1
|
Chapa-Y-Lazo B, Hamanaka M, Wray A, Balasubramanian MK, Mishima M. Polar relaxation by dynein-mediated removal of cortical myosin II. J Cell Biol 2021; 219:151836. [PMID: 32497213 PMCID: PMC7401816 DOI: 10.1083/jcb.201903080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 02/03/2020] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Nearly six decades ago, Lewis Wolpert proposed the relaxation of the polar cell cortex by the radial arrays of astral microtubules as a mechanism for cleavage furrow induction. While this mechanism has remained controversial, recent work has provided evidence for polar relaxation by astral microtubules, although its molecular mechanisms remain elusive. Here, using C. elegans embryos, we show that polar relaxation is achieved through dynein-mediated removal of myosin II from the polar cortexes. Mutants that position centrosomes closer to the polar cortex accelerated furrow induction, whereas suppression of dynein activity delayed furrowing. We show that dynein-mediated removal of myosin II from the polar cortexes triggers a bidirectional cortical flow toward the cell equator, which induces the assembly of the actomyosin contractile ring. These results provide a molecular mechanism for the aster-dependent polar relaxation, which works in parallel with equatorial stimulation to promote robust cytokinesis.
Collapse
Affiliation(s)
- Bernardo Chapa-Y-Lazo
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Motonari Hamanaka
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,Hokkaido University, Sapporo, Japan
| | - Alexander Wray
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK.,University of Nottingham, Nottingham, UK
| | - Mohan K Balasubramanian
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology & Division of Biomedical Sciences, Warwick Medical School, Coventry, UK
| |
Collapse
|
2
|
Abstract
The active form of the small GTPase RhoA is necessary and sufficient for formation of a cytokinetic furrow in animal cells. Despite the conceptual simplicity of the process, the molecular mechanisms that control it are intricate and involve redundancy at multiple levels. Here, we discuss our current knowledge of the mechanisms underlying spatiotemporal regulation of RhoA during cytokinesis by upstream activators. The direct upstream activator, the RhoGEF Ect2, requires activation due to autoinhibition. Ect2 is primarily activated by the centralspindlin complex, which contains numerous domains that regulate its subcellular localization, oligomeric state, and Ect2 activation. We review the functions of these domains and how centralspindlin is regulated to ensure correctly timed, equatorial RhoA activation. Highlighting recent evidence, we propose that although centralspindlin does not always prominently accumulate on the plasma membrane, it is the site where it promotes RhoA activation during cytokinesis.
Collapse
|
3
|
Abstract
Cytokinesis in metazoan cells is mediated by an actomyosin-based contractile ring that assembles in response to activation of the small GTPase RhoA. The guanine nucleotide exchange factor that activates RhoA during cytokinesis, ECT-2, is highly regulated. In most metazoan cells, with the notable exception of the early
Caenorhabditis elegans embryo, RhoA activation and furrow ingression require the centralspindlin complex. This exception is due to the existence of a parallel pathway for RhoA activation in
C. elegans. Centralspindlin contains CYK-4 which contains a predicted Rho family GTPase-activating protein (GAP) domain. The function of this domain has been the subject of considerable debate. Some publications suggest that the GAP domain promotes RhoA activation (for example, Zhang and Glotzer, 2015; Loria, Longhini and Glotzer, 2012), whereas others suggest that it functions to inactivate the GTPase Rac1 (for example, Zhuravlev
et al., 2017). Here, we review the mechanisms underlying RhoA activation during cytokinesis, primarily focusing on data in
C. elegans. We highlight the importance of considering the parallel pathway for RhoA activation and detailed analyses of
cyk-4 mutant phenotypes when evaluating the role of the GAP domain of CYK-4.
Collapse
Affiliation(s)
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
4
|
Von Stetina SE, Liang J, Marnellos G, Mango SE. Temporal regulation of epithelium formation mediated by FoxA, MKLP1, MgcRacGAP, and PAR-6. Mol Biol Cell 2017; 28:2042-2065. [PMID: 28539408 PMCID: PMC5509419 DOI: 10.1091/mbc.e16-09-0644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 05/18/2017] [Accepted: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
During embryo morphogenesis, minor epithelia are generated after, and then form bridges between, major epithelia (e.g., epidermis and gut). In Caenorhabditis elegans, this delay is regulated by four proteins that control production and localization of polarity proteins: the pioneer factor PHA-4/FoxA, kinesin ZEN-4/MKLP1, its partner CYK-4/MgcRacGAP, and PAR-6. To establish the animal body plan, embryos link the external epidermis to the internal digestive tract. In Caenorhabditis elegans, this linkage is achieved by the arcade cells, which form an epithelial bridge between the foregut and epidermis, but little is known about how development of these three epithelia is coordinated temporally. The arcade cell epithelium is generated after the epidermis and digestive tract epithelia have matured, ensuring that both organs can withstand the mechanical stress of embryo elongation; mistiming of epithelium formation leads to defects in morphogenesis. Using a combination of genetic, bioinformatic, and imaging approaches, we find that temporal regulation of the arcade cell epithelium is mediated by the pioneer transcription factor and master regulator PHA-4/FoxA, followed by the cytoskeletal regulator and kinesin ZEN-4/MKLP1 and the polarity protein PAR-6. We show that PHA-4 directly activates mRNA expression of a broad cohort of epithelial genes, including junctional factor dlg-1. Accumulation of DLG-1 protein is delayed by ZEN-4, acting in concert with its binding partner CYK-4/MgcRacGAP. Our structure–function analysis suggests that nuclear and kinesin functions are dispensable, whereas binding to CYK-4 is essential, for ZEN-4 function in polarity. Finally, PAR-6 is necessary to localize polarity proteins such as DLG-1 within adherens junctions and at the apical surface, thereby generating arcade cell polarity. Our results reveal that the timing of a landmark event during embryonic morphogenesis is mediated by the concerted action of four proteins that delay the formation of an epithelial bridge until the appropriate time. In addition, we find that mammalian FoxA associates with many epithelial genes, suggesting that direct regulation of epithelial identity may be a conserved feature of FoxA factors and a contributor to FoxA function in development and cancer.
Collapse
Affiliation(s)
- Stephen E Von Stetina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Jennifer Liang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| | - Georgios Marnellos
- Informatics and Scientific Applications, Science Division, Faculty of Arts and Sciences, Harvard University, Cambridge; MA 02138
| | - Susan E Mango
- Department of Molecular and Cellular Biology, Harvard University, Cambridge; MA 02138
| |
Collapse
|
5
|
Jordan SN, Davies T, Zhuravlev Y, Dumont J, Shirasu-Hiza M, Canman JC. Cortical PAR polarity proteins promote robust cytokinesis during asymmetric cell division. J Cell Biol 2016; 212:39-49. [PMID: 26728855 PMCID: PMC4700484 DOI: 10.1083/jcb.201510063] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In asymmetrically dividing C. elegans embryos, the core cortical PAR proteins are required to retain septin and anillin at the anterior cortex away from the contractile ring and to promote normal F-actin levels at the contractile ring and successful cytokinesis. Cytokinesis, the physical division of one cell into two, is thought to be fundamentally similar in most animal cell divisions and driven by the constriction of a contractile ring positioned and controlled solely by the mitotic spindle. During asymmetric cell divisions, the core polarity machinery (partitioning defective [PAR] proteins) controls the unequal inheritance of key cell fate determinants. Here, we show that in asymmetrically dividing Caenorhabditis elegans embryos, the cortical PAR proteins (including the small guanosine triphosphatase CDC-42) have an active role in regulating recruitment of a critical component of the contractile ring, filamentous actin (F-actin). We found that the cortical PAR proteins are required for the retention of anillin and septin in the anterior pole, which are cytokinesis proteins that our genetic data suggest act as inhibitors of F-actin at the contractile ring. Collectively, our results suggest that the cortical PAR proteins coordinate the establishment of cell polarity with the physical process of cytokinesis during asymmetric cell division to ensure the fidelity of daughter cell formation.
Collapse
Affiliation(s)
- Shawn N Jordan
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Tim Davies
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Yelena Zhuravlev
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032 Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julien Dumont
- Institut Jacques Monod, Centre National de la Recherche Scientifique, Unites Mixtes de Recherche 7592, Universite Paris Diderot, Sorbonne Paris Cité, 75205 Paris, France
| | - Mimi Shirasu-Hiza
- Department of Genetics and Development, Columbia University, New York, NY 10032
| | - Julie C Canman
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| |
Collapse
|
6
|
Mishima M. Centralspindlin in Rappaport’s cleavage signaling. Semin Cell Dev Biol 2016; 53:45-56. [DOI: 10.1016/j.semcdb.2016.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 03/02/2016] [Indexed: 02/07/2023]
|
7
|
Bourdages KG, Lacroix B, Dorn JF, Descovich CP, Maddox AS. Quantitative analysis of cytokinesis in situ during C. elegans postembryonic development. PLoS One 2014; 9:e110689. [PMID: 25329167 PMCID: PMC4203819 DOI: 10.1371/journal.pone.0110689] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022] Open
Abstract
The physical separation of a cell into two daughter cells during cytokinesis requires cell-intrinsic shape changes driven by a contractile ring. However, in vivo, cells interact with their environment, which includes other cells. How cytokinesis occurs in tissues is not well understood. Here, we studied cytokinesis in an intact animal during tissue biogenesis. We used high-resolution microscopy and quantitative analysis to study the three rounds of division of the C. elegans vulval precursor cells (VPCs). The VPCs are cut in half longitudinally with each division. Contractile ring breadth, but not the speed of ring closure, scales with cell length. Furrowing speed instead scales with division plane dimensions, and scaling is consistent between the VPCs and C. elegans blastomeres. We compared our VPC cytokinesis kinetics data with measurements from the C. elegans zygote and HeLa and Drosophila S2 cells. Both the speed dynamics and asymmetry of ring closure are qualitatively conserved among cell types. Unlike in the C. elegans zygote but similar to other epithelial cells, Anillin is required for proper ring closure speed but not asymmetry in the VPCs. We present evidence that tissue organization impacts the dynamics of cytokinesis by comparing our results on the VPCs with the cells of the somatic gonad. In sum, this work establishes somatic lineages in post-embryonic C. elegans development as cell biological models for the study of cytokinesis in situ.
Collapse
Affiliation(s)
- Karine G. Bourdages
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Lacroix
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
| | - Jonas F. Dorn
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, Canada
- Advanced Quantitative Sciences, Novartis Pharma AG, Basel, Switzerland
| | - Carlos P. Descovich
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amy S. Maddox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Cytokinesis, the final step in cell division, partitions the contents of a single cell into two. In animal cells, cytokinesis occurs through cortical remodeling orchestrated by the anaphase spindle. Cytokinesis relies on a tight interplay between signaling and cellular mechanics and has attracted the attention of both biologists and physicists for more than a century. In this review, we provide an overview of four topics in animal cell cytokinesis: (a) signaling between the anaphase spindle and cortex, (b) the mechanics of cortical remodeling, (c) abscission, and (d) regulation of cytokinesis by the cell cycle machinery. We report on recent progress in these areas and highlight some of the outstanding questions that these findings bring into focus.
Collapse
Affiliation(s)
- Rebecca A Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
9
|
Lewellyn L, Carvalho A, Desai A, Maddox AS, Oegema K. The chromosomal passenger complex and centralspindlin independently contribute to contractile ring assembly. ACTA ACUST UNITED AC 2011; 193:155-69. [PMID: 21464231 PMCID: PMC3082186 DOI: 10.1083/jcb.201008138] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In contrast to their sequential roles in midzone assembly, the CPC and centralspindlin act through independent mechanisms to regulate contractile ring assembly. The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora BAIR-2 and the centralspindlin component MKLP1ZEN-4 causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora BAIR-2–inhibited embryos, whereas inhibition of Rac does so in MKLP1ZEN-4-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Cellular and Molecular Medicine, Biomedical Sciences Graduate Program, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
10
|
Gregory SL, Lorensuhewa N, Saint R. Signalling through the RhoGEF Pebble in Drosophila. IUBMB Life 2010; 62:290-5. [PMID: 20175154 DOI: 10.1002/iub.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small GTPase pathways of the Ras superfamily are implicated in a wide range of signalling processes in animal cells. Small GTPases control pathways by acting as molecular switches. They are converted from an inactive GDP-bound form to an active GTP-bound form by GTP exchange factors (GEFs). The spatial and temporal regulation of GEFs is a major component of the regulation of small GTPases. Here we review the role of the Drosophila RhoGEF, Pebble (the Drosophila ortholog of mammalian ECT2). We discuss its roles in cytokinesis and cell migration, highlighting the diversity with which Rho family signalling pathways operate in biological systems.
Collapse
Affiliation(s)
- Stephen L Gregory
- School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
11
|
von Dassow G, Verbrugghe KJC, Miller AL, Sider JR, Bement WM. Action at a distance during cytokinesis. J Cell Biol 2009; 187:831-45. [PMID: 20008563 PMCID: PMC2806324 DOI: 10.1083/jcb.200907090] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/16/2009] [Indexed: 01/12/2023] Open
Abstract
Animal cells decide where to build the cytokinetic apparatus by sensing the position of the mitotic spindle. Reflecting a long-standing presumption that a furrow-inducing stimulus travels from spindle to cortex via microtubules, debate continues about which microtubules, and in what geometry, are essential for accurate cytokinesis. We used live imaging in urchin and frog embryos to evaluate the relationship between microtubule organization and cytokinetic furrow position. In normal cells, the cytokinetic apparatus forms in a region of lower cortical microtubule density. Remarkably, cells depleted of astral microtubules conduct accurate, complete cytokinesis. Conversely, in anucleate cells, asters alone can support furrow induction without a spindle, but only when sufficiently separated. Ablation of a single centrosome displaces furrows away from the remaining centrosome; ablation of both centrosomes causes broad, inefficient furrowing. We conclude that the asters confer accuracy and precision to a primary furrow-inducing signal that can reach the cell surface from the spindle without transport on microtubules.
Collapse
Affiliation(s)
- George von Dassow
- Center for Cell Dynamics, Friday Harbor Laboratories, University of Washington, Seattle, WA 98250, USA.
| | | | | | | | | |
Collapse
|
12
|
Lewellyn L, Dumont J, Desai A, Oegema K. Analyzing the effects of delaying aster separation on furrow formation during cytokinesis in the Caenorhabditis elegans embryo. Mol Biol Cell 2009; 21:50-62. [PMID: 19889842 PMCID: PMC2801719 DOI: 10.1091/mbc.e09-01-0089] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Signaling by the centrosomal asters and spindle midzone coordinately directs formation of the cytokinetic furrow. Here, we explore the contribution of the asters by analyzing the consequences of altering interaster distance during the first cytokinesis of the Caenorhabditis elegans embryo. Delaying aster separation, by using TPXL-1 depletion to shorten the metaphase spindle, leads to a corresponding delay in furrow formation, but results in a single furrow that ingresses at a normal rate. Preventing aster separation, by simultaneously inhibiting TPXL-1 and Galpha signaling-based cortical forces pulling on the asters, delays furrow formation and leads to the formation of multiple furrows that ingress toward the midzone. Disrupting midzone-based signaling, by depleting conserved midzone complexes, results in a converse phenotype: neither the timing nor the number of furrows is affected, but the rate of furrow ingression is decreased threefold. Simultaneously delaying aster separation and disrupting midzone-based signaling leads to complete failure of furrow formation. Based on these results, we propose that signaling by the separated asters executes two critical functions: 1) it couples furrow formation to anaphase onset by concentrating contractile ring proteins on the equatorial cortex in a midzone-independent manner and 2) it subsequently refines spindle midzone-based signaling to restrict furrowing to a single site.
Collapse
Affiliation(s)
- Lindsay Lewellyn
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
13
|
von Dassow G. Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol 2009; 19:165-73. [PMID: 19285868 DOI: 10.1016/j.tcb.2009.01.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 01/23/2023]
Abstract
Animal cells are deformable, yet live together bound into tissues. Consequently, physical perturbations imposed by neighbors threaten to disrupt the spatial coordination of cell cleavage with chromosome segregation during mitosis. Emerging evidence demonstrates that animal cells integrate multiple positional cues during cleavage-furrow induction, perhaps to facilitate error correction. Classical work indicated that the asters provide the stimulus for furrow induction, but recent results implicate the central spindle at least as much. Similarly, although classical work concluded that the stimulus occurs at the cell equator, new evidence shows that asters modulate cortical contractility outside the equator as well. Meanwhile, a newly revealed distinction between stable and dynamic astral microtubules suggests that these subsets might have complementary effects on furrow induction.
Collapse
Affiliation(s)
- George von Dassow
- Oregon Institute of Marine Biology, University of Oregon, Charleston, 97420, USA.
| |
Collapse
|
14
|
Abstract
Cells split in two at the final step of each division cycle. This division normally bisects through the middle of the cell and generates two equal daughters. However, developmental signals can change the plane of cell cleavage to facilitate asymmetric segregation of fate determinants and control the position and relative sizes of daughter cells. The anaphase spindle instructs the site of cell cleavage in animal cells, hence its position is critical in the regulation of symmetric vs asymmetric cell division. Studies in a variety of models identified evolutionarily conserved mechanisms that control spindle positioning. However, how the spindle determines the cleavage site is poorly understood. Recent results in Caenorhabditis elegans indicate dual functions for a Galpha pathway in positioning the spindle and cleavage furrow. We review asymmetric division of the C. elegans zygote, with a focus on microtubule-cortex interactions that position the spindle and cleavage plane.
Collapse
Affiliation(s)
- Matilde Galli
- Developmental Biology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | |
Collapse
|
15
|
Abstract
Cleavage furrow formation in animal cells results from a local increase in cortical contractility. During anaphase, the spindle contains, in addition to astral arrays of microtubules, a set of bundled microtubules known as the central spindle. Each of these populations of microtubules, the astral arrays and the central spindle bundles, is sufficient to direct cleavage furrow formation, yet in wild-type situations these sets of microtubules co-operate to induce furrow formation at the same site, between the segregating chromosomes. These pathways have distinct genetic requirements that reflect their differential control of cortical actomyosin. We review our current understanding of the molecular mechanisms of furrow formation, with particular emphasis on the central spindle-independent pathway.
Collapse
|
16
|
Foe VE, von Dassow G. Stable and dynamic microtubules coordinately shape the myosin activation zone during cytokinetic furrow formation. J Cell Biol 2008; 183:457-70. [PMID: 18955555 PMCID: PMC2575787 DOI: 10.1083/jcb.200807128] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 09/05/2008] [Indexed: 01/29/2023] Open
Abstract
The cytokinetic furrow arises from spatial and temporal regulation of cortical contractility. To test the role microtubules play in furrow specification, we studied myosin II activation in echinoderm zygotes by assessing serine19-phosphorylated regulatory light chain (pRLC) localization after precisely timed drug treatments. Cortical pRLC was globally depressed before cytokinesis, then elevated only at the equator. We implicated cell cycle biochemistry (not microtubules) in pRLC depression, and differential microtubule stability in localizing the subsequent myosin activation. With no microtubules, pRLC accumulation occurred globally instead of equatorially, and loss of just dynamic microtubules increased equatorial pRLC recruitment. Nocodazole treatment revealed a population of stable astral microtubules that formed during anaphase; among these, those aimed toward the equator grew longer, and their tips coincided with cortical pRLC accumulation. Shrinking the mitotic apparatus with colchicine revealed pRLC suppression near dynamic microtubule arrays. We conclude that opposite effects of stable versus dynamic microtubules focuses myosin activation to the cell equator during cytokinesis.
Collapse
Affiliation(s)
- Victoria E Foe
- The Center for Cell Dynamics, University of Washington, Friday Harbor, WA 98250, USA.
| | | |
Collapse
|