1
|
Mahantesh Magadum M, McNally F. DLGR-1, a homolog of vertebrate DLGAP proteins, regulates spindle length and anaphase velocity during C. elegans meiosis. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001305. [PMID: 39220142 PMCID: PMC11364988 DOI: 10.17912/micropub.biology.001305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Chromosome segregation requires a large number of microtubule-binding proteins that mediate spindle assembly and function during mitosis and meiosis. BLAST revealed a single C. elegans homolog of HURP/DLGAP5, a microtubule-binding protein that regulates mitotic and meiotic spindles in vertebrates. This homolog, W03A5.6 , was named DLGR-1 (DLGAP related). Time-lapse imaging of an endogenously tagged DLGR-1::GFP during C. elegans meiosis revealed plasma membrane localization specifically during anaphase I and anaphase II when the meiotic spindle is closely apposed to the plasma membrane. Time-lapse imaging of microtubules and chromosomes during meiosis in a strain with a CRISPR deletion of the DLGR-1 coding sequence revealed metaphase spindles that were significantly shorter than controls and chromosome separation velocities that were significantly slower than controls. Extrusion of chromosomes into polar bodies proceeded normally, consistent with the high progeny viability of the homozygous deletion strain. Thus DLGR-1 may play an accessory or redundant role in meiotic spindle function during C. elegans meiosis.
Collapse
Affiliation(s)
| | - Francis McNally
- Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
2
|
Popova JV, Pavlova GA, Razuvaeva AV, Yarinich LA, Andreyeva EN, Anders AF, Galimova YA, Renda F, Somma MP, Pindyurin AV, Gatti M. Genetic Control of Kinetochore-Driven Microtubule Growth in Drosophila Mitosis. Cells 2022; 11:cells11142127. [PMID: 35883570 PMCID: PMC9323100 DOI: 10.3390/cells11142127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/08/2023] Open
Abstract
Centrosome-containing cells assemble their spindles exploiting three main classes of microtubules (MTs): MTs nucleated by the centrosomes, MTs generated near the chromosomes/kinetochores, and MTs nucleated within the spindle by the augmin-dependent pathway. Mammalian and Drosophila cells lacking the centrosomes generate MTs at kinetochores and eventually form functional bipolar spindles. However, the mechanisms underlying kinetochore-driven MT formation are poorly understood. One of the ways to elucidate these mechanisms is the analysis of spindle reassembly following MT depolymerization. Here, we used an RNA interference (RNAi)-based reverse genetics approach to dissect the process of kinetochore-driven MT regrowth (KDMTR) after colcemid-induced MT depolymerization. This MT depolymerization procedure allows a clear assessment of KDMTR, as colcemid disrupts centrosome-driven MT regrowth but not KDMTR. We examined KDMTR in normal Drosophila S2 cells and in S2 cells subjected to RNAi against conserved genes involved in mitotic spindle assembly: mast/orbit/chb (CLASP1), mei-38 (TPX2), mars (HURP), dgt6 (HAUS6), Eb1 (MAPRE1/EB1), Patronin (CAMSAP2), asp (ASPM), and Klp10A (KIF2A). RNAi-mediated depletion of Mast/Orbit, Mei-38, Mars, Dgt6, and Eb1 caused a significant delay in KDMTR, while loss of Patronin had a milder negative effect on this process. In contrast, Asp or Klp10A deficiency increased the rate of KDMTR. These results coupled with the analysis of GFP-tagged proteins (Mast/Orbit, Mei-38, Mars, Eb1, Patronin, and Asp) localization during KDMTR suggested a model for kinetochore-dependent spindle reassembly. We propose that kinetochores capture the plus ends of MTs nucleated in their vicinity and that these MTs elongate at kinetochores through the action of Mast/Orbit. The Asp protein binds the MT minus ends since the beginning of KDMTR, preventing excessive and disorganized MT regrowth. Mei-38, Mars, Dgt6, Eb1, and Patronin positively regulate polymerization, bundling, and stabilization of regrowing MTs until a bipolar spindle is reformed.
Collapse
Affiliation(s)
- Julia V. Popova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Laboratory of Bioengineering, Novosibirsk State Agrarian University, 630039 Novosibirsk, Russia
| | - Gera A. Pavlova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Alyona V. Razuvaeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Lyubov A. Yarinich
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Evgeniya N. Andreyeva
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Alina F. Anders
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Yuliya A. Galimova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
| | - Fioranna Renda
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Maria Patrizia Somma
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
| | - Alexey V. Pindyurin
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Correspondence: (A.V.P.); (M.G.)
| | - Maurizio Gatti
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (J.V.P.); (G.A.P.); (A.V.R.); (L.A.Y.); (E.N.A.); (A.F.A.); (Y.A.G.)
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), c/o Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy; (F.R.); (M.P.S.)
- Correspondence: (A.V.P.); (M.G.)
| |
Collapse
|
3
|
Palumbo V, Tariq A, Borgal L, Metz J, Brancaccio M, Gatti M, Wakefield JG, Bonaccorsi S. Drosophila Morgana is an Hsp90-interacting protein with a direct role in microtubule polymerisation. J Cell Sci 2020; 133:jcs236786. [PMID: 31907206 PMCID: PMC6983718 DOI: 10.1242/jcs.236786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/17/2019] [Indexed: 12/25/2022] Open
Abstract
Morgana (Mora, also known as CHORD in flies) and its mammalian homologue, called CHORDC1 or CHP1, is a highly conserved cysteine and histidine-rich domain (CHORD)-containing protein that has been proposed to function as an Hsp90 co-chaperone. Morgana deregulation promotes carcinogenesis in both mice and humans while, in Drosophila, loss of mora causes lethality and a complex mitotic phenotype that is rescued by a human morgana transgene. Here, we show that Drosophila Mora localises to mitotic spindles and co-purifies with the Hsp90-R2TP-TTT supercomplex and with additional well-known Hsp90 co-chaperones. Acute inhibition of Mora function in the early embryo results in a dramatic reduction in centrosomal microtubule stability, leading to small spindles nucleated from mitotic chromatin. Purified Mora binds to microtubules directly and promotes microtubule polymerisation in vitro, suggesting that Mora directly regulates spindle dynamics independently of its Hsp90 co-chaperone role.
Collapse
Affiliation(s)
- Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Ammarah Tariq
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Lori Borgal
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Jeremy Metz
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Mara Brancaccio
- Dipartimento di Genetica, Biologia e Biochimica, Università di Torino, 10126 Torino, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, 00185 Rome, Italy
| | - James G Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Silvia Bonaccorsi
- Dipartimento di Biologia e Biotecnologie Sapienza, Università di Roma, 00185 Rome, Italy
| |
Collapse
|
4
|
Dudka D, Castrogiovanni C, Liaudet N, Vassal H, Meraldi P. Spindle-Length-Dependent HURP Localization Allows Centrosomes to Control Kinetochore-Fiber Plus-End Dynamics. Curr Biol 2019; 29:3563-3578.e6. [PMID: 31668617 DOI: 10.1016/j.cub.2019.08.061] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/23/2019] [Accepted: 08/22/2019] [Indexed: 11/25/2022]
Abstract
During mitosis, centrosomes affect the length of kinetochore fibers (k-fibers) and the stability of kinetochore-microtubule attachments, implying that they regulate k-fiber dynamics. However, the exact cellular and molecular mechanisms of this regulation remain unknown. Here, we created human cells with only one centrosome to investigate these mechanisms. Such cells formed asymmetric bipolar spindles that resulted in asymmetric cell divisions. K-fibers in the acentrosomal half-spindles were shorter, more stable, and had a reduced poleward microtubule flux at minus ends and more frequent pausing events at their plus ends. This indicates that centrosomes regulate k-fiber dynamics both locally at minus ends and far away at plus ends. At the molecular level, we find that the microtubule-stabilizing protein HURP is enriched on the k-fiber plus ends in the acentrosomal half-spindles of cells with only one centrosome. HURP depletion rebalances k-fiber stability and plus-end dynamics in such cells and improves spindle and cell division symmetry. Our data from 3 different cell lines indicate that HURP accumulates on k-fibers inversely proportionally to half-spindle length. We therefore propose that centrosomes regulate k-fiber plus ends indirectly via length-dependent accumulation of HURP.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Cédric Castrogiovanni
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Nicolas Liaudet
- Bioimaging Facility, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland
| | - Hélène Vassal
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; National Institute of Applied Sciences, Villeurbanne 69621, France
| | - Patrick Meraldi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland; Translational Research Centre in Onco-hematology, Faculty of Medicine, University of Geneva, 1211 Geneva 4, Switzerland.
| |
Collapse
|
5
|
Blake-Hedges C, Megraw TL. Coordination of Embryogenesis by the Centrosome in Drosophila melanogaster. Results Probl Cell Differ 2019; 67:277-321. [PMID: 31435800 PMCID: PMC11725063 DOI: 10.1007/978-3-030-23173-6_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The first 3 h of Drosophila melanogaster embryo development are exemplified by rapid nuclear divisions within a large syncytium, transforming the zygote to the cellular blastoderm after 13 successive cleavage divisions. As the syncytial embryo develops, it relies on centrosomes and cytoskeletal dynamics to transport nuclei, maintain uniform nuclear distribution throughout cleavage cycles, ensure generation of germ cells, and coordinate cellularization. For the sake of this review, we classify six early embryo stages that rely on processes coordinated by the centrosome and its regulation of the cytoskeleton. The first stage features migration of one of the female pronuclei toward the male pronucleus following maturation of the first embryonic centrosomes. Two subsequent stages distribute the nuclei first axially and then radially in the embryo. The remaining three stages involve centrosome-actin dynamics that control cortical plasma membrane morphogenesis. In this review, we highlight the dynamics of the centrosome and its role in controlling the six stages that culminate in the cellularization of the blastoderm embryo.
Collapse
Affiliation(s)
- Caitlyn Blake-Hedges
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| | - Timothy L Megraw
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
6
|
Bosveld F, Ainslie A, Bellaïche Y. Sequential activities of Dynein, Mud and Asp in centrosome-spindle coupling maintain centrosome number upon mitosis. J Cell Sci 2017; 130:3557-3567. [PMID: 28864767 DOI: 10.1242/jcs.201350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
Centrosomes nucleate microtubules and are tightly coupled to the bipolar spindle to ensure genome integrity, cell division orientation and centrosome segregation. While the mechanisms of centrosome-dependent microtubule nucleation and bipolar spindle assembly have been the focus of numerous works, less is known about the mechanisms ensuring the centrosome-spindle coupling. The conserved NuMA protein (Mud in Drosophila) is best known for its role in spindle orientation. Here, we analyzed the role of Mud and two of its interactors, Asp and Dynein, in the regulation of centrosome numbers in Drosophila epithelial cells. We found that Dynein and Mud mainly initiate centrosome-spindle coupling prior to nuclear envelope breakdown (NEB) by promoting correct centrosome positioning or separation, while Asp acts largely independently of Dynein and Mud to maintain centrosome-spindle coupling. Failure in the centrosome-spindle coupling leads to mis-segregation of the two centrosomes into one daughter cell, resulting in cells with supernumerary centrosomes during subsequent divisions. Altogether, we propose that Dynein, Mud and Asp operate sequentially during the cell cycle to ensure efficient centrosome-spindle coupling in mitosis, thereby preventing centrosome mis-segregation to maintain centrosome number.
Collapse
Affiliation(s)
- Floris Bosveld
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris, France .,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Anna Ainslie
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris, France .,Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
7
|
Wallberg A, Pirk CW, Allsopp MH, Webster MT. Identification of Multiple Loci Associated with Social Parasitism in Honeybees. PLoS Genet 2016; 12:e1006097. [PMID: 27280405 PMCID: PMC4900560 DOI: 10.1371/journal.pgen.1006097] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/10/2016] [Indexed: 12/20/2022] Open
Abstract
In colonies of the honeybee Apis mellifera, the queen is usually the only reproductive female, which produces new females (queens and workers) by laying fertilized eggs. However, in one subspecies of A. mellifera, known as the Cape bee (A. m. capensis), worker bees reproduce asexually by thelytoky, an abnormal form of meiosis where two daughter nucleii fuse to form single diploid eggs, which develop into females without being fertilized. The Cape bee also exhibits a suite of phenotypes that facilitate social parasitism whereby workers lay such eggs in foreign colonies so their offspring can exploit their resources. The genetic basis of this switch to social parasitism in the Cape bee is unknown. To address this, we compared genome variation in a sample of Cape bees with other African populations. We find genetic divergence between these populations to be very low on average but identify several regions of the genome with extreme differentiation. The regions are strongly enriched for signals of selection in Cape bees, indicating that increased levels of positive selection have produced the unique set of derived phenotypic traits in this subspecies. Genetic variation within these regions allows unambiguous genetic identification of Cape bees and likely underlies the genetic basis of social parasitism. The candidate loci include genes involved in ecdysteroid signaling and juvenile hormone and dopamine biosynthesis, which may regulate worker ovary activation and others whose products localize at the centrosome and are implicated in chromosomal segregation during meiosis. Functional analysis of these loci will yield insights into the processes of reproduction and chemical signaling in both parasitic and non-parasitic populations and advance understanding of the process of normal and atypical meiosis.
Collapse
Affiliation(s)
- Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| | - Christian W. Pirk
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Mike H. Allsopp
- Plant Protection Research Institute, Agricultural Research Council, Stellenbosch, South Africa
| | - Matthew T. Webster
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- * E-mail: (AW); (MTW)
| |
Collapse
|
8
|
Chen JWC, Barker AR, Wakefield JG. The Ran Pathway in Drosophila melanogaster Mitosis. Front Cell Dev Biol 2015; 3:74. [PMID: 26636083 PMCID: PMC4659922 DOI: 10.3389/fcell.2015.00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/09/2015] [Indexed: 11/29/2022] Open
Abstract
Over the last two decades, the small GTPase Ran has emerged as a central regulator of both mitosis and meiosis, particularly in the generation, maintenance, and regulation of the microtubule (MT)-based bipolar spindle. Ran-regulated pathways in mitosis bear many similarities to the well-characterized functions of Ran in nuclear transport and, as with transport, the majority of these mitotic effects are mediated through affecting the physical interaction between karyopherins and Spindle Assembly Factors (SAFs)—a loose term describing proteins or protein complexes involved in spindle assembly through promoting nucleation, stabilization, and/or depolymerization of MTs, through anchoring MTs to specific structures such as centrosomes, chromatin or kinetochores, or through sliding MTs along each other to generate the force required to achieve bipolarity. As such, the Ran-mediated pathway represents a crucial functional module within the wider spindle assembly landscape. Research into mitosis using the model organism Drosophila melanogaster has contributed substantially to our understanding of centrosome and spindle function. However, in comparison to mammalian systems, very little is known about the contribution of Ran-mediated pathways in Drosophila mitosis. This article sets out to summarize our understanding of the roles of the Ran pathway components in Drosophila mitosis, focusing on the syncytial blastoderm embryo, arguing that it can provide important insights into the conserved functions on Ran during spindle formation.
Collapse
Affiliation(s)
- Jack W C Chen
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| | - Amy R Barker
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK ; Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter Exeter, UK
| |
Collapse
|
9
|
Antimicrobial activity of zinc and titanium dioxide nanoparticles against biofilm-producing methicillin-resistant Staphylococcus aureus. APPLIED NANOSCIENCE 2014. [DOI: 10.1007/s13204-014-0301-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Hayward D, Metz J, Pellacani C, Wakefield JG. Synergy between multiple microtubule-generating pathways confers robustness to centrosome-driven mitotic spindle formation. Dev Cell 2014; 28:81-93. [PMID: 24389063 PMCID: PMC3898610 DOI: 10.1016/j.devcel.2013.12.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/21/2013] [Accepted: 12/03/2013] [Indexed: 12/30/2022]
Abstract
The mitotic spindle is defined by its organized, bipolar mass of microtubules, which drive chromosome alignment and segregation. Although different cells have been shown to use different molecular pathways to generate the microtubules required for spindle formation, how these pathways are coordinated within a single cell is poorly understood. We have tested the limits within which the Drosophila embryonic spindle forms, disrupting the inherent temporal control that overlays mitotic microtubule generation, interfering with the molecular mechanism that generates new microtubules from preexisting ones, and disrupting the spatial relationship between microtubule nucleation and the usually dominant centrosome. Our work uncovers the possible routes to spindle formation in embryos and establishes the central role of Augmin in all microtubule-generating pathways. It also demonstrates that the contributions of each pathway to spindle formation are integrated, highlighting the remarkable flexibility with which cells can respond to perturbations that limit their capacity to generate microtubules.
Collapse
Affiliation(s)
- Daniel Hayward
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jeremy Metz
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Claudia Pellacani
- Istituto Pasteur-Fondazione Cenci Bolognetti, "La Sapienza" Università di Roma, P.le A. Moro 5, 00185 Roma, Italy
| | - James G Wakefield
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
11
|
Zhang G, Beati H, Nilsson J, Wodarz A. The Drosophila microtubule-associated protein mars stabilizes mitotic spindles by crosslinking microtubules through its N-terminal region. PLoS One 2013; 8:e60596. [PMID: 23593258 PMCID: PMC3617137 DOI: 10.1371/journal.pone.0060596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 02/28/2013] [Indexed: 12/27/2022] Open
Abstract
Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs.
Collapse
Affiliation(s)
- Gang Zhang
- Stem Cell Biology, Dept. of Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hamze Beati
- Stem Cell Biology, Dept. of Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
| | - Jakob Nilsson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail: (JN); (AW)
| | - Andreas Wodarz
- Stem Cell Biology, Dept. of Anatomy and Cell Biology, University of Goettingen, Goettingen, Germany
- * E-mail: (JN); (AW)
| |
Collapse
|
12
|
Burakov AV, Nadezhdina ES. Association of nucleus and centrosome: magnet or velcro? Cell Biol Int 2013; 37:95-104. [DOI: 10.1002/cbin.10016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/12/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Anton V. Burakov
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
| | - Elena S. Nadezhdina
- A.N.Belozersky Institute of Physico-Chemical Biology of Lomonosov Moscow State University; Vorobjevy Gory, 1/40, Moscow 119992 Russia
- Institute of Protein Research of Russian Academy of Science; Vavilova ul., 34, Moscow 119333 Russia
| |
Collapse
|
13
|
Riparbelli MG, Giordano R, Ueyama M, Callaini G. Wolbachia-mediated male killing is associated with defective chromatin remodeling. PLoS One 2012; 7:e30045. [PMID: 22291901 PMCID: PMC3264553 DOI: 10.1371/journal.pone.0030045] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 12/08/2011] [Indexed: 11/19/2022] Open
Abstract
Male killing, induced by different bacterial taxa of maternally inherited microorganisms, resulting in highly distorted female-biased sex-ratios, is a common phenomenon among arthropods. Some strains of the endosymbiont bacteria Wolbachia have been shown to induce this phenotype in particular insect hosts. High altitude populations of Drosophila bifasciata infected with Wolbachia show selective male killing during embryonic development. However, since this was first reported, circa 60 years ago, the interaction between Wolbachia and its host has remained unclear. Herein we show that D. bifasciata male embryos display defective chromatin remodeling, improper chromatid segregation and chromosome bridging, as well as abnormal mitotic spindles and gradual loss of their centrosomes. These defects occur at different times in the early development of male embryos leading to death during early nuclear division cycles or large defective areas of the cellular blastoderm, culminating in abnormal embryos that die before eclosion. We propose that Wolbachia affects the development of male embryos by specifically targeting male chromatin remodeling and thus disturbing mitotic spindle assembly and chromosome behavior. These are the first observations that demonstrate fundamental aspects of the cytological mechanism of male killing and represent a solid base for further molecular studies of this phenomenon.
Collapse
Affiliation(s)
| | - Rosanna Giordano
- Illinois Natural History Survey, Institute of Natural Resource Sustainability, University of Illinois at Urbana-Champaign, Champaign, Illinois, United States of America
| | - Morio Ueyama
- Laboratory of Cell Biology, Department of Bioinformatics, Soka University, Hachioji, Tokyo, Japan
| | - Giuliano Callaini
- Department of Evolutionary Biology, University of Siena, Siena, Italy
- * E-mail:
| |
Collapse
|
14
|
Specific Cooperation Between Imp-α2 and Imp-β/Ketel in Spindle Assembly During Drosophila Early Nuclear Divisions. G3-GENES GENOMES GENETICS 2012; 2:1-14. [PMID: 22384376 PMCID: PMC3276186 DOI: 10.1534/g3.111.001073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 10/14/2011] [Indexed: 12/22/2022]
Abstract
The multifunctional factors Imp-α and Imp-β are involved in nuclear protein import, mitotic spindle dynamics, and nuclear membrane formation. Furthermore, each of the three members of the Imp-α family exerts distinct tasks during development. In Drosophila melanogaster, the imp-α2 gene is critical during oogenesis for ring canal assembly; specific mutations, which allow oogenesis to proceed normally, were found to block early embryonic mitosis. Here, we show that imp-α2 and imp-β genetically interact during early embryonic development, and we characterize the pattern of defects affecting mitosis in embryos laid by heterozygous imp-α2(D14) and imp-β(KetRE34) females. Embryonic development is arrested in these embryos but is unaffected in combinations between imp-β(KetRE34) and null mutations in imp-α1 or imp-α3. Furthermore, the imp-α2(D14)/imp-β(KetRE34) interaction could only be rescued by an imp-α2 transgene, albeit not imp-α1 or imp-α3, showing the exclusive imp-α2 function with imp-β. Use of transgenes carrying modifications in the major Imp-α2 domains showed the critical requirement of the nuclear localization signal binding (NLSB) site in this process. In the mutant embryos, we found metaphase-arrested mitoses made of enlarged spindles, suggesting an unrestrained activity of factors promoting spindle assembly. In accordance with this, we found that Imp-β(KetRE34) and Imp-β(KetD) bind a high level of RanGTP/GDP, and a deletion decreasing RanGTP level suppresses the imp-β(KetRE34) phenotype. These data suggest that a fine balance among Imp-α2, Imp-β, RanGTP, and the NLS cargos is critical for mitotic progression during early embryonic development.
Collapse
|
15
|
Identification of a TPX2-like microtubule-associated protein in Drosophila. PLoS One 2011; 6:e28120. [PMID: 22140519 PMCID: PMC3227607 DOI: 10.1371/journal.pone.0028120] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/01/2011] [Indexed: 12/31/2022] Open
Abstract
Chromosome segregation during mitosis and meiosis relies on the spindle and the functions of numerous microtubule-associated proteins (MAPs). One of the best-studied spindle MAPs is the highly conserved TPX2, which has been reported to have characteristic intracellular dynamics and molecular activities, such as nuclear localisation in interphase, poleward movement in the metaphase spindle, microtubule nucleation, microtubule stabilisation, microtubule bundling, Aurora A kinase activation, kinesin-5 binding, and kinesin-12 recruitment. This protein has been shown to be essential for spindle formation in every cell type analysed so far. However, as yet, TPX2 homologues have not been found in the Drosophila genome. In this study, I found that the Drosophila protein Ssp1/Mei-38 has significant homology to TPX2. Sequence conservation was limited to the putative spindle microtubule-associated region of TPX2, and intriguingly, D-TPX2 (Ssp1/Mei-38) lacks Aurora A- and kinesin-5-binding domains, which are highly conserved in other animal and plant species, including many insects such as ants and bees. D-TPX2 uniformly localised to kinetochore microtubule-enriched regions of the metaphase spindle in the S2 cell line, and it had microtubule binding and bundling activities in vitro. In comparison with other systems, the contribution of D-TPX2 to cell division seems to be minor; live cell imaging of microtubules and chromosomes after RNAi knockdown identified significant delay in chromosome congression in only 18% of the cells. Thus, while this conserved spindle protein is present in Drosophila, other mechanisms may largely compensate for its spindle assembly and chromosome segregation functions.
Collapse
|
16
|
Cesario J, McKim KS. RanGTP is required for meiotic spindle organization and the initiation of embryonic development in Drosophila. J Cell Sci 2011; 124:3797-810. [PMID: 22100918 PMCID: PMC3225268 DOI: 10.1242/jcs.084855] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2011] [Indexed: 11/20/2022] Open
Abstract
RanGTP is important for chromosome-dependent spindle assembly in Xenopus extracts. Here we report on experiments to determine the role of the Ran pathway on microtubule dynamics in Drosophila oocytes and embryos. Females expressing a dominant-negative form of Ran have fertility defects, suggesting that RanGTP is required for normal fertility. This is not, however, because of a defect in acentrosomal meiotic spindle assembly. Therefore, RanGTP does not appear to be essential or sufficient for the formation of the acentrosomal spindle. Instead, the most important function of the Ran pathway in spindle assembly appears to be in the tapering of microtubules at the spindle poles, which might be through regulation of proteins such as TACC and the HURP homolog, Mars. One consequence of this spindle organization defect is an increase in the nondisjunction of achiasmate chromosomes. However, the meiotic defects are not severe enough to cause the decreased fertility. Reductions in fertility occur because RanGTP has a role in microtubule assembly that is not directly nucleated by the chromosomes. This includes microtubules nucleated from the sperm aster, which are required for pronuclear fusion. We propose that following nuclear envelope breakdown, RanGTP is released from the nucleus and creates a cytoplasm that is activated for assembling microtubules, which is important for processes such as pronuclear fusion. Around the chromosomes, however, RanGTP might be redundant with other factors such as the chromosome passenger complex.
Collapse
Affiliation(s)
- J. Cesario
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, 190 Frelinghuysen RD, Piscataway NJ 08854-8020, USA
| | - K. S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, 190 Frelinghuysen RD, Piscataway NJ 08854-8020, USA
| |
Collapse
|
17
|
Li HH, Chiang CS, Huang HY, Liaw GJ. mars and tousled-like kinase act in parallel to ensure chromosome fidelity in Drosophila. J Biomed Sci 2009; 16:51. [PMID: 19486529 PMCID: PMC2705347 DOI: 10.1186/1423-0127-16-51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 06/01/2009] [Indexed: 01/08/2023] Open
Abstract
Background High levels of Hepatoma Up-Regulated Protein (HURP) and Tousled-Like Kinase (TLK) transcripts are found in hepatocellular carcinoma. HURP overexpression induces anchorage-independent growth of 293-T cells and enhances a rough-eye phenotype resulting from tlk overexpression in Drosophila. In addition, both HURP and Mars, a Drosophila HURP sequence homologue, promote polymerization of mitotic spindles. Thus, the genetic interaction of mars with tlk might be required for accurate chromosome segregation. Methods To reveal whether chromosome fidelity was decreased, the frequency of gynandromorphy, an individual with both male and female characteristics, and of non-disjunction were measured in the progeny from parents with reduced mars and/or tlk activities and analyzed by Student's t-test. To show that the genetic interaction between mars and tlk is epistatic or parallel, a cytological analysis of embryos with either reduced or increased activities of mars and/or tlk was used to reveal defects in mitotic-spindle morphology and chromosome segregation. Results A significant but small fraction of the progeny from parents with reduced mars activity showed gynandromorphy and non-disjunction. Results of cytological analysis revealed that the decrease in chromosome fidelity was a result of delayed polymerization of the mitotic spindle, which led to asynchronous chromosome segregation in embryos that had reduced mars activity. By removing one copy of tousled-like kinase (tlk) from flies with reduced mars activity, chromosome fidelity was further reduced. This was indicated by an increased in the non-disjunction rate and more severe asynchrony. However, the morphology of the mitotic spindles in the embryos at metaphase where both gene activities were reduced was similar to that in mars embryos. Furthermore, tlk overexpression did not affect the morphology of the mitotic spindles and the cellular localization of Mars protein. Conclusion Chromosome fidelity in progeny from parents with reduced mars and/or tlk activity was impaired. The results from cytological studies revealed that mars and tlk function in parallel and that a balance between mars activity and tlk activity is required for cells to progress through mitosis correctly, thus ensuring chromosome fidelity.
Collapse
Affiliation(s)
- Hsing-Hsi Li
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, 112 Taiwan, ROC
| | | | | | | |
Collapse
|