1
|
Turvey GL, López de Alba E, Stewart E, Cook H, Alalti A, Gawne RT, Ainscough JFX, Mason AS, Coverley D. Epigenetic deprogramming by disruption of CIZ1-RNA nuclear assemblies in early-stage breast cancers. J Cell Biol 2025; 224:e202409123. [PMID: 40067149 PMCID: PMC11895699 DOI: 10.1083/jcb.202409123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/11/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
CIZ1 is part of the RNA-dependent supramolecular assemblies that form around the inactive X-chromosome (Xi) in female cells and smaller assemblies throughout the nucleus in both sexes. Here, we show that CIZ1 C-terminal anchor domain (AD) is elevated in human breast tumor transcriptomes, even at stage I. Elevation correlates with deprotection of chromatin and upregulation of lncRNA-containing gene clusters in ∼10 Mb regions enriched in cancer-associated genes. We modeled the effect of AD on endogenous CIZ1-Xi assemblies and observed dominant-negative interference with their reformation after mitosis, leading to abnormal assemblies similar to those in breast cancer cells, and depletion of H2AK119ub1, H3K27me3, and Xist. Consistent alterations in gene expression were evident across the genome, showing that AD-mediated interference has a destabilizing effect, likely by unscheduled exposure of underlying chromatin to modifying enzymes. The data argue for a dominant, potent, and rapid effect of CIZ1 AD that can deprogram gene expression patterns and which may predispose incipient tumors to epigenetic instability.
Collapse
Affiliation(s)
- Gabrielle L. Turvey
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Ernesto López de Alba
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
| | - Emma Stewart
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Heather Cook
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
| | - Ahmad Alalti
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
| | - Richard T. Gawne
- York Biomedical Research Institute, University of York, York, UK
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - Justin F.-X. Ainscough
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Andrew S. Mason
- York Biomedical Research Institute, University of York, York, UK
- Jack Birch Unit for Molecular Carcinogenesis, Department of Biology, University of York, York, UK
| | - Dawn Coverley
- Mammalian Cell Cycle Research Group, Department of Biology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
2
|
Sofi S, Coverley D. CIZ1 in Xist seeded assemblies at the inactive X chromosome. Front Cell Dev Biol 2023; 11:1296600. [PMID: 38155839 PMCID: PMC10753822 DOI: 10.3389/fcell.2023.1296600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023] Open
Abstract
There is growing evidence that X-chromosome inactivation is driven by phase-separated supramolecular assemblies. However, among the many proteins recruited to the inactive X chromosome by Xist long non-coding RNA, so far only a minority (CIZ1, CELF1, SPEN, TDP-43, MATR3, PTBP1, PCGF5) have been shown to form Xist-seeded protein assemblies, and of these most have not been analyzed in detail. With focus on CIZ1, here we describe 1) the contribution of intrinsically disordered regions in RNA-dependent protein assembly formation at the inactive X chromosome, and 2) enrichment, distribution, and function of proteins within Xist-seeded assemblies.
Collapse
Affiliation(s)
- Sajad Sofi
- Department of Biology, University of York, York, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
3
|
Kozlowski P. Thirty Years with ERH: An mRNA Splicing and Mitosis Factor Only or Rather a Novel Genome Integrity Protector? Cells 2023; 12:2449. [PMID: 37887293 PMCID: PMC10605862 DOI: 10.3390/cells12202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
ERH is a 100 to about 110 aa nuclear protein with unique primary and three-dimensional structures that are very conserved from simple eukaryotes to humans, albeit some species have lost its gene, with most higher fungi being a noteworthy example. Initially, studies on Drosophila melanogaster implied its function in pyrimidine metabolism. Subsequently, research on Xenopus laevis suggested that it acts as a transcriptional repressor. Finally, studies in humans pointed to a role in pre-mRNA splicing and in mitosis but further research, also in Caenorhabditis elegans and Schizosaccharomyces pombe, demonstrated its much broader activity, namely involvement in the biogenesis of mRNA, and miRNA, piRNA and some other ncRNAs, and in repressive heterochromatin formation. ERH interacts with numerous, mostly taxon-specific proteins, like Mmi1 and Mei2 in S. pombe, PID-3/PICS-1, TOST-1 and PID-1 in C. elegans, and DGCR8, CIZ1, PDIP46/SKAR and SAFB1/2 in humans. There are, however, some common themes in this wide range of processes and partners, such as: (a) ERH homodimerizes to form a scaffold for several complexes involved in the metabolism of nucleic acids, (b) all these RNAs are RNA polymerase II transcripts, (c) pre-mRNAs, whose splicing depends on ERH, are enriched in transcripts of DNA damage response and DNA metabolism genes, and (d) heterochromatin is formed to silence unwanted transcription, e.g., from repetitive elements. Thus, it seems that ERH has been adopted for various pathways that serve to maintain genome integrity.
Collapse
Affiliation(s)
- Piotr Kozlowski
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Dobbs OG, Wilson RHC, Newling K, Ainscough JFX, Coverley D. Epigenetic instability caused by absence of CIZ1 drives transformation during quiescence cycles. BMC Biol 2023; 21:175. [PMID: 37580709 PMCID: PMC10426085 DOI: 10.1186/s12915-023-01671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Cip1-interacting zinc finger protein 1 (CIZ1) forms RNA-dependent protein assemblies that stabilise epigenetic state, notable at the inactive X chromosome in females. CIZ1 has been linked with a range of human cancers and in mice genetic deletion of CIZ1 manifests as hyperproliferative lymphoid lineages in females. This suggests that its role in maintenance of epigenetic stability is linked with disease. RESULTS Here, we show that male and female CIZ1-null primary murine fibroblasts have reduced H4K20me1 and that this compromises nuclear condensation on entry to quiescence. Global transcriptional repression remains intact in condensation-deficient CIZ1-null cells; however, a subset of genes linked with chromatin condensation and homology-directed DNA repair are perturbed. Failure to condense is phenotypically mimicked by manipulation of the H4K20me1 methyltransferase, SET8, in WT cells and partially reverted in CIZ1-null cells upon re-expression of CIZ1. Crucially, during exit from quiescence, nuclear decondensation remains active, so that repeated entry and exit cycles give rise to expanded nuclei susceptible to mechanical stress, DNA damage checkpoint activation, and downstream emergence of transformed proliferative colonies. CONCLUSIONS Our results demonstrate a role for CIZ1 in chromatin condensation on entry to quiescence and explore the consequences of this defect in CIZ1-null cells. Together, the data show that CIZ1's protection of the epigenome guards against genome instability during quiescence cycles. This identifies loss of CIZ1 as a potentially devastating vulnerability in cells that undergo cycles of quiescence entry and exit.
Collapse
Affiliation(s)
- Olivia G Dobbs
- Department of Biology, University of York, York, YO10 5DD, UK.
- York Biomedical Research Institute, University of York, York, UK.
| | - Rosemary H C Wilson
- Department of Biology, University of York, York, YO10 5DD, UK
- Exact Sciences Innovation, The Sherard Building, Oxford Science Park, Edmund Halley Rd, Oxford, OX4 4DQ, UK
| | - Katherine Newling
- Department of Biology, University of York, York, YO10 5DD, UK
- Genomics and Bioinformatics Laboratory, Bioscience Technology Facility, University of York, York, YO10 5DD, UK
| | | | - Dawn Coverley
- Department of Biology, University of York, York, YO10 5DD, UK
- York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
5
|
Sofi S, Williamson L, Turvey GL, Scoynes C, Hirst C, Godwin J, Brockdorff N, Ainscough J, Coverley D. Prion-like domains drive CIZ1 assembly formation at the inactive X chromosome. J Biophys Biochem Cytol 2022; 221:213067. [PMID: 35289833 PMCID: PMC8927971 DOI: 10.1083/jcb.202103185] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/11/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
CIZ1 forms large assemblies at the inactive X chromosome (Xi) in female fibroblasts in an Xist lncRNA-dependent manner and is required for accurate maintenance of polycomb targets genome-wide. Here we address requirements for assembly formation and show that CIZ1 undergoes two direct interactions with Xist, via independent N- and C-terminal domains. Interaction with Xist, assembly at Xi, and complexity of self-assemblies formed in vitro are modulated by two alternatively spliced glutamine-rich prion-like domains (PLD1 and 2). PLD2 is dispensable for accumulation at existing CIZ1-Xi assemblies in wild-type cells but is required in CIZ1-null cells where targeting, assembly, and enrichment for H3K27me3 and H2AK119ub occur de novo. In contrast, PLD1 is required for both de novo assembly and accumulation at preexisting assemblies and, in vitro, drives formation of a stable fibrillar network. Together they impart affinity for RNA and a complex relationship with repeat E of Xist. These data show that alternative splicing of two PLDs modulates CIZ1's ability to build large RNA-protein assemblies.
Collapse
Affiliation(s)
- Sajad Sofi
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Louisa Williamson
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Gabrielle L Turvey
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Charlotte Scoynes
- Department of Biology, University of York, York, UK.,College of Science and Engineering, University of Edinburgh, Edinburgh, UK
| | - Claire Hirst
- Department of Biology, University of York, York, UK
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Justin Ainscough
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| | - Dawn Coverley
- Department of Biology, University of York, York, UK.,York Biomedical Research Institute, University of York, York, UK
| |
Collapse
|
6
|
Han J, Xu G, Dong Q, Jing G, Liu Q, Liu J. Elevated expression of CDKN1A-interacting zinc finger protein 1 in intimal hyperplasia after endovascular arterial injury. ALL LIFE 2022. [DOI: 10.1080/26895293.2021.2024893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ju Han
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
| | - Guangyan Xu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Weifang Medical University, Weifang, People’s Republic of China
| | - Qihao Dong
- Department of Neurology, Zibo Central Hospital, Weifang, People’s Republic of China
| | - Guoxian Jing
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
- Shandong First Medical University, Taian, People’s Republic of China
| | - Qiang Liu
- Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| | - Ju Liu
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Institute of Neuroimmunology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, People’s Republic of China
- Institute of Microvascular Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People’s Republic of China
| |
Collapse
|
7
|
Gene regulation in time and space during X-chromosome inactivation. Nat Rev Mol Cell Biol 2022; 23:231-249. [PMID: 35013589 DOI: 10.1038/s41580-021-00438-7] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
X-chromosome inactivation (XCI) is the epigenetic mechanism that ensures X-linked dosage compensation between cells of females (XX karyotype) and males (XY). XCI is essential for female embryos to survive through development and requires the accurate spatiotemporal regulation of many different factors to achieve remarkable chromosome-wide gene silencing. As a result of XCI, the active and inactive X chromosomes are functionally and structurally different, with the inactive X chromosome undergoing a major conformational reorganization within the nucleus. In this Review, we discuss the multiple layers of genetic and epigenetic regulation that underlie initiation of XCI during development and then maintain it throughout life, in light of the most recent findings in this rapidly advancing field. We discuss exciting new insights into the regulation of X inactive-specific transcript (XIST), the trigger and master regulator of XCI, and into the mechanisms and dynamics that underlie the silencing of nearly all X-linked genes. Finally, given the increasing interest in understanding the impact of chromosome organization on gene regulation, we provide an overview of the factors that are thought to reshape the 3D structure of the inactive X chromosome and of the relevance of such structural changes for XCI establishment and maintenance.
Collapse
|
8
|
Identification of DHX9 as a cell cycle regulated nucleolar recruitment factor for CIZ1. Sci Rep 2020; 10:18103. [PMID: 33093612 PMCID: PMC7582970 DOI: 10.1038/s41598-020-75160-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 10/12/2020] [Indexed: 11/15/2022] Open
Abstract
CIP1-interacting zinc finger protein 1 (CIZ1) is a nuclear matrix associated protein that facilitates a number of nuclear functions including initiation of DNA replication, epigenetic maintenance and associates with the inactive X-chromosome. Here, to gain more insight into the protein networks that underpin this diverse functionality, molecular panning and mass spectrometry are used to identify protein interaction partners of CIZ1, and CIZ1 replication domain (CIZ1-RD). STRING analysis of CIZ1 interaction partners identified 2 functional clusters: ribosomal subunits and nucleolar proteins including the DEAD box helicases, DHX9, DDX5 and DDX17. DHX9 shares common functions with CIZ1, including interaction with XIST long-non-coding RNA, epigenetic maintenance and regulation of DNA replication. Functional characterisation of the CIZ1-DHX9 complex showed that CIZ1-DHX9 interact in vitro and dynamically colocalise within the nucleolus from early to mid S-phase. CIZ1-DHX9 nucleolar colocalisation is dependent upon RNA polymerase I activity and is abolished by depletion of DHX9. In addition, depletion of DHX9 reduced cell cycle progression from G1 to S-phase in mouse fibroblasts. The data suggest that DHX9-CIZ1 are required for efficient cell cycle progression at the G1/S transition and that nucleolar recruitment is integral to their mechanism of action.
Collapse
|
9
|
Abstract
In mammals, dosage compensation of sex chromosomal genes between females (XX) and males (XY) is achieved through X-chromosome inactivation (XCI). The X-linked X-inactive-specific transcript (Xist) long noncoding RNA is indispensable for XCI and initiates the process early during development by spreading in cis across the X chromosome from which it is transcribed. During XCI, Xist RNA triggers gene silencing, recruits a plethora of chromatin modifying factors, and drives a major structural reorganization of the X chromosome. Here, we review our knowledge of the multitude of epigenetic events orchestrated by Xist RNA to allow female mammals to survive through embryonic development by establishing and maintaining proper dosage compensation. In particular, we focus on recent studies characterizing the interaction partners of Xist RNA, and we discuss how they have affected the field by addressing long-standing controversies or by giving rise to new research perspectives that are currently being explored. This review is dedicated to the memory of Denise Barlow, pioneer of genomic imprinting and functional long noncoding RNAs (lncRNAs), whose work has revolutionized the epigenetics field and continues to inspire generations of scientists.
Collapse
|
10
|
Maintenance of epigenetic landscape requires CIZ1 and is corrupted in differentiated fibroblasts in long-term culture. Nat Commun 2019; 10:460. [PMID: 30692537 PMCID: PMC6484225 DOI: 10.1038/s41467-018-08072-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/04/2018] [Indexed: 01/09/2023] Open
Abstract
The inactive X chromosome (Xi) serves as a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes (PRC1/2). Here we show that Xi transiently relocates from the nuclear periphery towards the interior during its replication, in a process dependent on CIZ1. Compromised relocation of Xi in CIZ1-null primary mouse embryonic fibroblasts is accompanied by loss of PRC-mediated H2AK119Ub1 and H3K27me3, increased solubility of PRC2 catalytic subunit EZH2, and genome-wide deregulation of polycomb-regulated genes. Xi position in S phase is also corrupted in cells adapted to long-term culture (WT or CIZ1-null), and also accompanied by specific changes in EZH2 and its targets. The data are consistent with the idea that chromatin relocation during S phase contributes to maintenance of epigenetic landscape in primary cells, and that elevated soluble EZH2 is part of an error-prone mechanism by which modifying enzyme meets template when chromatin relocation is compromised. The inactive X chromosome (Xi) is a model for establishment and maintenance of repressed chromatin and the function of polycomb repressive complexes. Here the authors show that Xi transiently relocates from the nuclear periphery during replication in a CIZ1-dependent manner, which plays a role in maintaining PRC-mediated repressed chromatin.
Collapse
|
11
|
Local Tandem Repeat Expansion in Xist RNA as a Model for the Functionalisation of ncRNA. Noncoding RNA 2018; 4:ncrna4040028. [PMID: 30347781 PMCID: PMC6316617 DOI: 10.3390/ncrna4040028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 01/08/2023] Open
Abstract
Xist, the master regulator of the X chromosome inactivation in mammals, is a 17 kb lncRNA that acts in cis to silence the majority of genes along the chromosome from which it is transcribed. The two key processes required for Xist RNA function, localisation in cis and recruitment of silencing factors, are genetically separable, at least in part. Recent studies have identified Xist RNA sequences and associated RNA-binding proteins (RBPs) that are important for these processes. Notably, several of the key Xist RNA elements correspond to local tandem repeats. In this review, I use examples to illustrate different modes whereby tandem repeat amplification has been exploited to allow orthodox RBPs to confer new functions for Xist-mediated chromosome inactivation. I further discuss the potential generality of tandem repeat expansion in the evolution of functional long non-coding RNAs (lncRNAs).
Collapse
|
12
|
Swarts DRA, Stewart ER, Higgins GS, Coverley D. CIZ1-F, an alternatively spliced variant of the DNA replication protein CIZ1 with distinct expression and localisation, is overrepresented in early stage common solid tumours. Cell Cycle 2018; 17:2268-2283. [PMID: 30280956 PMCID: PMC6226236 DOI: 10.1080/15384101.2018.1526600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CIZ1 promotes cyclin-dependent DNA replication and resides in sub-nuclear foci that are part of the protein nuclear matrix (NM), and in RNA assemblies that are enriched at the inactive X chromosome (Xi) in female cells. It is subjected to alternative splicing, with specific variants implicated in adult and pediatric cancers. CIZ1-F is characterized by a frame shift that results from splicing exons 8–12 leading to inclusion of a short alternative reading frame (ARF), excluding the previously characterized C-terminal NM anchor domain. Here, we apply a set of novel variant-selective molecular tools targeted to the ARF to profile the expression of CIZ1-F at both transcript and protein levels, with focus on its relationship with the RNA-dependent and -independent fractions of the NM. Unlike full-length CIZ1, CIZ1-F does not accumulate at Xi, though like full-length CIZ1 it does resist extraction with DNase. Notably, CIZ1-F is sensitive to RNase identifying it as part of the RNA-fraction of the NM. In quiescent cells CIZ1-F transcript expression is suppressed and CIZ1-F protein is excluded from the nucleus, with re-expression not observed until the second cell cycle after exit from quiescence. Importantly, CIZ1-F is over-expressed in common solid tumors including colon and breast, pronounced in early stage but not highly-proliferative late stage tumors. Moreover, expression was significantly higher in hormone receptor negative breast tumors than receptor positive tumors. Together these data show that CIZ1-F is expressed in proliferating cells in an unusual cell cycle-dependent manner, and suggest that it may have potential as a tumor biomarker.
Collapse
Affiliation(s)
| | - Emma R Stewart
- a Department of Biology , The University of York , York , UK
| | | | - Dawn Coverley
- a Department of Biology , The University of York , York , UK
| |
Collapse
|
13
|
Xiao J, Khan MM, Vemula S, Tian J, LeDoux MS. Consequences of Cre-mediated deletion of Ciz1 exon 5 in mice. FEBS Lett 2018; 592:3101-3110. [PMID: 30098009 PMCID: PMC6275157 DOI: 10.1002/1873-3468.13221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/28/2018] [Accepted: 08/07/2018] [Indexed: 12/12/2022]
Abstract
CIZ1 plays a role in DNA synthesis at the G1/S checkpoint. Ciz1 gene-trap null mice manifest motor dysfunction, cell-cycle abnormalities, and DNA damage. In contrast, it has previously been reported that mouse embryonic fibroblasts derived from presumed Ciz1 knock-out mice (Ciz1tm1.1Homy/tm1.1Homy ) generated by crossing Cre-expressing mice with exon 5-floxed mice (Ciz1tm1Homy/tm1Homy ) do not exhibit evidence of enhanced DNA damage following γ-irradiation or cell-cycle defects. Here, we report that Ciz1tm1.1Homy/tm1.1Homy mice show loss of Ciz1 exon 5 but are neurologically normal and express abnormal transcripts (Ciz1ΔE5/ΔE5 mice) that are translated into one or more proteins of approximate wild-type size. Therefore, Ciz1tm1.1Homy/tm1.1Homy mice (Ciz1ΔE5/ΔE5 ) lose residues encoded by exon 5 but may gain function from novel amino acid sequences.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Mohammad Moshahid Khan
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Satya Vemula
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Jun Tian
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Department of Neurology, Second Affiliated Hospital, School
of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310009, P.R. China
| | - Mark S. LeDoux
- Departments of Neurology, and Anatomy and Neurobiology,
University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| |
Collapse
|
14
|
Kucherlapati M. Examining transcriptional changes to DNA replication and repair factors over uveal melanoma subtypes. BMC Cancer 2018; 18:818. [PMID: 30107825 PMCID: PMC6092802 DOI: 10.1186/s12885-018-4705-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Background Uncontrolled replication is a process common to all cancers facilitated by the summation of changes accumulated as tumors progress. The aim of this study was to examine small groups of genes with known biology in replication and repair at the transcriptional and genomic levels, correlating alterations with survival in uveal melanoma tumor progression. Selected components of Pre-Replication, Pre-Initiation, and Replisome Complexes, DNA Damage Response and Mismatch Repair have been observed. Methods Two groups have been generated for selected genes above and below the average alteration level and compared for expression and survival across The Cancer Genome Atlas uveal melanoma subtypes. Significant differences in expression between subtypes monosomic or disomic for chromosome 3 have been identified by Fisher’s exact test. Kaplan Meier survival distribution based on disease specific survival has been compared by Log-rank test. Results Genes with significant alteration include MCM2, MCM4, MCM5, CDC45, MCM10, CIZ1, PCNA, FEN1, LIG1, POLD1, POLE, HUS1, CHECK1, ATRIP, MLH3, and MSH6. Exon 4 skipping in CIZ1 previously identified as a cancer variant, and reportedly used as an early serum biomarker in lung cancer was found. Mismatch Repair protein MLH3 was found to have splicing variations with deletions to both Exon 5 and Exon 7 simultaneously. PCNA, FEN1, and LIG1 had increased relative expression levels not due to mutation or to copy number variation. Conclusion The current study proposes changes in relative and differential expression to replication and repair genes that support the concept their products are causally involved in uveal melanoma. Specific avenues for early biomarker identification and therapeutic approach are suggested.
Collapse
Affiliation(s)
- Melanie Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, 02115, MA, USA. .,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, 77 Avenue Louis Pasteur NRB 160B, Boston, 02115, MA, USA.
| |
Collapse
|
15
|
Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc Natl Acad Sci U S A 2017; 114:10654-10659. [PMID: 28923964 DOI: 10.1073/pnas.1711206114] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
X chromosome inactivation is an epigenetic dosage compensation mechanism in female mammals driven by the long noncoding RNA, Xist. Although recent genomic and proteomic approaches have provided a more global view of Xist's function, how Xist RNA localizes to the inactive X chromosome (Xi) and spreads in cis remains unclear. Here, we report that the CDKN1-interacting zinc finger protein CIZ1 is critical for localization of Xist RNA to the Xi chromosome territory. Stochastic optical reconstruction microscopy (STORM) shows a tight association of CIZ1 with Xist RNA at the single-molecule level. CIZ1 interacts with a specific region within Xist exon 7-namely, the highly repetitive Repeat E motif. Using genetic analysis, we show that loss of CIZ1 or deletion of Repeat E in female cells phenocopies one another in causing Xist RNA to delocalize from the Xi and disperse into the nucleoplasm. Interestingly, this interaction is exquisitely sensitive to CIZ1 levels, as overexpression of CIZ1 likewise results in Xist delocalization. As a consequence, this delocalization is accompanied by a decrease in H3K27me3 on the Xi. Our data reveal that CIZ1 plays a major role in ensuring stable association of Xist RNA within the Xi territory.
Collapse
|
16
|
Transformation-induced changes in the DNA-nuclear matrix interface, revealed by high-throughput analysis of DNA halos. Sci Rep 2017; 7:6475. [PMID: 28743923 PMCID: PMC5526987 DOI: 10.1038/s41598-017-06459-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/13/2017] [Indexed: 01/22/2023] Open
Abstract
In higher eukaryotic nuclei, DNA is periodically anchored to an extraction-resistant protein structure, via matrix attachment regions. We describe a refined and accessible method to non-subjectively, rapidly and reproducibly measure both size and stability of the intervening chromatin loops, and use it to demonstrate that malignant transformation compromises the DNA-nuclear matrix interface.
Collapse
|
17
|
Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G, Godwin J, Wilson R, Haslam A, Lilley F, Ruigrok R, Bageghni SA, Albadrani G, Mansfield W, Roulson JA, Brockdorff N, Ainscough JFX, Coverley D. The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 2017; 31:876-888. [PMID: 28546514 PMCID: PMC5458755 DOI: 10.1101/gad.295907.117] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/20/2017] [Indexed: 12/20/2022]
Abstract
Here, Ridings-Figueroa et al. show that the nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. Their findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages. The nuclear matrix protein Cip1-interacting zinc finger protein 1 (CIZ1) promotes DNA replication in association with cyclins and has been linked to adult and pediatric cancers. Here we show that CIZ1 is highly enriched on the inactive X chromosome (Xi) in mouse and human female cells and is retained by interaction with the RNA-dependent nuclear matrix. CIZ1 is recruited to Xi in response to expression of X inactive-specific transcript (Xist) RNA during the earliest stages of X inactivation in embryonic stem cells and is dependent on the C-terminal nuclear matrix anchor domain of CIZ1 and the E repeats of Xist. CIZ1-null mice, although viable, display fully penetrant female-specific lymphoproliferative disorder. Interestingly, in mouse embryonic fibroblast cells derived from CIZ1-null embryos, Xist RNA localization is disrupted, being highly dispersed through the nucleoplasm rather than focal. Focal localization is reinstated following re-expression of CIZ1. Focal localization of Xist RNA is also disrupted in activated B and T cells isolated from CIZ1-null animals, suggesting a possible explanation for female-specific lymphoproliferative disorder. Together, these findings suggest that CIZ1 has an essential role in anchoring Xist to the nuclear matrix in specific somatic lineages.
Collapse
Affiliation(s)
| | - Emma R Stewart
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Tatyana B Nesterova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Heather Coker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Jonathan Godwin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rose Wilson
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Aidan Haslam
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Fred Lilley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Renate Ruigrok
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sumia A Bageghni
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Ghadeer Albadrani
- Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom.,Princess Nourah Bint Abdulrahman University (PNU), Riyadh, Kingdom of Saudi Arabia
| | - William Mansfield
- Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Jo-An Roulson
- Leeds Institute of Molecular Medicine (LIMM), University of Leeds, Leeds LS9 7TF, United Kingdom
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Justin F X Ainscough
- Department of Biology, University of York, York YO10 5DD, United Kingdom.,Leeds Institute of Cardiovascular and Metabolic Medicine (LICAMM), University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
18
|
Bageghni SA, Frentzou GA, Drinkhill MJ, Mansfield W, Coverley D, Ainscough JFX. Cardiomyocyte--specific expression of the nuclear matrix protein, CIZ1, stimulates production of mono-nucleated cells with an extended window of proliferation in the postnatal mouse heart. Biol Open 2017; 6:92-99. [PMID: 27934662 PMCID: PMC5278428 DOI: 10.1242/bio.021550] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myocardial injury in mammals leads to heart failure through pathological cardiac remodelling that includes hypertrophy, fibrosis and ventricular dilatation. Central to this is inability of the mammalian cardiomyocyte to self-renew due to entering a quiescent state after birth. Modulation of the cardiomyocyte cell-cycle after injury is therefore a target mechanism to limit damage and potentiate repair and regeneration. Here, we show that cardiomyocyte-specific over-expression of the nuclear-matrix-associated DNA replication protein, CIZ1, extends their window of proliferation during cardiac development, delaying onset of terminal differentiation without compromising function. CIZ1-expressing hearts are enlarged, but the cardiomyocytes are smaller with an overall increase in number, correlating with increased DNA replication after birth and retention of an increased proportion of mono-nucleated cardiomyocytes into adulthood. Furthermore, these CIZ1 induced changes in the heart reduce the impact of myocardial injury, identifying CIZ1 as a putative therapeutic target for cardiac repair. Summary: An inducible mouse model was developed to show that CIZ1 extends the window of cardiomyocyte proliferation and reduces the impact of injury on cardiac function.
Collapse
Affiliation(s)
| | | | | | | | - Dawn Coverley
- Biology Department, University of York, York YO10 5DD, UK
| | - Justin F X Ainscough
- LICAMM, University of Leeds, Leeds LS2 9JT, UK .,Biology Department, University of York, York YO10 5DD, UK
| |
Collapse
|
19
|
Emerging Roles for Ciz1 in Cell Cycle Regulation and as a Driver of Tumorigenesis. Biomolecules 2016; 7:biom7010001. [PMID: 28036012 PMCID: PMC5372713 DOI: 10.3390/biom7010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/19/2022] Open
Abstract
Precise duplication of the genome is a prerequisite for the health and longevity of multicellular organisms. The temporal regulation of origin specification, replication licensing, and firing at replication origins is mediated by the cyclin-dependent kinases. Here the role of Cip1 interacting Zinc finger protein 1 (Ciz1) in regulation of cell cycle progression is discussed. Ciz1 contributes to regulation of the G1/S transition in mammalian cells. Ciz1 contacts the pre-replication complex (pre-RC) through cell division cycle 6 (Cdc6) interactions and aids localization of cyclin A- cyclin-dependent kinase 2 (CDK2) activity to chromatin and the nuclear matrix during initiation of DNA replication. We discuss evidence that Ciz1 serves as a kinase sensor that regulates both initiation of DNA replication and prevention of re-replication. Finally, the emerging role for Ciz1 in cancer biology is discussed. Ciz1 is overexpressed in common tumors and tumor growth is dependent on Ciz1 expression, suggesting that Ciz1 is a driver of tumor growth. We present evidence that Ciz1 may contribute to deregulation of the cell cycle due to its ability to alter the CDK activity thresholds that are permissive for initiation of DNA replication. We propose that Ciz1 may contribute to oncogenesis by induction of DNA replication stress and that Ciz1 may be a multifaceted target in cancer therapy.
Collapse
|
20
|
Coverley D, Higgins G, West D, Jackson OT, Dowle A, Haslam A, Ainscough E, Chalkley R, White J. A quantitative immunoassay for lung cancer biomarker CIZ1b in patient plasma. Clin Biochem 2016; 50:336-343. [PMID: 27867087 PMCID: PMC5441127 DOI: 10.1016/j.clinbiochem.2016.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Non-invasive tests for early detection of lung cancer are an important unmet clinical need. CIZ1b plasma biomarker can discriminate stage 1 lung cancer from within high-risk groups with clinically useful accuracy, with ROC AUCs in excess of 0.9 for two independent retrospective cohorts, and could therefore meet this need. Our aim was to characterise the native state of the biomarker and develop a quantitative immunoassay. DESIGN AND METHODS Selective denaturation, preparative electrophoresis and mass spectrometry of human plasma were used to characterise the biomarker and interaction partners. A sandwich ELISA was generated, and specificity for CIZ1b biomarker tested on lung cancer patient plasma. RESULTS CIZ1b biomarker is a denaturation-resistant complex between a C-terminal fragment of CIZ1 bearing the CIZ1b epitope specified by alternative splicing of exon14, and fibrinogen alpha chain. Reconstitution of the biomarker epitope with purified fibrinogen and CIZ1b, but not CIZ1a (non-alternatively spliced exon 14) confirmed the specificity of the results. The endogenous complex is highly stable in lung cancer plasma and can be quantified by pairing of a CIZ1b exon-junction specific antibody with detection of fibrinogen. Application of this sandwich ELISA to a prospectively collected development set of plasmas reveals the same level of accuracy as the western blot used to validate the discriminatory capability of the biomarker. CONCLUSIONS Unexpected and unusual molecular structure of CIZ1b in native plasma has complicated immunoassay design, and delayed translation of this promising biomarker. However, CIZ1b can now be measured using a high-throughput, hospital-friendly sandwich ELISA format, overcoming an important barrier to further clinical development and application of this blood test for early stage lung cancer.
Collapse
Affiliation(s)
- Dawn Coverley
- Cizzle Biotech, University of York, YO10 5DD, UK; Department of Biology, University of York, YO10 5YW, UK.
| | - Gillian Higgins
- Cizzle Biotech, University of York, YO10 5DD, UK; Department of Biology, University of York, YO10 5YW, UK
| | - Daniel West
- Cizzle Biotech, University of York, YO10 5DD, UK
| | - Oliver T Jackson
- Department of Biology, University of York, YO10 5YW, UK; Hull-York Medical School, University of Hull, HU6 7RX, UK
| | - Adam Dowle
- Department of Biology, University of York, YO10 5YW, UK
| | - Aidan Haslam
- Department of Biology, University of York, YO10 5YW, UK
| | - Eve Ainscough
- Cizzle Biotech, University of York, YO10 5DD, UK; Department of Biology, University of York, YO10 5YW, UK
| | - Rebecca Chalkley
- Cizzle Biotech, University of York, YO10 5DD, UK; Department of Biology, University of York, YO10 5YW, UK
| | - John White
- Department of Respiratory Medicine, York Teaching Hospital NHS Foundation Trust, YO31 8HE, UK
| |
Collapse
|
21
|
Xiao J, Vemula SR, Xue Y, Khan MM, Kuruvilla KP, Marquez-Lona EM, Cobb MR, LeDoux MS. Motor phenotypes and molecular networks associated with germline deficiency of Ciz1. Exp Neurol 2016; 283:110-20. [PMID: 27163549 DOI: 10.1016/j.expneurol.2016.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/26/2022]
Abstract
A missense mutation in CIZ1 (c.790A>G, p.S264G) was linked to autosomal dominant cervical dystonia in a large multiplex Caucasian pedigree (OMIM614860, DYT23). CIZ1 is a p21((Cip1/Waf1)) -interacting zinc finger protein, widely expressed in neural and extra-neural tissues, and plays a role in DNA synthesis at the G1/S cell-cycle checkpoint. The role of CIZ1 in the nervous system and relative contributions of gain- or loss- of function to the pathogenesis of CIZ1-associated dystonia remain indefinite. Using relative quantitative reverse transcriptase-PCR, cerebellum showed the highest expression levels of Ciz1 in adult mouse brain, over two fold higher than liver, and higher than striatum, midbrain and cerebral cortex. Overall, neural expression of Ciz1 increased with postnatal age. A Ciz1 gene-trap knock-out (KO) mouse model (Ciz1(-/-)) was generated to examine the functional role(s) of CIZ1 in the sensorimotor nervous system and contributions of CIZ1 to cell-cycle control in the mammalian brain. Ciz1 transcripts were absent in Ciz1(-/-) mice and reduced by approximately 50% in Ciz1(+/-) mice. Ciz1(-/-) mice were fertile but smaller than wild-type (WT) littermates. Ciz1(-/-) mice did not manifest dystonia, but exhibited mild motoric abnormalities on balance, open-field activity, and gait. To determine the effects of germline KO of Ciz1 on whole-genome gene expression in adult brain, total RNA from mouse cerebellum was harvested from 6 10-month old Ciz1(-/-) mice and 6 age- and gender- matched WT littermates for whole-genome gene expression analysis. Based on whole-genome gene-expression analyses, genes involved in cellular movement, cell development, cellular growth, cellular morphology and cell-to-cell signaling and interaction were up-regulated in Ciz1(-/-) mice. The top up-regulated pathways were metabolic and cytokine-cytokine receptor interactions. Down-regulated genes were involved in cell cycle, cellular development, cell death and survival, gene expression and cell morphology. Down-regulated networks included those related to metabolism, focal adhesion, neuroactive ligand-receptor interaction, and MAPK signaling. Based on pathway analyses, transcription factor 7-like 2 (TCF7L2), a member of the Wnt/β-catenin signaling pathway, was a major hub for down-regulated genes, whereas NF-κB was a major hub for up-regulated genes. In aggregate, these data suggest that CIZ1 may be involved in the post-mitotic differentiation of neurons in response to external signals and changes in gene expression may compensate, in part, for CIZ1 deficiency in our Ciz1(-/-) mouse model. Although CIZ1 deficiency was associated with mild motor abnormalities, germline loss of Ciz1 was not associated with dystonia on the C57BL/6J background.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Satya R Vemula
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yi Xue
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mohammad M Khan
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Korah P Kuruvilla
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Esther M Marquez-Lona
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Madison R Cobb
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Mark S LeDoux
- Departments of Neurology, and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
22
|
The Role of Cdkn1A-Interacting Zinc Finger Protein 1 (CIZ1) in DNA Replication and Pathophysiology. Int J Mol Sci 2016; 17:212. [PMID: 26861296 PMCID: PMC4783944 DOI: 10.3390/ijms17020212] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/23/2015] [Accepted: 02/02/2016] [Indexed: 12/24/2022] Open
Abstract
Cdkn1A-interacting zinc finger protein 1 (CIZ1) was first identified in a yeast-2-hybrid system searching for interacting proteins of CDK2 inhibitor p21Cip1/Waf1. Ciz1 also binds to CDK2, cyclin A, cyclin E, CDC6, PCNA, TCF4 and estrogen receptor-α. Recent studies reveal numerous biological functions of CIZ1 in DNA replication, cell proliferation, and differentiation. In addition, splicing variants of CIZ1 mRNA is associated with a variety of cancers and Alzheimer’s disease, and mutations of the CIZ1 gene lead to cervical dystonia. CIZ1 expression is increased in cancers and rheumatoid arthritis. In this review, we will summarize the biological functions and molecular mechanisms of CIZ1 in these physiological and pathological processes.
Collapse
|
23
|
Wilson RHC, Hesketh EL, Coverley D. Preparation of the Nuclear Matrix for Parallel Microscopy and Biochemical Analyses. Cold Spring Harb Protoc 2016; 2016:pdb.prot083758. [PMID: 26729903 DOI: 10.1101/pdb.prot083758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immobilized proteins within the nucleus are usually identified by treating cells with detergent. The detergent-resistant fraction is often assumed to be chromatin and is described as such in many studies. However, this fraction consists of both chromatin-bound and nuclear-matrix-bound proteins. To investigate nuclear-matrix-bound proteins alone, further separation of these fractions is required; the DNA must be removed so that the remaining proteins can be compared with those from untreated cells. This protocol uses a nonionic detergent (Triton X-100) to remove membranes and soluble proteins from cells under physiologically relevant salt concentrations, followed by extraction with 0.5 m NaCl, digestion with DNase I, and removal of fragmented DNA. It uses a specialized buffer (cytoskeletal buffer) to stabilize the cytoskeleton and nuclear matrix in relatively gentle conditions. Nuclear matrix proteins can then be assessed by either immunofluorescence (IF) and immunoblotting (IB). IB has the advantage of resolving different forms of a protein of interest, and the soluble fractions can be analyzed. The major advantage of IF analysis is that individual cells (rather than homogenized populations) can be monitored, and the spatial arrangement of proteins bound to residual nuclear structures can be revealed.
Collapse
Affiliation(s)
- Rosemary H C Wilson
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Emma L Hesketh
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, United Kingdom
| |
Collapse
|
24
|
Wilson RHC, Hesketh EL, Coverley D. The Nuclear Matrix: Fractionation Techniques and Analysis. Cold Spring Harb Protoc 2016; 2016:pdb.top074518. [PMID: 26729911 DOI: 10.1101/pdb.top074518] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The first descriptions of an insoluble nuclear structure appeared more than 70 years ago, but it is only in recent years that a sophisticated picture of its significance has begun to emerge. Here we introduce multiple methods for the study of the nuclear matrix.
Collapse
Affiliation(s)
| | - Emma L Hesketh
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | - Dawn Coverley
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
25
|
Hesketh EL, Knight JRP, Wilson RHC, Chong JPJ, Coverley D. Transient association of MCM complex proteins with the nuclear matrix during initiation of mammalian DNA replication. Cell Cycle 2015; 14:333-41. [PMID: 25659032 DOI: 10.4161/15384101.2014.980647] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The minichromosome maintenance complex (MCM2-7) is the putative DNA helicase in eukaryotes, and essential for DNA replication. By applying serial extractions to mammalian cells synchronized by release from quiescence, we reveal dynamic changes to the sub-nuclear compartmentalization of MCM2 as cells pass through late G1 and early S phase, identifying a brief window when MCM2 becomes transiently attached to the nuclear-matrix. The data distinguish 3 states that correspond to loose association with chromatin prior to DNA replication, transient highly stable binding to the nuclear-matrix coincident with initiation, and a post-initiation phase when MCM2 remains tightly associated with chromatin but not the nuclear-matrix. The data suggests that functional MCM complex loading takes place at the nuclear-matrix.
Collapse
Affiliation(s)
- Emma L Hesketh
- a Department of Biology ; University of York ; York , UK
| | | | | | | | | |
Collapse
|
26
|
LeDoux MS. Dystonia. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00024-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Copeland NA, Sercombe HE, Wilson RHC, Coverley D. Cyclin A/CDK2 phosphorylation of CIZ1 blocks replisome formation and initiation of mammalian DNA replication. J Cell Sci 2015; 128:1518-27. [DOI: 10.1242/jcs.161919] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 02/23/2015] [Indexed: 12/25/2022] Open
Abstract
CIZ1 is a nuclear matrix protein that cooperates with cyclin A/CDK2 to promote mammalian DNA replication. We show here that cyclin A/CDK2 also negatively regulates CIZ1 activity via phosphorylation at threonines 144, 192, and 293. Phosphomimetic mutants do not promote DNA replication in cell-free and cell-based assays, and also have a dominant negative effect on replisome formation at the level of PCNA recruitment. Phosphorylation blocks direct interaction with cyclin A/CDK2, and recruitment of endogenous cyclin A to the nuclear matrix. In contrast, phosphomimetic CIZ1 retains nuclear matrix binding capability, and interaction with CDC6 is not affected. Phospho-threonine 192-specific antibodies confirm that CIZ1 is phosphorylated during S-phase and G2, and show that phosphorylation at this site occurs at post-initiation concentrations of cyclin A/CDK2. Together the data suggest that CIZ1 is a kinase sensor that promotes initiation of DNA replication at low kinase levels, when in a hypophosphorylated state that is permissive for cyclin A-CDK2 interaction and delivery to licensed origins, but blocks delivery at higher kinase levels when it is itself phosphorylated.
Collapse
|
28
|
Ledoux MS, Dauer WT, Warner TT. Emerging common molecular pathways for primary dystonia. Mov Disord 2014; 28:968-81. [PMID: 23893453 DOI: 10.1002/mds.25547] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 12/23/2022] Open
Abstract
The dystonias are a group of hyperkinetic movement disorders whose principal cause is neuron dysfunction at 1 or more interconnected nodes of the motor system. The study of genes and proteins that cause familial dystonia provides critical information about the cellular pathways involved in this dysfunction, which disrupts the motor pathways at the systems level. In recent years study of the increasing number of DYT genes has implicated a number of cell functions that appear to be involved in the pathogenesis of dystonia. A review of the literature published in English-language publications available on PubMed relating to the genetics and cellular pathology of dystonia was performed. Numerous potential pathogenetic mechanisms have been identified. We describe those that fall into 3 emerging thematic groups: cell-cycle and transcriptional regulation in the nucleus, endoplasmic reticulum and nuclear envelope function, and control of synaptic function. © 2013 Movement Disorder Society.
Collapse
Affiliation(s)
- Mark S Ledoux
- Department of Neurology, University of Tennessee Health Science Center Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
29
|
Yin J, Wang C, Tang X, Sun H, Shao Q, Yang X, Qu X. CIZ1 regulates the proliferation, cycle distribution and colony formation of RKO human colorectal cancer cells. Mol Med Rep 2013; 8:1630-4. [PMID: 24126760 DOI: 10.3892/mmr.2013.1716] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/18/2013] [Indexed: 11/06/2022] Open
Abstract
Cip1-interacting zinc finger protein 1 (CIZ1) is a nuclear protein that was observed to bind to p21Cip1/Waf1. p21Cip1/Waf1 regulates the cell cycle and is associated with colorectal cancer (CRC) progression. However, the effect of CIZ1 on CRC cells remains unclear. In the present study, CIZ1 was observed to be highly expressed in RKO human CRC cells. Silencing of CIZ1 using small interfering RNA (siRNA) suppressed RKO cell proliferation. Flow cytometric analysis demonstrated that knockdown of CIZ1 decreased the percentage of cells in the S phase and increased the ratio of cells in the G0/G1 phase in parallel with upregulated cell apoptosis. Moreover, the number and size of RKO cell colonies was repressed by knockdown of the CIZ1 gene. These results suggested that CIZ1 may be involved in colon cancer progression by regulating cell proliferation, cell cycle, apoptosis and colony formation. Furthermore, CIZ1‑siRNA may provide a novel tool for CRC investigation and therapy.
Collapse
Affiliation(s)
- Jing Yin
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | | | | | | | | | | | | |
Collapse
|
30
|
Nishibe R, Watanabe W, Ueda T, Yamasaki N, Koller R, Wolff L, Honda ZI, Ohtsubo M, Honda H. CIZ1, a p21Cip1/Waf1-interacting protein, functions as a tumor suppressor in vivo. FEBS Lett 2013; 587:1529-35. [PMID: 23583447 DOI: 10.1016/j.febslet.2013.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/16/2013] [Accepted: 03/27/2013] [Indexed: 10/26/2022]
Abstract
CIZ1 is a nuclear protein involved in DNA replication and is also implicated in human diseases including cancers. To gain an insight into its function in vivo, we generated mice lacking Ciz1. Ciz1-deficient (Ciz1(-/-)) mice grew without any obvious abnormalities, and Ciz1(-/-) mouse embryonic fibroblasts (MEFs) did not show any defects in cell cycle status, cell growth, and DNA damage response. However, Ciz1(-/-) MEFs were sensitive to hydroxyurea-mediated replication stress and susceptible to oncogene-induced cellular transformation. In addition, Ciz1(-/-) mice developed various types of leukemias by retroviral insertional mutagenesis. These results indicate that CIZ1 functions as a tumor suppressor in vivo.
Collapse
Affiliation(s)
- Rio Nishibe
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wilson RHC, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells 2012; 18:17-31. [PMID: 23134523 PMCID: PMC3564400 DOI: 10.1111/gtc.12010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/10/2012] [Indexed: 01/24/2023]
Abstract
There is an extensive list of primary published work related to the nuclear matrix (NM). Here we review the aspects that are required to understand its relationship with DNA replication, while highlighting some of the difficulties in studying such a structure, and possible differences that arise from the choice of model system. We consider NM attachment regions of DNA and discuss their characteristics and potential function before reviewing data that deal specifically with functional interaction with DNA replication factors. Data have long existed indicating that newly synthesized DNA is associated with a nuclease-resistant NM, allowing the conclusion that the elongation step of DNA synthesis is immobilized within the nucleus. We review in more detail the emerging data that suggest that prereplication complex proteins and origins of replication are transiently recruited to the NM during late G1 and early S-phase. Collectively, these data suggest that the initiation step of the DNA replication process is also immobilized by attachment to the NM. We outline models that discuss the possible spatial relationships and highlight the emerging evidence that suggests there may be important differences between cell types.
Collapse
|
32
|
Variant Ciz1 is a circulating biomarker for early-stage lung cancer. Proc Natl Acad Sci U S A 2012; 109:E3128-35. [PMID: 23074256 DOI: 10.1073/pnas.1210107109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
There is an unmet need for circulating biomarkers that can detect early-stage lung cancer. Here we show that a variant form of the nuclear matrix-associated DNA replication factor Ciz1 is present in 34/35 lung tumors but not in adjacent tissue, giving rise to stable protein quantifiable by Western blot in less than a microliter of plasma from lung cancer patients. In two independent sets, with 170 and 160 samples, respectively, variant Ciz1 correctly identified patients who had stage 1 lung cancer with clinically useful accuracy. For set 1, mean variant Ciz1 level in individuals without diagnosed tumors established a threshold that correctly classified 98% of small cell lung cancers (SCLC) and non-SCLC patients [receiver operator characteristic area under the curve (AUC) 0.958]. Within set 2, comparison of patients with stage 1 non-SCLC with asymptomatic age-matched smokers or individuals with benign lung nodules correctly classified 95% of patients (AUCs 0.913 and 0.905), with overall specificity of 76% and 71%, respectively. Moreover, using the mean of controls in set 1, we achieved 95% sensitivity among patients with stage 1 non-SCLC patients in set 2 with 74% specificity, demonstrating the robustness of the classification. RNAi-mediated selective depletion of variant Ciz1 is sufficient to restrain the growth of tumor cells that express it, identifying variant Ciz1 as a functionally relevant driver of cell proliferation in vitro and in vivo. The data show that variant Ciz1 is a strong candidate for a cancer-specific single marker capable of identifying early-stage lung cancer within at-risk groups without resort to invasive procedures.
Collapse
|
33
|
Xiao J, Uitti RJ, Zhao Y, Vemula SR, Perlmutter JS, Wszolek ZK, Maraganore DM, Auburger G, Leube B, Lehnhoff K, LeDoux MS. Mutations in CIZ1 cause adult onset primary cervical dystonia. Ann Neurol 2012; 71:458-69. [PMID: 22447717 DOI: 10.1002/ana.23547] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/17/2012] [Accepted: 01/27/2012] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Primary dystonia is usually of adult onset, can be familial, and frequently involves the cervical musculature. Our goal was to identify the causal mutation in a family with adult onset, primary cervical dystonia. METHODS Linkage and haplotype analyses were combined with solution-based whole-exome capture and massively parallel sequencing in a large Caucasian pedigree with adult onset, primary cervical dystonia to identify a cosegregating mutation. High-throughput screening and Sanger sequencing were completed in 308 Caucasians with familial or sporadic adult onset cervical dystonia and matching controls for sequence variants in this mutant gene. RESULTS Exome sequencing led to the identification of an exonic splicing enhancer mutation in exon 7 of CIZ1 (c.790A>G, p.S264G), which encodes CIZ1, Cip1-interacting zinc finger protein 1. CIZ1 is a p21(Cip1/Waf1) -interacting zinc finger protein expressed in brain and involved in DNA synthesis and cell-cycle control. Using a minigene assay, we showed that c.790A>G altered CIZ1 splicing patterns. The p.S264G mutation also altered the nuclear localization of CIZ1. Screening in subjects with adult-onset cervical dystonia identified 2 additional CIZ1 missense mutations (p.P47S and p.R672M). INTERPRETATION Mutations in CIZ1 may cause adult onset, primary cervical dystonia, possibly by precipitating neurodevelopmental abnormalities that manifest in adults and/or G1/S cell-cycle dysregulation in the mature central nervous system.
Collapse
Affiliation(s)
- Jianfeng Xiao
- Department of Neurology, University of Tennessee Health Science Center, Memphis, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Greaves EA, Copeland NA, Coverley D, Ainscough JFX. Cancer associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells. J Cell Sci 2012; 125:2466-77. [DOI: 10.1242/jcs.101097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
CIZ1 is a nuclear matrix associated DNA replication factor unique to higher eukaryotes, for which alternatively spliced isoforms have been associated with a range of disorders. In vitro the CIZ1 N-terminus interacts with cyclins E and A via distinct sites, enabling functional cooperation with cyclin A-Cdk2 to promote replication initiation. C-terminal sequences anchor CIZ1 to fixed sites on the nuclear matrix imposing spatial constraint on cyclin dependent kinase activity. Here we demonstrate that CIZ1 is predominantly expressed as predicted full-length product throughout mouse development, consistent with a ubiquitous role in cell and tissue renewal. CIZ1 is expressed in proliferating stem cells of the testis, but is notably down-regulated following commitment to differentiation. Significantly, CIZ1 is re-expressed at high levels in non-proliferative spermatocytes prior to meiotic division. Sequence analysis identifies at least seven alternatively spliced variants at this time, including a dominant cancer-associated form and a set of novel isoforms. Furthermore, we show that in these post-replicative cells CIZ1 interacts with the germ cell specific cyclin, A1, that has been implicated in DNA double-strand break repair. Consistent with this role, antibody depletion of CIZ1 reduces the capacity for testis extract to repair digested plasmid DNA in vitro. Together, the data imply novel post-replicative roles for CIZ1 in germ cell differentiation that may include meiotic recombination, a process intrinsic to genome stability and diversification.
Collapse
|
35
|
Munkley J, Copeland NA, Moignard V, Knight JRP, Greaves E, Ramsbottom SA, Pownall ME, Southgate J, Ainscough JFX, Coverley D. Cyclin E is recruited to the nuclear matrix during differentiation, but is not recruited in cancer cells. Nucleic Acids Res 2011; 39:2671-7. [PMID: 21109536 PMCID: PMC3074132 DOI: 10.1093/nar/gkq1190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 10/15/2010] [Accepted: 11/05/2010] [Indexed: 11/12/2022] Open
Abstract
Cyclin E supports pre-replication complex (pre-RC) assembly, while cyclin A-associated kinase activates DNA synthesis. We show that cyclin E, but not A, is mounted upon the nuclear matrix in sub-nuclear foci in differentiated vertebrate cells, but not in undifferentiated cells or cancer cells. In murine embryonic stem cells, Xenopus embryos and human urothelial cells, cyclin E is recruited to the nuclear matrix as cells differentiate and this can be manipulated in vitro. This suggests that pre-RC assembly becomes spatially restricted as template usage is defined. Furthermore, failure to become restricted may contribute to the plasticity of cancer cells.
Collapse
Affiliation(s)
- Jennifer Munkley
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Nikki A. Copeland
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Victoria Moignard
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - John R. P. Knight
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Erin Greaves
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Simon A. Ramsbottom
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Mary E. Pownall
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Jennifer Southgate
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Justin F.-X. Ainscough
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| | - Dawn Coverley
- Department of Biology, University of York, YO10 5YW and School of Medicine, Leeds University, LS2 9JT, UK
| |
Collapse
|
36
|
Rahman FA, Aziz N, Coverley D. Differential detection of alternatively spliced variants of Ciz1 in normal and cancer cells using a custom exon-junction microarray. BMC Cancer 2010; 10:482. [PMID: 20831784 PMCID: PMC2945943 DOI: 10.1186/1471-2407-10-482] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Accepted: 09/10/2010] [Indexed: 01/22/2023] Open
Abstract
Background Ciz1 promotes initiation of mammalian DNA replication and is present within nuclear matrix associated DNA replication factories. Depletion of Ciz1 from normal and cancer cells restrains entry to S phase and inhibits cell proliferation. Several alternative splicing events with putative functional consequences have been identified and reported, but many more variants are predicted to exist based on publicly available mRNAs and expressed sequence tags. Methods Here we report the development and validation of a custom exon and exon-junction microarray focused on the human CIZ1 gene, capable of reproducible detection of differential splice-variant expression. Results Using a pair of paediatric cancer cell lines and a pool of eight normal lines as reference, the array identified expected and novel CIZ1 splicing events. One novel variant (delta 8-12) that encodes a predicted protein lacking key functional sites, was validated by quantitative RT-PCR and found to be over-represented in a range of other cancer cell lines, and over half of a panel of primary lung tumours. Conclusions Expression of CIZ1 delta 8-12 appears to be restricted to cancer cells, and may therefore be a useful novel biomarker
Collapse
|
37
|
Copeland NA, Sercombe HE, Ainscough JFX, Coverley D. Ciz1 cooperates with cyclin-A-CDK2 to activate mammalian DNA replication in vitro. J Cell Sci 2010; 123:1108-15. [PMID: 20215406 DOI: 10.1242/jcs.059345] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Initiation of mammalian DNA replication can be reconstituted from isolated G1-phase nuclei and cell extracts, supplemented with cyclin-dependent protein kinases (CDKs). Under these conditions, cyclin E supports pre-replication complex assembly, whereas cyclin-A-associated kinase acts later to terminate assembly and activate DNA replication. The mechanism by which these events are coordinated is unknown. Here, we show that the replication factor Ciz1 interacts with cyclins E and A sequentially through distinct cyclin-binding motifs. Cyclin A displaces cyclin E from Ciz1 in a manner that is dependent on functional domains that are essential for its role in DNA replication. Furthermore, in cell-free assays, recombinant cyclin-A-CDK2 complexes and recombinant Ciz1 cooperate to promote initiation of DNA replication in late G1-phase nuclei. In addition, Ciz1 supports immobilization of cyclin A in isolated nuclei and depletion of Ciz1 by RNAi impairs immobilization, suggesting that Ciz1 promotes initiation by helping to target the kinase to a specific subnuclear compartment. We propose that Ciz1 acts to coordinate the functions of cyclins E and A in the nucleus, by delivering cyclin-A-associated kinase to sites that are specified by cyclin E, helping to ensure that they execute their functions in the same place and in the correct order.
Collapse
Affiliation(s)
- Nikki A Copeland
- Department of Biology, University of York, Heslington, York YO10 5YW, UK
| | | | | | | |
Collapse
|
38
|
Albrethsen J, Knol JC, Jimenez CR. Unravelling the nuclear matrix proteome. J Proteomics 2008; 72:71-81. [PMID: 18957335 DOI: 10.1016/j.jprot.2008.09.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 09/29/2008] [Accepted: 09/30/2008] [Indexed: 12/28/2022]
Abstract
The nuclear matrix (NM) model posits the presence of a protein/RNA scaffold that spans the mammalian nucleus. The NM proteins are involved in basic nuclear function and are a promising source of protein biomarkers for cancer. Importantly, the NM proteome is operationally defined as the proteins from cells and tissue that are extracted following a specific biochemical protocol; in brief, the soluble proteins and lipids, cytoskeleton, and chromatin elements are removed in a sequential fashion, leaving behind the proteins that compose the NM. So far, the NM has not been sufficiently verified as a biological entity and only preliminary at the molecular level. Here, we argue for a combined effort of proteomics, immunodetection and microscopy to unravel the composition and structure of the NM.
Collapse
Affiliation(s)
- Jakob Albrethsen
- OncoProteomics Laboratory, CCA 1-60, Department Medical Oncology, VUmc-Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | | | | |
Collapse
|
39
|
Dahmcke CM, Büchmann-Møller S, Jensen NA, Mitchelmore C. Altered splicing in exon 8 of the DNA replication factor CIZ1 affects subnuclear distribution and is associated with Alzheimer's disease. Mol Cell Neurosci 2008; 38:589-94. [PMID: 18583151 DOI: 10.1016/j.mcn.2008.05.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 05/05/2008] [Accepted: 05/07/2008] [Indexed: 11/30/2022] Open
Abstract
In order to understand the gene-mediated processes underlying sporadic Alzheimer's disease (AD), we carried out a subtractive cloning screen for novel AD candidate genes. We identified the gene encoding the DNA replication factor CIZ1 (CDKN1A interacting zinc finger protein 1) as being more highly expressed in Alzheimer tissue than in healthy brains. We show here that an isoform of CIZ1 which lacks a glutamine-rich region, due to alternative splicing in exon 8, is upregulated in AD brains relative to the full-length CIZ1 protein. We demonstrate for the first time that a minimal 28 amino acid sequence within this region is required for CIZ1 to associate with the nuclear matrix and to form nuclear foci.
Collapse
|
40
|
Lukasik A, Uniewicz KA, Kulis M, Kozlowski P. Ciz1, a p21 cip1/Waf1-interacting zinc finger protein and DNA replication factor, is a novel molecular partner for human enhancer of rudimentary homolog. FEBS J 2007; 275:332-40. [PMID: 18081865 DOI: 10.1111/j.1742-4658.2007.06203.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enhancer of rudimentary homolog (Drosophila) (ERH) is a small, highly conserved, nuclear protein with a unique three-dimensional structure, whose gene has been identified in animals, plants and protists, but not in fungi. Involvement of ERH in fundamental processes such as regulation of pyrimidine metabolism, cell cycle progression, transcription and cell growth control has been suggested. Here, employing a yeast two-hybrid system, a glutathione S-transferase pull-down assay and tandem MS, we demonstrate that Ciz1 is a bona fide interactor of human ERH. Ciz1 is a nuclear zinc finger protein interacting with p21(Cip1/Waf1), a universal inhibitor of cyclin-dependent kinases, and is a DNA replication factor. The region of Ciz1 necessary for the interaction with ERH spans residues 531-644, encompassing its first zinc finger motif. This region overlaps the p21(Cip1/Waf1)-binding site, suggesting that the interaction with ERH could block the binding of p21(Cip1/Waf1) by Ciz1 in the cell. When ERH and Ciz1 are coexpressed in HeLa cells, Ciz1 recruits ERH to DNA replication foci.
Collapse
Affiliation(s)
- Anna Lukasik
- Institute of Biochemistry, University of Warsaw, Miecznikowa 1, Warsaw, Poland
| | | | | | | |
Collapse
|
41
|
Rahman FA, Ainscough JFX, Copeland N, Coverley D. Cancer-associated missplicing of exon 4 influences the subnuclear distribution of the DNA replication factor CIZ1. Hum Mutat 2007; 28:993-1004. [PMID: 17508423 DOI: 10.1002/humu.20550] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cip1-interacting zinc finger protein 1 (CIZ1, also known as CDKN1A-interacting zinc finger protein 1) stimulates initiation of mammalian DNA replication and is normally tethered to the nuclear matrix within DNA replication foci. Here, we show that an alternatively spliced human CIZ1 variant, lacking exon 4 (Delta E4), is misexpressed as a consequence of intronic mutation in Ewing tumor (ET) cell lines. In all ET lines tested, exon 4 is skipped and an upstream mononucleotide repeat element is expanded to contain up to 28 thymidines, compared to 16 in controls. In exon-trap experiments, a 24T variant produced three-fold more exon skipping than a 16T variant, demonstrating a direct effect on splicing. In functional assays, Delta E4 protein retains replication activity, but fails to form subnuclear foci. Furthermore, coexpression of mouse Delta E4 with Ciz1 prevents Ciz1 from localizing appropriately, having a dominant negative effect on foci formation. The data show that conditional exclusion of exon 4 influences the spatial distribution of the Ciz1 protein within the nucleus, and raise the possibility that CIZ1 alternative splicing could influence organized patterns of DNA replication.
Collapse
|