies based on MS have generated qualitative and quantitative data describing protein phosphorylation events in various biological systems. Since high-throughput data for protein modifications are inherently incomplete, we developed a strategy to extend and validate such primary datasets. We selected interesting protein candidates from a global screen in yeast and employed a modified histidine biotin tag that allows tandem affinity purifications of our targets under denaturing conditions. Products in question can be digested directly from affinity resins and phosphopeptides can be further enriched via TiO(2) before MS analysis. Our robust protocol can be amended for SILAC as well as iTRAQ quantifications or label-free approaches based on selective reaction monitoring, allowing completion of the phosphorylation pattern in a first step, followed by a detailed analysis of the phosphorylation kinetics. We exemplify the value of such a strategy by an in-depth analysis of Pan1, a highly phosphorylated factor involved in early steps of endocytosis. The study of Pan1 under osmotic stress conditions in different mutant backgrounds allowed us to differentiate between mitogen-activated protein kinase Hog1 driven and Hog1 independent stress responses.
Collapse
Affiliation(s)
- Wolfgang Reiter
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Voordeckers K, De Maeyer D, van der Zande E, Vinces MD, Meert W, Cloots L, Ryan O, Marchal K, Verstrepen KJ. Identification of a complex genetic network underlying Saccharomyces cerevisiae colony morphology. Mol Microbiol 2012; 86:225-39. [PMID: 22882838 PMCID: PMC3470922 DOI: 10.1111/j.1365-2958.2012.08192.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/08/2023]
Abstract
When grown on solid substrates, different microorganisms often form colonies with very specific morphologies. Whereas the pioneers of microbiology often used colony morphology to discriminate between species and strains, the phenomenon has not received much attention recently. In this study, we use a genome-wide assay in the model yeast Saccharomyces cerevisiae to identify all genes that affect colony morphology. We show that several major signalling cascades, including the MAPK, TORC, SNF1 and RIM101 pathways play a role, indicating that morphological changes are a reaction to changing environments. Other genes that affect colony morphology are involved in protein sorting and epigenetic regulation. Interestingly, the screen reveals only few genes that are likely to play a direct role in establishing colony morphology, with one notable example being FLO11, a gene encoding a cell-surface adhesin that has already been implicated in colony morphology, biofilm formation, and invasive and pseudohyphal growth. Using a series of modified promoters for fine-tuning FLO11 expression, we confirm the central role of Flo11 and show that differences in FLO11 expression result in distinct colony morphologies. Together, our results provide a first comprehensive look at the complex genetic network that underlies the diversity in the morphologies of yeast colonies.
Collapse
Affiliation(s)
- Karin Voordeckers
- Laboratory for Systems Biology, VIB, Bio-Incubator, Gaston Geenslaan 1, B-3001, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Henry A, Hislop J, Grove J, Thorn K, Marsh M, von Zastrow M. Regulation of endocytic clathrin dynamics by cargo ubiquitination. Dev Cell 2012; 23:519-32. [PMID: 22940114 PMCID: PMC3470869 DOI: 10.1016/j.devcel.2012.08.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/21/2012] [Accepted: 08/04/2012] [Indexed: 12/21/2022]
Abstract
VIDEO ABSTRACT Some endocytic cargoes control clathrin-coated pit (CCP) maturation, but it is not known how such regulation is communicated. We found that μ-opioid neuropeptide receptors signal to their enclosing CCPs by ubiquitination. Nonubiquitinated receptors delay CCPs at an intermediate stage of maturation, after clathrin lattice assembly is complete but before membrane scission. Receptor ubiquitination relieves this inhibition, effectively triggering CCP scission and producing a receptor-containing endocytic vesicle. The ubiquitin modification that conveys this endocytosis-promoting signal is added to the receptor's first cytoplasmic loop, catalyzed by the Smurf2 ubiquitin ligase, and coordinated with activation-dependent receptor phosphorylation and clustering through Smurf2 recruitment by the endocytic adaptor beta-arrestin. Epsin1 detects the signal at the CCP and is required for ubiquitin-promoted scission. This cargo-to-coat communication system mediates a biochemical checkpoint that ensures appropriate receptor ubiquitination for later trafficking, and it controls specific receptor loading into CCPs by sensing when a sufficient quorum is reached.
Collapse
Affiliation(s)
- Anastasia G. Henry
- Program in Cell Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James N. Hislop
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joe Grove
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Kurt Thorn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Mark Marsh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Mark von Zastrow
- Program in Cell Biology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
25
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
26
|
Muñoz A, Marcos JF, Read ND. Concentration-dependent mechanisms of cell penetration and killing by the de novo designed antifungal hexapeptide PAF26. Mol Microbiol 2012; 85:89-106. [DOI: 10.1111/j.1365-2958.2012.08091.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
27
|
Upadhyay RD, Kumar AV, Ganeshan M, Balasinor NH. Tubulobulbar complex: cytoskeletal remodeling to release spermatozoa. Reprod Biol Endocrinol 2012; 10:27. [PMID: 22510523 PMCID: PMC3442992 DOI: 10.1186/1477-7827-10-27] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/30/2012] [Indexed: 11/15/2022] Open
Abstract
Tubulobulbar complexes (TBCs) are actin-based structures that help establish close contact between Sertoli-Sertoli cells or Sertoli-mature germ cells (spermatids) in the seminiferous tubules of the testes. They are actin-rich push-through devices that eliminate excess spermatid cytoplasm and prepare mature spermatids for release into the tubular lumen. Just prior to spermiation, the elongated spermatid interacts with the Sertoli cell via an extensive structure comprising various adhesion molecules called the apical ectoplasmic specialization which is partially replaced by the apical TBC, on the concave surface of the spermatid head. The sperm release process involves extensive restructuring, namely the disassembly and reassembly of junctions at the Sertoli-spermatid interface in the seminiferous epithelium. Based on the presence of different classes of molecules in the TBCs or the defects observed in the absence of TBCs, the main functions attributed to TBCs are elimination of excess spermatid cytoplasm, endocytosis and recycling of junctional molecules, shaping of the spermatid acrosome, and forming transient anchoring devices for mature spermatids before they are released. This review summarizes the recent findings that focus on the role of TBCs in cell cytoskeleton restructuring during sperm release in the testes and the molecular mechanism involved.
Collapse
Affiliation(s)
- Rahul D Upadhyay
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| | - Anita V Kumar
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| | - Malti Ganeshan
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| | - Nafisa H Balasinor
- Department of Neuroendocrinology, National Institute for Research in Reproductive Health, J.M.Street, Parel, Mumbai, 400012, India
| |
Collapse
|
28
|
Stradalova V, Blazikova M, Grossmann G, Opekarová M, Tanner W, Malinsky J. Distribution of cortical endoplasmic reticulum determines positioning of endocytic events in yeast plasma membrane. PLoS One 2012; 7:e35132. [PMID: 22496901 PMCID: PMC3322162 DOI: 10.1371/journal.pone.0035132] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 03/10/2012] [Indexed: 11/18/2022] Open
Abstract
In many eukaryotes, a significant part of the plasma membrane is closely associated with the dynamic meshwork of cortical endoplasmic reticulum (cortical ER). We mapped temporal variations in the local coverage of the yeast plasma membrane with cortical ER pattern and identified micron-sized plasma membrane domains clearly different in cortical ER persistence. We show that clathrin-mediated endocytosis is initiated outside the cortical ER-covered plasma membrane zones. These cortical ER-covered zones are highly dynamic but do not overlap with the immobile and also endocytosis-inactive membrane compartment of Can1 (MCC) and the subjacent eisosomes. The eisosomal component Pil1 is shown to regulate the distribution of cortical ER and thus the accessibility of the plasma membrane for endocytosis.
Collapse
Affiliation(s)
- Vendula Stradalova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Blazikova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Guido Grossmann
- Department for Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Miroslava Opekarová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Widmar Tanner
- Institute of Cell Biology and Plant Physiology, University of Regensburg, Regensburg, Germany
| | - Jan Malinsky
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
29
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Casolari JM, Thompson MA, Salzman J, Champion LM, Moerner WE, Brown PO. Widespread mRNA association with cytoskeletal motor proteins and identification and dynamics of myosin-associated mRNAs in S. cerevisiae. PLoS One 2012; 7:e31912. [PMID: 22359641 PMCID: PMC3281097 DOI: 10.1371/journal.pone.0031912] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/15/2012] [Indexed: 01/08/2023] Open
Abstract
Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe here a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches.
Collapse
Affiliation(s)
- Jason M. Casolari
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Michael A. Thompson
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Statistics, Stanford University, Stanford, California, United States of America
| | - Lowry M. Champion
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
31
|
Klann M, Koeppl H, Reuss M. Spatial modeling of vesicle transport and the cytoskeleton: the challenge of hitting the right road. PLoS One 2012; 7:e29645. [PMID: 22253752 PMCID: PMC3257240 DOI: 10.1371/journal.pone.0029645] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 12/02/2011] [Indexed: 01/15/2023] Open
Abstract
The membrane trafficking machinery provides a transport and sorting system for many cellular proteins. We propose a mechanistic agent-based computer simulation to integrate and test the hypothesis of vesicle transport embedded into a detailed model cell. The method tracks both the number and location of the vesicles. Thus both the stochastic properties due to the low numbers and the spatial aspects are preserved. The underlying molecular interactions that control the vesicle actions are included in a multi-scale manner based on the model of Heinrich and Rapoport (2005). By adding motor proteins we can improve the recycling process of SNAREs and model cell polarization. Our model also predicts that coat molecules should have a high turnover at the compartment membranes, while the turnover of motor proteins has to be slow. The modular structure of the underlying model keeps it tractable despite the overall complexity of the vesicle system. We apply our model to receptor-mediated endocytosis and show how a polarized cytoskeleton structure leads to polarized distributions in the plasma membrane both of SNAREs and the Ste2p receptor in yeast. In addition, we can couple signal transduction and membrane trafficking steps in one simulation, which enables analyzing the effect of receptor-mediated endocytosis on signaling.
Collapse
Affiliation(s)
- Michael Klann
- Automatic Control Laboratory, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
32
|
Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, Howie RL, O'Dell A, McNally JG, Liebman SW, Chernoff YO, Wilkinson KD. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 2012; 43:242-52. [PMID: 21777813 DOI: 10.1016/j.molcel.2011.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/23/2011] [Accepted: 07/05/2011] [Indexed: 02/05/2023]
Abstract
Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Miyamoto A, Tokumoto H, Konishi Y, Nomura T. Ecotoxicity of PSL Nanoparticles to Escherichia Coli. ACTA ACUST UNITED AC 2012. [DOI: 10.4164/sptj.49.362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Suzuki R, Toshima JY, Toshima J. Regulation of clathrin coat assembly by Eps15 homology domain-mediated interactions during endocytosis. Mol Biol Cell 2011; 23:687-700. [PMID: 22190739 PMCID: PMC3279396 DOI: 10.1091/mbc.e11-04-0380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
ETOC: The EH domain is a highly conserved protein–protein interaction domain involved in endocytosis. The EH domains of yeast endocytic proteins, Pan1p, End3p, and Ede1p, have a redundant function and are required for efficient recruitment of several endocytic proteins to sites of endocytosis in order to facilitate clathrin coat assembly. Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein–protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain–containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.
Collapse
Affiliation(s)
- Ryohei Suzuki
- Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | |
Collapse
|
35
|
Gomes SA, Vieira CS, Almeida DB, Santos-Mallet JR, Menna-Barreto RFS, Cesar CL, Feder D. CdTe and CdSe quantum dots cytotoxicity: a comparative study on microorganisms. SENSORS 2011; 11:11664-78. [PMID: 22247686 PMCID: PMC3252003 DOI: 10.3390/s111211664] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 11/26/2011] [Accepted: 12/09/2011] [Indexed: 11/16/2022]
Abstract
Quantum dots (QDs) are colloidal semiconductor nanocrystals of a few nanometers in diameter, being their size and shape controlled during the synthesis. They are synthesized from atoms of group II–VI or III–V of the periodic table, such as cadmium telluride (CdTe) or cadmium selenium (CdSe) forming nanoparticles with fluorescent characteristics superior to current fluorophores. The excellent optical characteristics of quantum dots make them applied widely in the field of life sciences. Cellular uptake of QDs, location and translocation as well as any biological consequence, such as cytotoxicity, stimulated a lot of scientific research in this area. Several studies pointed to the cytotoxic effect against micoorganisms. In this mini-review, we overviewed the synthesis and optical properties of QDs, and its advantages and bioapplications in the studies about microorganisms such as protozoa, bacteria, fungi and virus.
Collapse
Affiliation(s)
- Suzete A.O. Gomes
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense—UFF, Niterói, RJ, CEP: 24210-130, Brazil; E-Mail: (S.A.O.G.)
| | - Cecilia Stahl Vieira
- Laboratório de Transmissores de Leishmanioses, Setor de Entomologia Médica e Forense, IOC-FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil; E-Mails: (C.S.V.); (J.R.S.-M.)
| | - Diogo B. Almeida
- Laboratório de Aplicações Biomédicas de Lasers, Departamento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, CEP: 13083-970, Brazil; E-Mails: (D.B.A.); (C.L.C.)
| | - Jacenir R. Santos-Mallet
- Laboratório de Transmissores de Leishmanioses, Setor de Entomologia Médica e Forense, IOC-FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil; E-Mails: (C.S.V.); (J.R.S.-M.)
| | - Rubem F. S. Menna-Barreto
- Laboratório de Biologia Celular, IOC-FIOCRUZ, Rio de Janeiro, RJ, CEP: 21040-360, Brazil; E-Mail: (R.F.S.M.-B.)
| | - Carlos L. Cesar
- Laboratório de Aplicações Biomédicas de Lasers, Departamento de Eletrônica Quântica, Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP, CEP: 13083-970, Brazil; E-Mails: (D.B.A.); (C.L.C.)
| | - Denise Feder
- Laboratório de Biologia de Insetos, GBG, Universidade Federal Fluminense—UFF, Niterói, RJ, CEP: 24210-130, Brazil; E-Mail: (S.A.O.G.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +55-21-2629-2285
| |
Collapse
|
36
|
Kaminska J, Spiess M, Stawiecka-Mirota M, Monkaityte R, Haguenauer-Tsapis R, Urban-Grimal D, Winsor B, Zoladek T. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro. Eur J Cell Biol 2011; 90:1016-28. [DOI: 10.1016/j.ejcb.2011.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 08/11/2011] [Accepted: 08/17/2011] [Indexed: 10/16/2022] Open
|
37
|
Alibhoy AA, Chiang HL. Vacuole import and degradation pathway: Insights into a specialized autophagy pathway. World J Biol Chem 2011; 2:239-45. [PMID: 22125667 PMCID: PMC3224871 DOI: 10.4331/wjbc.v2.i11.239] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/30/2011] [Accepted: 11/06/2011] [Indexed: 02/05/2023] Open
Abstract
Glucose deprivation induces the synthesis of pivotal gluconeogenic enzymes such as fructose-1,6-bisphosphatase, malate dehydrogenase, phosphoenolpyruvate carboxykinase and isocitrate lyase in Saccharomyces cerevisiae. However, following glucose replenishment, these gluconeogenic enzymes are inactivated and degraded. Studies have characterized the mechanisms by which these enzymes are inactivated in response to glucose. The site of degradation of these proteins has also been ascertained to be dependent on the duration of starvation. Glucose replenishment of short-term starved cells results in these proteins being degraded in the proteasome. In contrast, addition of glucose to cells starved for a prolonged period results in these proteins being degraded in the vacuole. In the vacuole dependent pathway, these proteins are sequestered in specialized vesicles termed vacuole import and degradation (Vid). These vesicles converge with the endocytic pathway and deliver their cargo to the vacuole for degradation. Recent studies have identified that internalization, as mediated by actin polymerization, is essential for delivery of cargo proteins to the vacuole for degradation. In addition, components of the target of rapamycin complex 1 interact with cargo proteins during glucose starvation. Furthermore, Tor1p dissociates from cargo proteins following glucose replenishment. Future studies will be needed to elaborate on the importance of internalization at the plasma membrane and the subsequent import of cargo proteins into Vid vesicles in the vacuole dependent degradation pathway.
Collapse
Affiliation(s)
- Abbas A Alibhoy
- Abbas A Alibhoy, Hui-Ling Chiang, Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA 17033, United States
| | | |
Collapse
|
38
|
Kashiwazaki J, Yamasaki Y, Itadani A, Teraguchi E, Maeda Y, Shimoda C, Nakamura T. Endocytosis is essential for dynamic translocation of a syntaxin 1 orthologue during fission yeast meiosis. Mol Biol Cell 2011; 22:3658-70. [PMID: 21832151 PMCID: PMC3183020 DOI: 10.1091/mbc.e11-03-0255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fission yeast sporulation seems to accompany a dynamic alteration of membrane traffic pathways in which the destination of secretory vesicles changes from the plasma membrane to the developing spore membrane. Evidence shows that endocytosis is responsible for this alteration in traffic pathways via the relocalization of syntaxin 1. Syntaxin is a component of the target soluble N-ethylmaleimide–sensitive factor attachment protein receptor complex, which is responsible for fusion of membrane vesicles at the target membrane. The fission yeast syntaxin 1 orthologue Psy1 is essential for both vegetative growth and spore formation. During meiosis, Psy1 disappears from the plasma membrane (PM) and dramatically relocalizes on the nascent forespore membrane, which becomes the PM of the spore. Here we report the molecular details and biological significance of Psy1 relocalization. We find that, immediately after meiosis I, Psy1 is selectively internalized by endocytosis. In addition, a meiosis-specific signal induced by the transcription factor Mei4 seems to trigger this internalization. The internalization of many PM proteins is facilitated coincident with the initiation of meiosis, whereas Pma1, a P-type ATPase, persists on the PM even during the progression of meiosis II. Ergosterol on the PM is also important for the internalization of PM proteins in general during meiosis. We consider that during meiosis in Schizosaccharomyces pombe cells, the characteristics of endocytosis change, thereby facilitating internalization of Psy1 and accomplishing sporulation.
Collapse
Affiliation(s)
- Jun Kashiwazaki
- Department of Biology, Graduate School of Science, Osaka City University, Osaka 558-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Sammons MR, James ML, Clayton JE, Sladewski TE, Sirotkin V, Lord M. A calmodulin-related light chain from fission yeast that functions with myosin-I and PI 4-kinase. J Cell Sci 2011; 124:2466-77. [PMID: 21693583 DOI: 10.1242/jcs.067850] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fission yeast myosin-I (Myo1p) not only associates with calmodulin, but also employs a second light chain called Cam2p. cam2Δ cells exhibit defects in cell polarity and growth consistent with a loss of Myo1p function. Loss of Cam2p leads to a reduction in Myo1p levels at endocytic patches and a 50% drop in the rates of Myo1p-driven actin filament motility. Thus, Cam2p plays a significant role in Myo1p function. However, further studies indicated the existence of an additional Cam2p-binding partner. Cam2p was still present at cortical patches in myo1Δ cells (or in myo1-IQ2 mutants, which lack an intact Cam2p-binding motif), whereas a cam2 null (cam2Δ) suppressed cytokinesis defects of an essential light chain (ELC) mutant known to be impaired in binding to PI 4-kinase (Pik1p). Binding studies revealed that Cam2p and the ELC compete for Pik1p. Cortical localization of Cam2p in the myo1Δ background relied on its association with Pik1p, whereas overexpression studies indicated that Cam2p, in turn, contributes to Pik1p function. The fact that the Myo1p-associated defects of a cam2Δ mutant are more potent than those of a myo1-IQ2 mutant suggests that myosin light chains can contribute to actomyosin function both directly and indirectly (via phospholipid synthesis at sites of polarized growth).
Collapse
Affiliation(s)
- Matthew R Sammons
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Skau CT, Courson DS, Bestul AJ, Winkelman JD, Rock RS, Sirotkin V, Kovar DR. Actin filament bundling by fimbrin is important for endocytosis, cytokinesis, and polarization in fission yeast. J Biol Chem 2011; 286:26964-77. [PMID: 21642440 DOI: 10.1074/jbc.m111.239004] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Through the coordinated action of diverse actin-binding proteins, cells simultaneously assemble actin filaments with distinct architectures and dynamics to drive different processes. Actin filament cross-linking proteins organize filaments into higher order networks, although the requirement of cross-linking activity in cells has largely been assumed rather than directly tested. Fission yeast Schizosaccharomyces pombe assembles actin into three discrete structures: endocytic actin patches, polarizing actin cables, and the cytokinetic contractile ring. The fission yeast filament cross-linker fimbrin Fim1 primarily localizes to Arp2/3 complex-nucleated branched filaments of the actin patch and by a lesser amount to bundles of linear antiparallel filaments in the contractile ring. It is unclear whether Fim1 associates with bundles of parallel filaments in actin cables. We previously discovered that a principal role of Fim1 is to control localization of tropomyosin Cdc8, thereby facilitating cofilin-mediated filament turnover. Therefore, we hypothesized that the bundling ability of Fim1 is dispensable for actin patches but is important for the contractile ring and possibly actin cables. By directly visualizing actin filament assembly using total internal reflection fluorescence microscopy, we determined that Fim1 bundles filaments in both parallel and antiparallel orientations and efficiently bundles Arp2/3 complex-branched filaments in the absence but not the presence of actin capping protein. Examination of cells exclusively expressing a truncated version of Fim1 that can bind but not bundle actin filaments revealed that bundling activity of Fim1 is in fact important for all three actin structures. Therefore, fimbrin Fim1 has diverse roles as both a filament "gatekeeper" and as a filament cross-linker.
Collapse
Affiliation(s)
- Colleen T Skau
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Shaw BD, Chung DW, Wang CL, Quintanilla LA, Upadhyay S. A role for endocytic recycling in hyphal growth. Fungal Biol 2011; 115:541-6. [PMID: 21640317 DOI: 10.1016/j.funbio.2011.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 11/24/2022]
Abstract
Actin plays multiple complex roles in cell growth and cell shape. Recently it was demonstrated that actin patches, which represent sites of endocytosis, are present in a sub-apical collar at growing tips of hyphae and germ tubes of filamentous fungi. It is now clear that this zone of endocytosis is necessary for filamentous growth to proceed. In this review evidence for the role of these endocytic sites in hyphal growth is examined. One possibility if that the role of the sub-apical collar is associated with endocytic recycling of polarized material at the hyphal tip. The 'Apical Recycling Model' accounts for this role and predicts the need for a balance between endocytosis and exocytosis at the hyphal tip to control growth and cell shape. Other cell differentiation events, including appressorium formation and Aspergillus conidiophore development may also be explained by this model.
Collapse
Affiliation(s)
- Brian D Shaw
- Program for the Biology of Filamentous Fungi, Department of Plant Pathology and Microbiology, 2132 TAMU, Texas A&M University, College Station, TX 2132, USA.
| | | | | | | | | |
Collapse
|
42
|
Wang P, Shen G. The endocytic adaptor proteins of pathogenic fungi: charting new and familiar pathways. Med Mycol 2011; 49:449-57. [PMID: 21254965 DOI: 10.3109/13693786.2011.553246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intracellular transport is an essential biological process that is highly conserved throughout the eukaryotic organisms. In fungi, adaptor proteins implicated in the endocytic cycle of endocytosis and exocytosis were found to be important for growth, differentiation, and/or virulence. For example, Saccharomyces cerevisiae Pan1 is an endocytic protein that regulates membrane trafficking, the actin cytoskeleton, and signaling. In Cryptococcus neoformans, a multi-modular endocytic protein, Cin1, was recently found to have pleiotropic functions in morphogenesis, endocytosis, exocytosis, and virulence. Interestingly, Cin1 is homologous to human intersectin ITSN1, but homologs of Cin1/ITSN1 were not found in ascomycetous S. cerevisiae and Candida albicans, or zygomycetous fungi. Moreover, an Eps15 protein homologous to S. cerevisiae Pan1/Ede1 and additional relevant protein homologs were identified in C. neoformans, suggesting the existence of either a distinct endocytic pathway mediated by Cin1 or pathways by either Cin1 or/and Pan1/Ede1 homologs. Whether and how the Cin1-mediated endocytic pathway represents a unique role in pathogenesis or reflects a redundancy of a transport apparatus remains an open and challenging question. This review discusses recent findings of endocytic adaptor proteins from pathogenic fungi and provides a perspective for novel endocytic machinery operating in C. neoformans. An understanding of intracellular trafficking mechanisms as they relate to pathogenesis will likely reveal the identity of novel antifungal targets.
Collapse
Affiliation(s)
- Ping Wang
- The Research Institute for Children, New Orleans, Louisiana, USA.
| | | |
Collapse
|
43
|
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 2010; 140:631-42. [PMID: 20211133 DOI: 10.1016/j.cell.2010.01.032] [Citation(s) in RCA: 352] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 11/17/2009] [Accepted: 01/15/2010] [Indexed: 12/18/2022]
Abstract
Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.
Collapse
Affiliation(s)
- Lillian K Fritz-Laylin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Endocytosis occurs at the cell surface and involves internalization of the plasma membrane (PM) along with its constituent membrane proteins and lipids. Endocytosis is involved in sampling of the extracellular milieu and also serves to regulate various processes initiated at the cell surface. These include nutrient uptake, signaling from cell-surface receptors, and many other processes essential for cell and tissue functioning in metazoans. It is also central to the maintenance of PM lipid and protein homeostasis. There are multiple means of internalization that operate concurrently, at the cell surface. With advancement in high-resolution visualization techniques, it is now possible to track multiple endocytic cargo at the same time, revealing a remarkable diversity of endocytic processes in a single cell. A combination of live cell imaging and efficient genetic manipulations has also aided in understanding the functional hierarchy of molecular players in these mechanisms of internalization. Here we provide an account of various endocytic routes, their mechanisms of operation and occurrence across phyla.
Collapse
|
45
|
Liu J, Sun Y, Oster GF, Drubin DG. Mechanochemical crosstalk during endocytic vesicle formation. Curr Opin Cell Biol 2010; 22:36-43. [PMID: 20022735 PMCID: PMC2822040 DOI: 10.1016/j.ceb.2009.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 11/20/2009] [Indexed: 12/13/2022]
Abstract
Membrane curvature has emerged as a key regulatory factor in endocytic vesicle formation. From a theoretical perspective, we summarize recent progress in understanding how membrane curvature and biochemical pathways are coupled and orchestrated during the coherent process of endocytic vesicle formation. We mainly focus on clathrin-mediated and actin-mediated endocytosis in yeast and in mammalian cells. We further speculate on how mechanochemical feedback could modulate other membrane-remodeling processes.
Collapse
Affiliation(s)
| | - Yidi Sun
- Department of Molecular and Cell Biology, UC-Berkeley
| | | | | |
Collapse
|
46
|
Brown CR, Dunton D, Chiang HL. The vacuole import and degradation pathway utilizes early steps of endocytosis and actin polymerization to deliver cargo proteins to the vacuole for degradation. J Biol Chem 2009; 285:1516-28. [PMID: 19892709 DOI: 10.1074/jbc.m109.028241] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
When glucose is added to yeast cells that are starved for 3 days, fructose-1,6-bisphosphatase (FBPase) and malate dehydrogenase 2 are degraded in the vacuole via the vacuole import and degradation (Vid) pathway. In this study, we examined the distribution of FBPase at the ultrastructural level. FBPase was observed in areas close to the plasma membrane and in cytoplasmic structures that are heterogeneous in size and density. We have isolated these intracellular structures that contain FBPase, the Vid vesicle marker Vid24p, and the endosomal marker Pep12p. They appeared irregular in size and shape. In yeast, actin polymerization plays an important role in early steps of endocytosis. Mutants that affect actin polymerization inhibited FBPase degradation, suggesting that actin polymerization is important for FBPase degradation. Both FBPase and malate dehydrogenase 2 were associated with actin patches. Vid vesicle proteins such as Vid24p or Sec28p were also at actin patches, although they dissociated from these structures at later time points. We propose that Vid24p and Sec28p are present at actin patches during glucose starvation. Cargo proteins arrive at these sites following the addition of glucose, and the endocytic vesicles then pinch off from the plasma membrane. Following the fusion of endosomes with the vacuole, cargo proteins are then degraded in the vacuole.
Collapse
Affiliation(s)
- C Randell Brown
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
47
|
Tonikian R, Xin X, Toret CP, Gfeller D, Landgraf C, Panni S, Paoluzi S, Castagnoli L, Currell B, Seshagiri S, Yu H, Winsor B, Vidal M, Gerstein MB, Bader GD, Volkmer R, Cesareni G, Drubin DG, Kim PM, Sidhu SS, Boone C. Bayesian modeling of the yeast SH3 domain interactome predicts spatiotemporal dynamics of endocytosis proteins. PLoS Biol 2009; 7:e1000218. [PMID: 19841731 PMCID: PMC2756588 DOI: 10.1371/journal.pbio.1000218] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 09/04/2009] [Indexed: 11/23/2022] Open
Abstract
A genome-scale specificity and interaction map for yeast SH3 domain-containing proteins reveal how family members show selective binding to target proteins and predicts the dynamic localization of new candidate endocytosis proteins. SH3 domains are peptide recognition modules that mediate the assembly of diverse biological complexes. We scanned billions of phage-displayed peptides to map the binding specificities of the SH3 domain family in the budding yeast, Saccharomyces cerevisiae. Although most of the SH3 domains fall into the canonical classes I and II, each domain utilizes distinct features of its cognate ligands to achieve binding selectivity. Furthermore, we uncovered several SH3 domains with specificity profiles that clearly deviate from the two canonical classes. In conjunction with phage display, we used yeast two-hybrid and peptide array screening to independently identify SH3 domain binding partners. The results from the three complementary techniques were integrated using a Bayesian algorithm to generate a high-confidence yeast SH3 domain interaction map. The interaction map was enriched for proteins involved in endocytosis, revealing a set of SH3-mediated interactions that underlie formation of protein complexes essential to this biological pathway. We used the SH3 domain interaction network to predict the dynamic localization of several previously uncharacterized endocytic proteins, and our analysis suggests a novel role for the SH3 domains of Lsb3p and Lsb4p as hubs that recruit and assemble several endocytic complexes. Significant diversity exists in protein structure and function, yet certain structural domains are used repeatedly across species to execute similar functions. The SH3 domain is one such common structural domain. It is found in signaling proteins and mediates protein–protein interactions by binding to short peptide sequences generally composed of proline. To investigate both the generality and selectivity of peptide binding by SH3 domains, we examined peptide specificity for almost all SH3 domains encoded within the proteome of the budding yeast, Saccharomyces cerevisiae, using a range of experimental methods. We found that although most of the intrinsic binding specificity for SH3 domains can be summarized by the two previously described canonical binding modes, each individual SH3 domain that we studied utilizes unique features of its cognate ligand to achieve binding selectivity. Moreover, some domains exhibit binding specificities that are distinct from the two canonical classes. We integrated peptide-SH3 domain binding data from three complementary screening techniques using a Bayesian statistical model to generate a protein–protein interaction network for the budding yeast SH3 domain family. This network was highly enriched in endocytosis proteins and their interactions. By examining these interactions in detail, we show that our SH3 domain network can be used to predict the temporal localization of several previously uncharacterized proteins to dynamic complexes that orchestrate the process of endocytosis.
Collapse
Affiliation(s)
- Raffi Tonikian
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Xiaofeng Xin
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Christopher P. Toret
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - David Gfeller
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Christiane Landgraf
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simona Panni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Cell Biology, University of Calabria, Rende, Italy
| | - Serena Paoluzi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Bridget Currell
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Somasekar Seshagiri
- Department of Molecular Biology, Genentech, South San Francisco, California, United States of America
| | - Haiyuan Yu
- Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barbara Winsor
- CNRS et Université de Strasbourg UMR7156, Génétique moléculaire, Génomique et Microbiologie, Strasbourg, France
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark B. Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Computer Science, Yale University, New Haven, Connecticut, United States of America
| | - Gary D. Bader
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Volkmer
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Gianni Cesareni
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Research Institute “Fondazione Santa Lucia”, Rome, Italy
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - David G. Drubin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Philip M. Kim
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Sachdev S. Sidhu
- Department of Protein Engineering, Genentech, South San Francisco, California, United States of America
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| | - Charles Boone
- Terrence Donnelly Center for Cellular and Biomolecular Research, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (RV); (GC); (DGD); (PMK); (SSS); (CB)
| |
Collapse
|
48
|
Lewis MW, Robalino IV, Keyhani NO. Uptake of the fluorescent probe FM4-64 by hyphae and haemolymph-derived in vivo hyphal bodies of the entomopathogenic fungus Beauveria bassiana. Microbiology (Reading) 2009; 155:3110-3120. [DOI: 10.1099/mic.0.029165-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The entomopathogenic fungus Beauveria bassiana is under intensive study as a pest biological control agent. B. bassiana produces several distinct single-cell types that include aerial conidia, in vitro blastospores and submerged conidia. Under appropriate nutrient conditions these cells can elaborate germ tubes that form hyphae, which in turn lead to the formation of a fungal mycelium. In addition, B. bassiana displays a dimorphic transition, producing in vivo specific yeast-like hyphal bodies during growth in the arthropod haemolymph. The amphiphilic styryl dye FM4-64 was used to investigate internalization and morphological features of in vitro and in vivo insect haemolymph-derived B. bassiana cells. In vitro blastospores and submerged conidia displayed a punctate pattern of internal labelling, whereas aerial conidia failed to internalize the dye under the conditions tested. FM4-64 was also taken up into both apical and subapical compartments of living hyphae in a time-dependent manner, with clearly observable vesicle labelling. Internalization, where occurring, was reversibly disrupted by lowering the temperature of the assay or by treatment with azide/fluoride and latrunculin A. Treatment with cytochalasin D and monensin also caused abnormal vesicle trafficking, although some staining of vesicles was noted. Fungal cells derived from infected Heliothis virescens haemolymph (in vivo cells) actively internalized FM4-64. The in vivo blastospores or hyphal bodies displayed bright membrane and internal vesicle staining, although diffuse staining of internal structures was also visible. These results suggest active uptake by different developmental stages of B. bassiana, including haemolymph-derived cells that can evade the insect immune system.
Collapse
Affiliation(s)
- Michael W. Lewis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Ines V. Robalino
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Nemat O. Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
49
|
A computationally guided protein-interaction screen uncovers coiled-coil interactions involved in vesicular trafficking. J Mol Biol 2009; 392:228-41. [PMID: 19591838 DOI: 10.1016/j.jmb.2009.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 06/15/2009] [Accepted: 07/02/2009] [Indexed: 11/21/2022]
Abstract
Mapping protein-protein interactions at a domain or motif level can provide structural annotation of the interactome. The alpha-helical coiled coil is among the most common protein-interaction motifs, and proteins predicted to contain coiled coils participate in diverse biological processes. Here, we introduce a combined computational/experimental screening strategy that we used to uncover coiled-coil interactions among proteins involved in vesicular trafficking in Saccharomyces cerevisiae. A number of coiled-coil complexes have already been identified and reported to play important roles in this important biological process. We identify additional examples of coiled coils that can form physical associations. The computational strategy used to prioritize coiled-coil candidates for testing dramatically improved the efficiency of discovery in a large experimental screen. As assessed by comprehensive yeast two-hybrid assays, computational prefiltering retained 90% of positive interacting pairs and eliminated >60% of negatives from a set of interaction candidates. The coiled-coil-mediated interaction network elucidated using the combined computational/experimental approach comprises 80 coiled-coil associations between 58 protein pairs, among which 21 protein interactions have not been previously reported in interaction databases and 26 interactions were previously known at the protein level but have now been localized to the coiled-coil motif. The coiled-coil-mediated interactions were specific rather than promiscuous, and many interactions could be recapitulated in a green fluorescent protein complementation assay. Our method provides an efficient route to discovering new coiled-coil interactions and uncovers a number of associations that may have functional significance for vesicular trafficking.
Collapse
|
50
|
Brown CR, Chiang HL. A selective autophagy pathway that degrades gluconeogenic enzymes during catabolite inactivation. Commun Integr Biol 2009; 2:177-83. [PMID: 19513275 PMCID: PMC2686377 DOI: 10.4161/cib.7711] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 11/19/2022] Open
Abstract
In Saccharomyces cerevisiae, glucose starvation induces key gluconeogenic enzymes such as fructose-1,6-bisphosphatase (FBPase), malate dehydrogenase (MDH2) and phosphoenolpyruvate carboxykinase, while glucose addition inactivates these enzymes. Significant progress has been made identifying mechanisms that mediate the "catabolite inactivation" of FBPase and MDH2. For example, the site of their degradation has been shown to change, depending on the duration of starvation. When glucose is added to short-termed starved cells, these proteins are degraded in the proteasome. However, when glucose is added to long-termed starved cells, they are degraded in the vacuole by a selective autophagy pathway. For the vacuole pathway, these proteins are first imported into novel vesicles called Vid (vacuole import and degradation) vesicles. Following import, Vid vesicles merge with the endocytic pathway. Future experiments will be directed at understanding the molecular mechanisms that regulate the switch from proteasomal to vacuolar degradation and determining the site of Vid vesicle biogenesis.
Collapse
Affiliation(s)
- C Randell Brown
- Department of Cellular and Molecular Physiology; Penn State College of Medicine; Hershey, Pennsylvania USA
| | | |
Collapse
|