1
|
Ng HY, Whelpley DH, Adly AN, Maxwell RA, Morgan DO. Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing. Nat Commun 2025; 16:4281. [PMID: 40341598 PMCID: PMC12062237 DOI: 10.1038/s41467-025-59700-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/02/2025] [Indexed: 05/10/2025] Open
Abstract
Cell cycle progression is governed by complexes of the cyclin-dependent kinases (CDKs) and their regulatory subunits cyclin and Cks1. CDKs phosphorylate hundreds of substrates, often at multiple sites. Multisite phosphorylation depends on Cks1, which binds initial priming phosphorylation sites to promote secondary phosphorylation at other sites. Here, we describe a similar role for a recently discovered phosphate-binding pocket (PP) on B-type cyclins. Mutation of the PP in Clb2, the major mitotic cyclin of budding yeast, alters bud morphology and delays the onset of anaphase. Mutation of the PP reduces multi-site phosphorylation of CDK substrates in vitro, including the Cdc16 and Cdc27 subunits of the anaphase-promoting complex/cyclosome and the Bud6 and Spa2 subunits of the polarisome. We conclude that the cyclin PP, like Cks1, controls the pattern of multisite phosphorylation on CDK substrates, thereby helping to establish the robust timing of cell-cycle events.
Collapse
Affiliation(s)
- Henry Y Ng
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Devon H Whelpley
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Armin N Adly
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Robert A Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - David O Morgan
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Ng HY, Whelpley DH, Adly AN, Maxwell RA, Morgan DO. Phosphate-binding pocket on cyclin B governs CDK substrate phosphorylation and mitotic timing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.28.582599. [PMID: 38464173 PMCID: PMC10925351 DOI: 10.1101/2024.02.28.582599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cell cycle progression is governed by complexes of the cyclin-dependent kinases (CDKs) and their regulatory subunits cyclin and Cks1. CDKs phosphorylate hundreds of substrates, often at multiple sites. Multisite phosphorylation depends on Cks1, which binds initial priming phosphorylation sites to promote secondary phosphorylation at other sites. Here, we describe a similar role for a recently discovered phosphate-binding pocket (PP) on B-type cyclins. Mutation of the PP in Clb2, the major mitotic cyclin of budding yeast, alters bud morphology and delays the onset of anaphase. Mutation of the PP reduces multi-site phosphorylation of CDK substrates in vitro, including the Cdc16 and Cdc27 subunits of the anaphase-promoting complex/cyclosome and the Bud6 and Spa2 subunits of the polarisome. We conclude that the cyclin PP, like Cks1, controls the pattern of multisite phosphorylation on CDK substrates, thereby helping to establish the robust timing of cell-cycle events.
Collapse
Affiliation(s)
- Henry Y. Ng
- Department of Physiology, University of California San Francisco, San Francisco CA
| | - Devon H. Whelpley
- Department of Physiology, University of California San Francisco, San Francisco CA
| | - Armin N. Adly
- Department of Physiology, University of California San Francisco, San Francisco CA
| | - Robert A. Maxwell
- The Vincent J. Coates Proteomics/Mass Spectrometry Core Laboratory, University of California, Berkeley, CA, USA
| | - David O. Morgan
- Department of Physiology, University of California San Francisco, San Francisco CA
| |
Collapse
|
3
|
Prabhakar A, González B, Dionne H, Basu S, Cullen PJ. Spatiotemporal control of pathway sensors and cross-pathway feedback regulate a differentiation MAPK pathway in yeast. J Cell Sci 2021; 134:jcs258341. [PMID: 34347092 PMCID: PMC8353523 DOI: 10.1242/jcs.258341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 06/21/2021] [Indexed: 12/22/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways control cell differentiation and the response to stress. In Saccharomyces cerevisiae, the MAPK pathway that controls filamentous growth (fMAPK) shares components with the pathway that regulates the response to osmotic stress (HOG). Here, we show that the two pathways exhibit different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding mucin sensors that regulate the pathways. Cross-pathway regulation from the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. We also show that the shared tetraspan protein Sho1p, which has a dynamic localization pattern throughout the cell cycle, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway regulation, control a MAPK pathway that regulates cell differentiation in yeast.
Collapse
Affiliation(s)
| | | | | | | | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
4
|
Dietler N, Minder M, Gligorovski V, Economou AM, Joly DAHL, Sadeghi A, Chan CHM, Koziński M, Weigert M, Bitbol AF, Rahi SJ. A convolutional neural network segments yeast microscopy images with high accuracy. Nat Commun 2020; 11:5723. [PMID: 33184262 PMCID: PMC7665014 DOI: 10.1038/s41467-020-19557-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/15/2020] [Indexed: 11/14/2022] Open
Abstract
The identification of cell borders ('segmentation') in microscopy images constitutes a bottleneck for large-scale experiments. For the model organism Saccharomyces cerevisiae, current segmentation methods face challenges when cells bud, crowd, or exhibit irregular features. We present a convolutional neural network (CNN) named YeaZ, the underlying training set of high-quality segmented yeast images (>10 000 cells) including mutants, stressed cells, and time courses, as well as a graphical user interface and a web application ( www.quantsysbio.com/data-and-software ) to efficiently employ, test, and expand the system. A key feature is a cell-cell boundary test which avoids the need for fluorescent markers. Our CNN is highly accurate, including for buds, and outperforms existing methods on benchmark images, indicating it transfers well to other conditions. To demonstrate how efficient large-scale image processing uncovers new biology, we analyze the geometries of ≈2200 wild-type and cyclin mutant cells and find that morphogenesis control occurs unexpectedly early and gradually.
Collapse
Affiliation(s)
- Nicola Dietler
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Bioengineering, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias Minder
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Augoustina Maria Economou
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Denis Alain Henri Lucien Joly
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ahmad Sadeghi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chun Hei Michael Chan
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Mateusz Koziński
- Computer Vision Laboratory, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Martin Weigert
- Institute of Bioengineering, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
5
|
Prabhakar A, Chow J, Siegel AJ, Cullen PJ. Regulation of intrinsic polarity establishment by a differentiation-type MAPK pathway in S. cerevisiae. J Cell Sci 2020; 133:jcs241513. [PMID: 32079658 PMCID: PMC7174846 DOI: 10.1242/jcs.241513] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/12/2020] [Indexed: 01/15/2023] Open
Abstract
All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in the yeast Saccharomyces cerevisiae, which is controlled by the Rho GTPase Cdc42p. The prevailing view of bud emergence does not account for regulation by extrinsic cues. Here, we show that the filamentous growth mitogen activated protein kinase (fMAPK) pathway regulates bud emergence under nutrient-limiting conditions. The fMAPK pathway regulated the expression of polarity targets including the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and active during the period of the cell cycle leading up to bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.
Collapse
Affiliation(s)
- Aditi Prabhakar
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Jacky Chow
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Alan J Siegel
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
6
|
The Multiple Roles of the Cdc14 Phosphatase in Cell Cycle Control. Int J Mol Sci 2020; 21:ijms21030709. [PMID: 31973188 PMCID: PMC7038166 DOI: 10.3390/ijms21030709] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/20/2022] Open
Abstract
The Cdc14 phosphatase is a key regulator of mitosis in the budding yeast Saccharomyces cerevisiae. Cdc14 was initially described as playing an essential role in the control of cell cycle progression by promoting mitotic exit on the basis of its capacity to counteract the activity of the cyclin-dependent kinase Cdc28/Cdk1. A compiling body of evidence, however, has later demonstrated that this phosphatase plays other multiple roles in the regulation of mitosis at different cell cycle stages. Here, we summarize our current knowledge about the pivotal role of Cdc14 in cell cycle control, with a special focus in the most recently uncovered functions of the phosphatase.
Collapse
|
7
|
Örd M, Venta R, Möll K, Valk E, Loog M. Cyclin-Specific Docking Mechanisms Reveal the Complexity of M-CDK Function in the Cell Cycle. Mol Cell 2019; 75:76-89.e3. [PMID: 31101497 PMCID: PMC6620034 DOI: 10.1016/j.molcel.2019.04.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/28/2019] [Accepted: 04/19/2019] [Indexed: 11/20/2022]
Abstract
Cyclin-dependent kinases (CDKs) coordinate hundreds of molecular events during the cell cycle. Multiple cyclins are involved, but the global role of cyclin-specific phosphorylation has remained unsolved. We uncovered a cyclin docking motif, LxF, that mediates binding of replication factor Cdc6 to mitotic cyclin. This interaction leads to phospho-adaptor Cks1-mediated inhibition of M-CDK to facilitate Cdc6 accumulation and sequestration in mitosis. The LxF motif and Cks1 also mediate the mutual inhibition between M-CDK and the tyrosine kinase Swe1. Additionally, the LxF motif is critical for targeting M-CDK to phosphorylate several mitotic regulators; for example, Spo12 is targeted via LxF to release the phosphatase Cdc14. The results complete the full set of G1, S, and M-CDK docking mechanisms and outline the unified role of cyclin specificity and CDK activity thresholds. Cooperation of cyclin and Cks1 docking creates a variety of CDK thresholds and switching orders, including combinations of last in, first out (LIFO) and first in, first out (FIFO) ordering. Mitotic cyclin Clb2 binds a specific linear motif, LxF, in targets or inhibitors LxF interaction enhances mitotic CDK substrate phosphorylation Phospho-adaptor Cks1 and the LxF docking mediate CDK inhibition by Cdc6 and Swe1 Cyclin-specific targeting enables finetuning of CDK function
Collapse
Affiliation(s)
- Mihkel Örd
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Rainis Venta
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Kaidi Möll
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Ervin Valk
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Mart Loog
- Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
8
|
Abstract
The mitotic cell cycle is driven by Cyclin-Dependent Kinases (CDK). CDK activation requires the binding of activatory subunits termed cyclins. Different waves of cyclins are expressed during the cell cycle, enabling CDKs to trigger phase specific events. For instance, S phase cyclins promote the initiation of DNA replication but not chromosome segregation. There are at least 2 explanations for how such regulation is achieved. According to one of the visions, cyclins confer intrinsic substrate specificity to the CDK catalytic subunit. Alternatively a quantitative model has been proposed, according to which ever-increasing CDK activity is required to trigger cell cycle events from G1 to M. If a quantitative control prevails, then an early cyclin should trigger later cycle events if accumulated at high enough levels at the right time and place. We show here that a G1 phase cyclin bears the potential to trigger DNA replication and promote S and G2 phase specific transcription.
Collapse
Affiliation(s)
- Roger Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Asrar Malik
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Gloria Palou
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Fanli Zeng
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - Ping Ren
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| | - David G Quintana
- a Department of Biochemistry and Molecular Biology ; Biophysics Unit, School of Medicine; Universitat Autonoma de Barcelona ; Bellaterra , Catalonia , Spain
| |
Collapse
|
9
|
Godfrey M, Kuilman T, Uhlmann F. Nur1 dephosphorylation confers positive feedback to mitotic exit phosphatase activation in budding yeast. PLoS Genet 2015; 11:e1004907. [PMID: 25569132 PMCID: PMC4287440 DOI: 10.1371/journal.pgen.1004907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/20/2014] [Indexed: 12/16/2022] Open
Abstract
Substrate dephosphorylation by the cyclin-dependent kinase (Cdk)-opposing phosphatase, Cdc14, is vital for many events during budding yeast mitotic exit. Cdc14 is sequestered in the nucleolus through inhibitory binding to Net1, from which it is released in anaphase following Net1 phosphorylation. Initial Net1 phosphorylation depends on Cdk itself, in conjunction with proteins of the Cdc14 Early Anaphase Release (FEAR) network. Later on, the Mitotic Exit Network (MEN) signaling cascade maintains Cdc14 release. An important unresolved question is how Cdc14 activity can increase in early anaphase, while Cdk activity, that is required for Net1 phosphorylation, decreases and the MEN is not yet active. Here we show that the nuclear rim protein Nur1 interacts with Net1 and, in its Cdk phosphorylated form, inhibits Cdc14 release. Nur1 is dephosphorylated by Cdc14 in early anaphase, relieving the inhibition and promoting further Cdc14 release. Nur1 dephosphorylation thus describes a positive feedback loop in Cdc14 phosphatase activation during mitotic exit, required for faithful chromosome segregation and completion of the cell division cycle. During the cell cycle, a specific sequence of events leads to the formation of two daughter cells from one mother cell. Progression through the cell cycle is tightly controlled, with events occurring in the right place at the right time. Exactly how this is achieved is still being elucidated. In budding yeast, the events occurring during the final cell cycle phase – “mitotic exit” – are controlled by the phosphatase Cdc14. It is kept sequestered and inactive until it is needed for mitotic exit, at which time it is rapidly released. In this study, we have identified a new regulator of Cdc14 activity, the protein Nur1. In a series of experiments, we saw that Nur1 acts both upstream and downstream of Cdc14 activation, thereby creating a positive feedback loop. On the one hand, Nur1 contributes to inhibiting Cdc14 until the start of mitotic exit. On the other hand, through the actions of Cdc14 itself, Nur1 is disabled as an opponent of the phosphatase. This creates a robust system, rapidly switching between two opposing states and thus driving forward the mitotic exit transition.
Collapse
Affiliation(s)
- Molly Godfrey
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Thomas Kuilman
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Kuilman T, Maiolica A, Godfrey M, Scheidel N, Aebersold R, Uhlmann F. Identification of Cdk targets that control cytokinesis. EMBO J 2014; 34:81-96. [PMID: 25371407 PMCID: PMC4291482 DOI: 10.15252/embj.201488958] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The final event of the eukaryotic cell cycle is cytokinesis, when two new daughter cells are born. How the timing and execution of cytokinesis is controlled is poorly understood. Here, we show that downregulation of cyclin-dependent kinase (Cdk) activity, together with upregulation of its counteracting phosphatase Cdc14, controls each of the sequential steps of cytokinesis, including furrow ingression, membrane resolution and cell separation in budding yeast. We use phosphoproteome analysis of mitotic exit to identify Cdk targets that are dephosphorylated at the time of cytokinesis. We then apply a new and widely applicable tool to generate conditionally phosphorylated proteins to identify those whose dephosphorylation is required for cytokinesis. This approach identifies Aip1, Ede1 and Inn1 as cytokinetic regulators. Our results suggest that cytokinesis is coordinately controlled by the master cell cycle regulator Cdk together with its counteracting phosphatase and that it is executed by concerted dephosphorylation of Cdk targets involved in several cell biological processes.
Collapse
Affiliation(s)
- Thomas Kuilman
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| | - Alessio Maiolica
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Molly Godfrey
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| | - Noémie Scheidel
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute Lincoln's Inn Fields Laboratories, London, UK
| |
Collapse
|
11
|
Signon L, Simon MN. The analysis of S. cerevisiae cells deleted for mitotic cyclin Clb2 reveals a novel requirement of Sgs1 DNA helicase and Exonuclease 1 when replication forks break in the presence of alkylation damage. Mutat Res 2014; 769:80-92. [PMID: 25771727 DOI: 10.1016/j.mrfmmm.2014.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 07/19/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
In this study, we report the effects of deleting the principal mitotic cyclin, Clb2, in different repair deficient contexts on sensitivity to the alkylating DNA damaging agent, methyl methanesulphonate (MMS). A yeast clb2 mutant is sensitive to MMS and displays synergistic effect when combined with inactivation of numerous genes involved in DNA recombination and replication. In contrast, clb2 has basically no additional effect with deletion of the RecQ helicase SGS1, the exonuclease EXO1 and the protein kinase RAD53 suggesting that Clb2 functions in these pathways. In addition, clb2 increases the viability of the mec1 kinase deficient mutant, suggesting Mec1 inhibits a deleterious Clb2 activity. Interestingly, we found that the rescue by EXO1 deletion of rad53K227 mutant, deficient in checkpoint activation, requires Sgs1, suggesting a role for Rad53, independent of its checkpoint function, in regulating an ordered recruitment of Sgs1 and Exo1 to fork structure. Overall, our data suggest that Clb2 affects recombinant structure of replication fork blocked by alkylating DNA damage at numerous steps and could regulate Sgs1 and Exo1 activity. In addition, we found novel requirement of Sgs1 DNA helicase and Exonuclease 1 when replication forks breaks in the presence of alkylation damage. Models for the functional interactions of mitotic cyclin Clb2, Sgs1 and Exo1 with replication fork stabilization are proposed.
Collapse
Affiliation(s)
- Laurence Signon
- Laboratoire d'Ingenierie des Systèmes Macromoléculaires CNRS UPR9027, Aix-Marseille University, 13402 Marseille Cedex 20, France; Université Paris-Sud, CNRS UMR8621, Institut de Génétique et Microbiologie, Bâtiment 400, 91405 Orsay Cedex, France.
| | - Marie Noelle Simon
- Laboratoire d'Ingenierie des Systèmes Macromoléculaires CNRS UPR9027, Aix-Marseille University, 13402 Marseille Cedex 20, France
| |
Collapse
|
12
|
Kao L, Wang YT, Chen YC, Tseng SF, Jhang JC, Chen YJ, Teng SC. Global analysis of cdc14 dephosphorylation sites reveals essential regulatory role in mitosis and cytokinesis. Mol Cell Proteomics 2013; 13:594-605. [PMID: 24319056 DOI: 10.1074/mcp.m113.032680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Degradation of the M phase cyclins triggers the exit from M phase. Cdc14 is the major phosphatase required for the exit from the M phase. One of the functions of Cdc14 is to dephosphorylate and activate the Cdh1/APC/C complex, resulting in the degradation of the M phase cyclins. However, other crucial targets of Cdc14 for mitosis and cytokinesis remain to be elucidated. Here we systematically analyzed the positions of dephosphorylation sites for Cdc14 in the budding yeast Saccharomyces cerevisiae. Quantitative mass spectrometry identified a total of 835 dephosphorylation sites on 455 potential Cdc14 substrates in vivo. We validated two events, and through functional studies we discovered that Cdc14-mediated dephosphorylation of Smc4 and Bud3 is essential for proper mitosis and cytokinesis, respectively. These results provide insight into the Cdc14-mediated pathways for exiting the M phase.
Collapse
Affiliation(s)
- Li Kao
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Machu C, Eluère R, Signon L, Simon MN, de La Roche Saint-André C, Bailly E. Spatially distinct functions of Clb2 in the DNA damage response. Cell Cycle 2013; 13:383-98. [PMID: 24300211 DOI: 10.4161/cc.27354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In budding yeast four mitotic cyclins (Clb1-4) cooperate in a partially redundant manner to bring about M-phase specific events, including the apical isotropic switch that ends polarized bud growth initiated at bud emergence. How exactly this morphogenetic transition is regulated by mitotic CDKs remains poorly understood. We have taken advantage of the isotropic bud growth that prevails in cells responding to DNA damage to unravel the contribution of mitotic cyclins in this cellular context. We find that clb2∆, in contrast to the other mitotic cyclin mutants, inappropriately respond to the presence of DNA damage. This aberrant response is characterized by a Cdc42- and Bni1-dependent but Cln-independent resumption of polarized bud growth after a brief period of actin depolarization. Biochemical and genetic evidence is presented that formally excludes the possibility of indirect effects due for instance to unrestrained APC activity, untimely mitotic exit or Swe1-mediated CDK inhibition. Importantly, our data demonstrate that in order to maintain the characteristic dumbbell arrest phenotype upon checkpoint activation Clb2 needs to be efficiently exported into the cytoplasm. We propose that the inhibition of mitotic cyclin destruction by the DNA damage checkpoint pathway leads to a buildup of Clb2 in the cytoplasm where this cyclin can stabilize the apical isotropic switch throughout a G 2/M checkpoint arrest. Our study also unveils an essential role of nuclear Clb2 in both survival and adaptation to the DNA damage checkpoint, illustrating a spatially distinct dual function of this mitotic cyclin in the response to DNA damage.
Collapse
Affiliation(s)
- Christophe Machu
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France
| | - Raïssa Eluère
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| | - Laurence Signon
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France
| | - Marie-Noëlle Simon
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| | - Christophe de La Roche Saint-André
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| | - Eric Bailly
- CNRS; UPR9027; Laboratoire d'Ingénierie des Systèmes Macromoléculaires; Marseille, France; CNRS; UPR3081; Instabilité du Génome et Cancérogenèse; Marseille, France
| |
Collapse
|
14
|
Mathieu J, Cauvin C, Moch C, Radford SJ, Sampaio P, Perdigoto CN, Schweisguth F, Bardin AJ, Sunkel CE, McKim K, Echard A, Huynh JR. Aurora B and cyclin B have opposite effects on the timing of cytokinesis abscission in Drosophila germ cells and in vertebrate somatic cells. Dev Cell 2013; 26:250-65. [PMID: 23948252 DOI: 10.1016/j.devcel.2013.07.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Revised: 04/10/2013] [Accepted: 07/09/2013] [Indexed: 01/28/2023]
Abstract
Abscission is the last step of cytokinesis that physically separates the cytoplasm of sister cells. As the final stage of cell division, abscission is poorly characterized during animal development. Here, we show that Aurora B and Survivin regulate the number of germ cells in each Drosophila egg chamber by inhibiting abscission during differentiation. This inhibition is mediated by an Aurora B-dependent phosphorylation of Cyclin B, as a phosphomimic form of Cyclin B rescues premature abscission caused by a loss of function of Aurora B. We show that Cyclin B localizes at the cytokinesis bridge, where it promotes abscission. We propose that mutual inhibitions between Aurora B and Cyclin B regulate the duration of abscission and thereby the number of sister cells in each cyst. Finally, we show that inhibitions of Aurora B and Cyclin-dependent kinase 1 activity in vertebrate cells also have opposite effects on the timing of abscission, suggesting a possible conservation of these mechanisms.
Collapse
Affiliation(s)
- Juliette Mathieu
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang X, Jost APT, Weiner OD, Tang C. A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol Biol Cell 2013; 24:2419-30. [PMID: 23761071 PMCID: PMC3727934 DOI: 10.1091/mbc.e13-03-0126] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/28/2013] [Accepted: 05/31/2013] [Indexed: 11/24/2022] Open
Abstract
Protein localization plays a central role in cell biology. Although powerful tools exist to assay the spatial and temporal dynamics of proteins in living cells, our ability to control these dynamics has been much more limited. We previously used the phytochrome B- phytochrome-interacting factor light-gated dimerization system to recruit proteins to the plasma membrane, enabling us to control the activation of intracellular signals in mammalian cells. Here we extend this approach to achieve rapid, reversible, and titratable control of protein localization for eight different organelles/positions in budding yeast. By tagging genes at the endogenous locus, we can recruit proteins to or away from their normal sites of action. This system provides a general strategy for dynamically activating or inactivating proteins of interest by controlling their localization and therefore their availability to binding partners and substrates, as we demonstrate for galactose signaling. More importantly, the temporal and spatial precision of the system make it possible to identify when and where a given protein's activity is necessary for function, as we demonstrate for the mitotic cyclin Clb2 in nuclear fission and spindle stabilization. Our light-inducible organelle-targeting system represents a powerful approach for achieving a better understanding of complex biological systems.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
| | - Anna Payne-Tobin Jost
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Orion D. Weiner
- Cardiovascular Research Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158
| | - Chao Tang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158
- Center for Quantitative Biology and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Lu Y, Cross F. Mitotic exit in the absence of separase activity. Mol Biol Cell 2009; 20:1576-91. [PMID: 19144818 PMCID: PMC2649255 DOI: 10.1091/mbc.e08-10-1042] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 12/15/2008] [Accepted: 01/05/2009] [Indexed: 12/13/2022] Open
Abstract
In budding yeast, three interdigitated pathways regulate mitotic exit (ME): mitotic cyclin-cyclin-dependent kinase (Cdk) inactivation; the Cdc14 early anaphase release (FEAR) network, including a nonproteolytic function of separase (Esp1); and the mitotic exit network (MEN) driven by interaction between the spindle pole body and the bud cortex. Here, we evaluate the contributions of these pathways to ME kinetics. Reducing Cdk activity is critical for ME, and the MEN contributes strongly to ME efficiency. Esp1 contributes to ME kinetics mainly through cohesin cleavage: the Esp1 requirement can be largely bypassed if cells are provided Esp1-independent means of separating sister chromatids. In the absence of Esp1 activity, we observed only a minor ME delay consistent with a FEAR defect. Esp1 overexpression drives ME in Cdc20-depleted cells arrested in metaphase. We have found that this activity of overexpressed Esp1 depended on spindle integrity and the MEN. We defined the first quantitative measure for Cdc14 release based on colocalization with the Net1 nucleolar anchor. This measure indicates efficient Cdc14 release upon MEN activation; release driven by Esp1 in the absence of microtubules was inefficient and incapable of driving ME. We also found a novel role for the MEN: activating Cdc14 nuclear export, even in the absence of Net1.
Collapse
Affiliation(s)
- Ying Lu
- The Rockefeller University, New York, NY 10065
| | | |
Collapse
|
17
|
Keaton MA, Szkotnicki L, Marquitz AR, Harrison J, Zyla TR, Lew DJ. Nucleocytoplasmic trafficking of G2/M regulators in yeast. Mol Biol Cell 2008; 19:4006-18. [PMID: 18562688 DOI: 10.1091/mbc.e08-03-0286] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleocytoplasmic shuttling is prevalent among many cell cycle regulators controlling the G2/M transition. Shuttling of cyclin/cyclin-dependent kinase (CDK) complexes is thought to provide access to substrates stably located in either compartment. Because cyclin/CDK shuttles between cellular compartments, an upstream regulator that is fixed in one compartment could in principle affect the entire cyclin/CDK pool. Alternatively, the regulators themselves may need to shuttle to effectively regulate their moving target. Here, we identify localization motifs in the budding yeast Swe1p (Wee1) and Mih1p (Cdc25) cell cycle regulators. Replacement of endogenous Swe1p or Mih1p with mutants impaired in nuclear import or export revealed that the nuclear pools of Swe1p and Mih1p were more effective in CDK regulation than were the cytoplasmic pools. Nevertheless, shuttling of cyclin/CDK complexes was sufficiently rapid to coordinate nuclear and cytoplasmic events even when Swe1p or Mih1p were restricted to one compartment. Additionally, we found that Swe1p nuclear export was important for its degradation. Because Swe1p degradation is regulated by cytoskeletal stress, shuttling of Swe1p between nucleus and cytoplasm serves to couple cytoplasmic stress to nuclear cyclin/CDK inhibition.
Collapse
Affiliation(s)
- Mignon A Keaton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The final stages of mitosis begin in anaphase, when the mitotic spindle segregates the duplicated chromosomes. Mitotic exit is then completed by disassembly of the spindle and packaging of chromosomes into daughter nuclei. The successful completion of mitosis requires that these events occur in a strict order. Two main mechanisms govern progression through late mitosis: dephosphorylation of cyclin-dependent kinase (Cdk) substrates and destruction of the substrates of the anaphase-promoting complex (APC). Here, we discuss the hypothesis that the order of late mitotic events depends, at least in part, on the order in which different Cdk and APC substrates are dephosphorylated or destroyed, respectively.
Collapse
Affiliation(s)
- Matt Sullivan
- Department of Physiology, University of California, 600 16th Street, San Francisco, California 94158-2517, USA
| | | |
Collapse
|
19
|
Current awareness on yeast. Yeast 2007. [DOI: 10.1002/yea.1453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|