1
|
Chen X, Peng H, Zhang Z, Yang C, Liu Y, Chen Y, Yu F, Wu S, Cao L. SPDYC serves as a prognostic biomarker related to lipid metabolism and the immune microenvironment in breast cancer. Immunol Res 2024; 72:1030-1050. [PMID: 38890248 DOI: 10.1007/s12026-024-09505-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Breast cancer remains the most common malignant carcinoma among women globally and is resistant to several therapeutic agents. There is a need for novel targets to improve the prognosis of patients with breast cancer. Bioinformatics analyses were conducted to explore potentially relevant prognostic genes in breast cancer using The Cancer Genome Atlas (TCGA) and The Gene Expression Omnibus (GEO) databases. Gene subtypes were categorized by machine learning algorithms. The machine learning-related breast cancer (MLBC) score was evaluated through principal component analysis (PCA) of clinical patients' pathological statuses and subtypes. Immune cell infiltration was analyzed using the xCell and CIBERSORT algorithms. Kyoto Encyclopedia of Genes and Genomes enrichment analysis elucidated regulatory pathways related to speedy/RINGO cell cycle regulator family member C (SPDYC) in breast cancer. The biological functions and lipid metabolic status of breast cancer cell lines were validated via quantitative real-time polymerase chain reaction (RT‒qPCR) assays, western blotting, CCK-8 assays, PI‒Annexin V fluorescence staining, transwell assays, wound healing assays, and Oil Red O staining. Key differentially expressed genes (DEGs) in breast cancer from the TCGA and GEO databases were screened and utilized to establish the MLBC score. Moreover, the MLBC score we established was negatively correlated with poor prognosis in breast cancer patients. Furthermore, the impacts of SPDYC on the tumor immune microenvironment and lipid metabolism in breast cancer were revealed and validated. SPDYC is closely related to activated dendritic cells and macrophages and is simultaneously correlated with the immune checkpoints CD47, cytotoxic T lymphocyte antigen-4 (CTLA-4), and poliovirus receptor (PVR). SPDYC strongly correlated with C-C motif chemokine ligand 7 (CCL7), a chemokine that influences breast cancer patient prognosis. A significant relationship was discovered between key genes involved in lipid metabolism and SPDYC, such as ELOVL fatty acid elongase 2 (ELOVL2), malic enzyme 1 (ME1), and squalene epoxidase (SQLE). Potent inhibitors targeting SPDYC in breast cancer were also discovered, including JNK inhibitor VIII, AICAR, and JW-7-52-1. Downregulation of SPDYC expression in vitro decreased proliferation, increased the apoptotic rate, decreased migration, and reduced lipid droplets. SPDYC possibly influences the tumor immune microenvironment and regulates lipid metabolism in breast cancer. Hence, this study identified SPDYC as a pivotal biomarker for developing therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haojie Peng
- Department of Breast Surgery, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhentao Zhang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Changnian Yang
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yingqi Liu
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yanzhen Chen
- Department of Gynecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Fei Yu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Lixue Cao
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Alsaleem MA, Ball G, Toss MS, Raafat S, Aleskandarany M, Joseph C, Ogden A, Bhattarai S, Rida PCG, Khani F, Davis M, Elemento O, Aneja R, Ellis IO, Green A, Mongan NP, Rakha E. A novel prognostic two-gene signature for triple negative breast cancer. Mod Pathol 2020; 33:2208-2220. [PMID: 32404959 DOI: 10.1038/s41379-020-0563-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
The absence of a robust risk stratification tool for triple negative breast cancer (TNBC) underlies imprecise and nonselective treatment of these patients with cytotoxic chemotherapy. This study aimed to interrogate transcriptomes of TNBC resected samples using next generation sequencing to identify novel biomarkers associated with disease outcomes. A subset of cases (n = 112) from a large, well-characterized cohort of primary TNBC (n = 333) were subjected to RNA-sequencing. Reads were aligned to the human reference genome (GRCH38.83) using the STAR aligner and gene expression quantified using HTSEQ. We identified genes associated with distant metastasis-free survival and breast cancer-specific survival by applying supervised artificial neural network analysis with gene selection to the RNA-sequencing data. The prognostic ability of these genes was validated using the Breast Cancer Gene-Expression Miner v4. 0 and Genotype 2 outcome datasets. Multivariate Cox regression analysis identified a prognostic gene signature that was independently associated with poor prognosis. Finally, we corroborated our results from the two-gene prognostic signature by their protein expression using immunohistochemistry. Artificial neural network identified two gene panels that strongly predicted distant metastasis-free survival and breast cancer-specific survival. Univariate Cox regression analysis of 21 genes common to both panels revealed that the expression level of eight genes was independently associated with poor prognosis (p < 0.05). Adjusting for clinicopathological factors including patient's age, grade, nodal stage, tumor size, and lymphovascular invasion using multivariate Cox regression analysis yielded a two-gene prognostic signature (ACSM4 and SPDYC), which was associated with poor prognosis (p < 0.05) independent of other prognostic variables. We validated the protein expression of these two genes, and it was significantly associated with patient outcome in both independent and combined manner (p < 0.05). Our study identifies a prognostic gene signature that can predict prognosis in TNBC patients and could potentially be used to guide the clinical management of TNBC patients.
Collapse
Affiliation(s)
- Mansour A Alsaleem
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
- Faculty of Applied Medical Sciences, Onizah Community College, Qassim University, Qassim, Saudi Arabia
| | - Graham Ball
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Michael S Toss
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Sara Raafat
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Mohammed Aleskandarany
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
- Faculty of Medicine, Menoufyia University, Shebin El Kom, Egypt
| | - Chitra Joseph
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Angela Ogden
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | | | | | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Melissa Davis
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Ritu Aneja
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Ian O Ellis
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Andrew Green
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Emad Rakha
- Nottingham Breast Cancer Research Centre, Division of Cancer and Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.
- Faculty of Medicine, Menoufyia University, Shebin El Kom, Egypt.
- Department of Histopathology, Division of Cancer and Stem Cells, School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham, UK.
| |
Collapse
|
3
|
Expression profile and potential functional differentiation of the Speedy/RINGO family in mice. Gene 2019; 683:80-86. [PMID: 30316922 DOI: 10.1016/j.gene.2018.10.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/01/2018] [Accepted: 10/11/2018] [Indexed: 11/23/2022]
Abstract
As novel cyclin-dependent kinase (CDK) activators, Speedy/RINGO (hereafter named Speedy) proteins can directly regulate the cell cycle of vertebrates by binding to and activating various CDKs. Previous studies have shown that Speedy genes are highly associated with different types of cancer and other diseases. However, Speedy genes have not been systematically identified in mice, and their function and expression profiles remain elusive, which greatly hinders the functional and mechanistic study of Speedy genes in vivo. Here, we comprehensively identified Speedy genes in the mouse genome. Phylogenetic analysis showed that the Speedy gene family should be divided into three subfamilies, rather than the previously reported two subfamilies. Mice have two of the three subfamilies of Speedy genes, namely, subfamilies A and E. Speedy subfamily C genes have been lost from the mouse genome. By combining experimental and bioinformatics approaches, we found that the genes from subfamilies A and E have different expression profiles, indicating their functional divergence, which was also consistent with the phylogenetic results. The genes belonging to subfamily E showed only slightly different expression profiles, indicating their similar functions. Coexpression network analysis showed that the genes coexpressed with mouse Speedy genes were primarily enriched in reproduction-related mechanisms and there were significant functional differences between genes from subfamilies A and E, further demonstrating functional differentiation. In summary, we provide a comprehensive landscape (from evolution to expression and function) of the Speedy family in mice; we also demonstrate that Speedy genes mainly participate in reproduction-related mechanisms and that they have undergone functional differentiation in mice.
Collapse
|
4
|
Kalra S, Joshi G, Munshi A, Kumar R. Structural insights of cyclin dependent kinases: Implications in design of selective inhibitors. Eur J Med Chem 2017; 142:424-458. [PMID: 28911822 DOI: 10.1016/j.ejmech.2017.08.071] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
There are around 20 Cyclin-dependent kinases (CDKs) known till date, and various research groups have reported their role in different types of cancer. The X-ray structures of some CDKs especially CDK2 was exploited in the past few years, and several inhibitors have been found, e.g., flavopiridol, indirubicin, roscovitine, etc., but due to the specificity issues of these inhibitors (binding to all CDKs), these were called as pan inhibitors. The revolutionary outcome of palbociclib in 2015 as CDK4/6 inhibitor added a new charm to the specific inhibitor design for CDKs. Computer-aided drug design (CADD) tools added a benefit to the design and development of new CDK inhibitors by studying the binding pattern of the inhibitors to the ATP binding domain of CDKs. Herein, we have attempted a comparative analysis of structural differences between several CDKs ATP binding sites and their inhibitor specificity by depicting the important ligand-receptor interactions for a particular CDK to be targeted. This perspective provides futuristic implications in the design of inhibitors considering the spatial features and structural insights of the specific CDK.
Collapse
Affiliation(s)
- Sourav Kalra
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Gaurav Joshi
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Raj Kumar
- Centre for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
5
|
Personnic N, Lakisic G, Gouin E, Rousseau A, Gautreau A, Cossart P, Bierne H. A role for Ral GTPase-activating protein subunit β in mitotic regulation. FEBS J 2014; 281:2977-89. [PMID: 24814574 DOI: 10.1111/febs.12836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 01/05/2023]
Abstract
Ral proteins are small GTPases that play critical roles in normal physiology and in oncogenesis. There is little information on the GTPase-activating proteins (GAPs) that downregulate their activity. Here, we provide evidence that the noncatalytic β subunit of RalGAPα1/2 β complexes is involved in mitotic control. RalGAPβ localizes to the Golgi and nucleus during interphase, and relocalizes to the mitotic spindle and cytokinetic intercellular bridge during mitosis. Depletion of RalGAPβ causes chromosome misalignment and decreases the amount of mitotic cyclin B1, disturbing the metaphase-to-anaphase transition. Overexpression of RalGAPβ interferes with cell division, leading to binucleation and multinucleation, and cell death. We propose that RalGAPβ plays an essential role in the sequential progression of mitosis by controlling the spatial and temporal activation of Ral GTPases in the spindle assembly checkpoint (SAC) and cytokinesis. Deregulation of RalGAPβ might cause genomic instability, leading to human carcinogenesis.
Collapse
Affiliation(s)
- Nicolas Personnic
- Institut Pasteur, Unité des interactions Bactéries cellules, Paris, France; Inserm, U604, Paris, France; INRA, USC2020, Paris, France
| | | | | | | | | | | | | |
Collapse
|
6
|
BUB1 and BUBR1 inhibition decreases proliferation and colony formation, and enhances radiation sensitivity in pediatric glioblastoma cells. Childs Nerv Syst 2013; 29:2241-8. [PMID: 23728478 DOI: 10.1007/s00381-013-2175-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 05/16/2013] [Indexed: 01/13/2023]
Abstract
PURPOSE Glioblastoma (GBM) is a very aggressive and lethal brain tumor with poor prognosis. Despite new treatment strategies, patients' median survival is still lower than 1 year in most cases. The expression of the BUB gene family has demonstrated to be altered in a variety of solid tumors, pointing to a role as putative therapeutic target. The purpose of this study was to determine BUB1, BUB3, and BUBR1 gene expression profiles in glioblastoma and to analyze the effects of BUB1 and BUBR1 inhibition combined or not with Temozolomide and radiation in the pediatric SF188 GBM cell line. METHODS For gene expression analysis, 8 cell lines and 18 tumor samples were used. The effect of BUB1 and BUBR1 inhibition was evaluated using siRNA. Apoptosis, cell proliferation, cell cycle kinetics, micronuclei formation, and clonogenic capacity were analyzed after BUB1 and BUBR1 inhibition. Additionally, combinatorial effects of gene inhibition and radiation or Temozolomide (TMZ) treatment were evaluated through proliferation and clonogenic capacity assays. RESULTS We report the upregulation of BUB1 and BUBR1 expression and the downregulation of BUB3 in GBM samples and cell lines when compared to white matter samples (p < 0.05). Decreased cell proliferation and colony formation after BUB1 and BUBR1 inhibition were observed, along with increased micronuclei formation. Combinations with TMZ also caused cell cycle arrest and increased apoptosis. Moreover, our results demonstrate that BUB1 and BUBR1 inhibition sensitized SF188 cells to γ-irradiation as shown by decreased growth and abrogation of colony formation capacity. CONCLUSION BUB1 and BUBR1 inhibition decreases proliferation and shows radiosensitizing effects on pediatric GBM cells, which could improve treatment strategies for this devastating tumor. Collectively, these findings highlight the potentials of BUB1 and BUBR1 as putative therapeutic targets for glioblastoma treatment.
Collapse
|
7
|
Chauhan S, Zheng X, Tan YY, Tay BH, Lim S, Venkatesh B, Kaldis P. Evolution of the Cdk-activator Speedy/RINGO in vertebrates. Cell Mol Life Sci 2012; 69:3835-50. [PMID: 22763696 PMCID: PMC11115036 DOI: 10.1007/s00018-012-1050-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/29/2012] [Accepted: 06/02/2012] [Indexed: 01/18/2023]
Abstract
Successful completion of the cell cycle relies on the precise activation and inactivation of cyclin-dependent kinases (Cdks) whose activity is mainly regulated by binding to cyclins. Recently, a new family of Cdk regulators termed Speedy/RINGO has been discovered, which can bind and activate Cdks but shares no apparent amino acid sequence homology with cyclins. All Speedy proteins share a conserved domain of approximately 140 amino acids called "Speedy Box", which is essential for Cdk binding. Speedy/RINGO proteins display an important role in oocyte maturation in Xenopus. Interestingly, a common feature of all Speedy genes is their predominant expression in testis suggesting that meiotic functions may be the most important physiological feature of Speedy genes. Speedy homologs have been reported in mammals and can be traced back to the most primitive clade of chordates (Ciona intestinalis). Here, we investigated the evolution of the Speedy genes and have identified a number of new Speedy/RINGO proteins. Through extensive analysis of numerous species, we discovered diverse evolutionary histories: the number of Speedy genes varies considerably among species, with evidence of substantial gains and losses. Despite the interspecies variation, Speedy is conserved among most species examined. Our results provide a complete picture of the Speedy gene family and its evolution.
Collapse
Affiliation(s)
- Sangeeta Chauhan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Xinde Zheng
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
- Present Address: The Salk Institute, La Jolla, CA USA
| | - Yue Ying Tan
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Shuhui Lim
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
- Department of Pediatrics, National University of Singapore (NUS), Singapore, 119228 Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Singapore, 138673 Republic of Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore, 117597 Republic of Singapore
| |
Collapse
|
8
|
Caenorhabditis elegans dosage compensation regulates histone H4 chromatin state on X chromosomes. Mol Cell Biol 2012; 32:1710-9. [PMID: 22393255 DOI: 10.1128/mcb.06546-11] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dosage compensation equalizes X-linked gene expression between the sexes. This process is achieved in Caenorhabditis elegans by hermaphrodite-specific, dosage compensation complex (DCC)-mediated, 2-fold X chromosome downregulation. How the DCC downregulates gene expression is not known. By analyzing the distribution of histone modifications in nuclei using quantitative fluorescence microscopy, we found that H4K16 acetylation (H4K16ac) is underrepresented and H4K20 monomethylation (H4K20me1) is enriched on hermaphrodite X chromosomes in a DCC-dependent manner. Depletion of H4K16ac also requires the conserved histone deacetylase SIR-2.1, while enrichment of H4K20me1 requires the activities of the histone methyltransferases SET-1 and SET-4. Our data suggest that the mechanism of dosage compensation in C. elegans involves redistribution of chromatin-modifying activities, leading to a depletion of H4K16ac and an enrichment of H4K20me1 on the X chromosomes. These results support conserved roles for histone H4 chromatin modification in worm dosage compensation analogous to those seen in flies, using similar elements and opposing strategies to achieve differential 2-fold changes in X-linked gene expression.
Collapse
|
9
|
McLean JR, Chaix D, Ohi MD, Gould KL. State of the APC/C: organization, function, and structure. Crit Rev Biochem Mol Biol 2011; 46:118-36. [PMID: 21261459 DOI: 10.3109/10409238.2010.541420] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ubiquitin-proteasome protein degradation system is involved in many essential cellular processes including cell cycle regulation, cell differentiation, and the unfolded protein response. The anaphase-promoting complex/cyclosome (APC/C), an evolutionarily conserved E3 ubiquitin ligase, was discovered 15 years ago because of its pivotal role in cyclin degradation and mitotic progression. Since then, we have learned that the APC/C is a very large, complex E3 ligase composed of 13 subunits, yielding a molecular machine of approximately 1 MDa. The intricate regulation of the APC/C is mediated by the Cdc20 family of activators, pseudosubstrate inhibitors, protein kinases and phosphatases and the spindle assembly checkpoint. The large size, complexity, and dynamic nature of the APC/C represent significant obstacles toward high-resolution structural techniques; however, over the last decade, there have been a number of lower resolution APC/C structures determined using single particle electron microscopy. These structures, when combined with data generated from numerous genetic and biochemical studies, have begun to shed light on how APC/C activity is regulated. Here, we discuss the most recent developments in the APC/C field concerning structure, substrate recognition, and catalysis.
Collapse
Affiliation(s)
- Janel R McLean
- Howard Hughes Medical Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|