1
|
Zhang X, Zheng R, Zhang L. N4BP1 as a modulator of the NF-κB pathway. Cytokine Growth Factor Rev 2025:S1359-6101(25)00046-2. [PMID: 40312219 DOI: 10.1016/j.cytogfr.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/20/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025]
Abstract
NEDD4-binding protein 1 (N4BP1) is emerging as a critical regulator of inflammation and immune responses, particularly through its effects on the nuclear factor-κ-gene binding (NF-κB) signaling pathway. This review summarizes the regulatory mechanisms by which N4BP1 inhibits NF-κB activation and its subsequent impact on inflammatory diseases, specifically psoriasis. We discuss its interaction with various components of the NF-κB pathway, revealing that N4BP1 serves as a negative regulator of NF-κB-related gene expression under both stimulated and unstimulated conditions. Evidence highlights that N4BP1 is pivotal in controlling keratinocyte behavior and immune cell dynamics, thus influencing psoriasis pathology. Furthermore, we explore the emerging role of N4BP1 in viral infections, demonstrating its inhibitory effects on human immunodeficiency virus (HIV) replication. The involvement of N4BP1 in Notch signaling and neurogenesis underscores its multifaceted roles in cellular development and response to external stimuli. Collectively, these findings position N4BP1 as a significant player in modulating immune responses and offer potential therapeutic avenues for managing inflammatory diseases and viral infections.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ruoqi Zheng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250013, China; Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
2
|
Youle RL, Lista MJ, Bouton C, Kunzelmann S, Wilson H, Cottee MA, Purkiss AG, Morris ER, Neil SJD, Taylor IA, Swanson CM. Structural and functional characterization of the extended-diKH domain from the antiviral endoribonuclease KHNYN. J Biol Chem 2025; 301:108336. [PMID: 39984050 PMCID: PMC11997328 DOI: 10.1016/j.jbc.2025.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025] Open
Abstract
Zinc finger antiviral protein (ZAP) binds CpG dinucleotides in viral RNA and targets them for decay. ZAP interacts with several cofactors to form the ZAP antiviral system, including KHNYN, a multidomain endoribonuclease required for ZAP-mediated RNA decay. However, it is unclear how the individual domains in KHNYN contribute to its activity. Here, we demonstrate that the KHNYN amino-terminal extended-diKH (ex-diKH) domain is required for antiviral activity and present its crystal structure. The structure belongs to a rare group of KH-containing domains, characterized by a noncanonical arrangement between two type 1 KH modules, with an additional helical bundle. N4BP1 is a KHNYN paralog with an ex-diKH domain that functionally complements the KHNYN ex-diKH domain. Interestingly, the ex-diKH domain structure is present in N4BP1-like proteins in lancelets, which are basal chordates, indicating that it is evolutionarily ancient. While many KH domains demonstrate RNA binding activity, biolayer interferometry and electrophoretic mobility shift assays indicate that the KHNYN ex-diKH domain does not bind RNA. Furthermore, residues required for canonical KH domains to bind RNA are not required for KHNYN antiviral activity. By contrast, an inter-KH domain cleft in KHNYN is a potential protein-protein interaction site, and mutations that eliminate arginine salt bridges at the edge of this cleft decrease KHNYN antiviral activity. This suggests that this domain could be a binding site for an unknown KHNYN cofactor.
Collapse
Affiliation(s)
- Rebecca L Youle
- Department of Infectious Diseases, King's College London, London, United Kingdom; Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - María José Lista
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Clement Bouton
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Harry Wilson
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Matthew A Cottee
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andrew G Purkiss
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Elizabeth R Morris
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, King's College London, London, United Kingdom.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom.
| | - Chad M Swanson
- Department of Infectious Diseases, King's College London, London, United Kingdom.
| |
Collapse
|
3
|
Li Q, Cheng J, Qin D, Xiao S, Yao C. Exosomal miR-92b-5p regulates N4BP1 to enhance PTEN mono-ubiquitination in doxorubicin-resistant AML. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:16. [PMID: 40201312 PMCID: PMC11977356 DOI: 10.20517/cdr.2024.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/04/2025] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
Aim: Doxorubicin, pivotal for acute myeloid leukemia (AML) treatment, often succumbs to resistance, impeding therapeutic success. Although exosomal transfer is linked to chemoresistance, the detailed role of exosomal miRNAs in doxorubicin resistance remains incompletely understood. Methods: We employed miRNA sequencing to delineate the profile of exosomal miRNAs in doxorubicin-resistant K562/DOX cells and AML patients. Subsequently, qPCR was utilized to scrutinize the expression of exosomal miR-92b-5p in these resistant cells and AML patients. A dual-luciferase reporter assay was conducted to elucidate the direct binding of miR-92b-5p to NEDD4 binding protein 1 (N4BP1). Furthermore, interactions between N4BP1 and NEDD4, as well as between NEDD4 and PTEN, were investigated by co-immunoprecipitation (Co-IP). Meanwhile, the ubiquitination of PTEN was also examined by Co-IP. Western blot analysis was applied to assess the expression levels of N4BP1, NEDD4, PTEN, RAD51, and proteins associated with the PI3K-AKT-mTOR pathway. Gain- and loss-of-function studies were conducted to ascertain the functional role of miR-92b-5p in doxorubicin resistance by using miR-92b-5p-mimic and miR-92b-5p-inhibitor transfections. Results: Our study found exosomal miR-92b-5p was upregulated both in doxorubicin-resistant cells and AML patients. Moreover, miR-92b-5p targets N4BP1, promoting NEDD4-mediated mono-ubiquitination of PTEN. This alters PTEN's subcellular localization, promoting nuclear PTEN and reducing cytoplasmic PTEN, which in turn leads to increased RAD51 for DNA repair and activation of the PI3K-AKT-mTOR pathway for cell proliferation, contributing to doxorubicin resistance. Conclusion: Our study reveals a novel mechanism of doxorubicin resistance mediated by exosomal miR-92b-5p and provides potential therapeutic targets for overcoming drug resistance in AML.
Collapse
Affiliation(s)
- Qianyuan Li
- Department of General Medicine, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Jie Cheng
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Danni Qin
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Sheng Xiao
- Department of Pathology, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Chenjiao Yao
- Department of General Medicine, The 3rd Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Haikou 570105, Hainan, China
| |
Collapse
|
4
|
Koshizuka T, Sasaki Y, Kondo H, Koizumi J, Takahashi K. Downregulation of CD86 in HCMV-infected THP-1 cells. Microbiol Immunol 2024; 68:406-413. [PMID: 39380416 DOI: 10.1111/1348-0421.13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
Monocytes and macrophages are at the frontline of defense against pathogens. Human cytomegalovirus (HCMV) uses myeloid cells as vehicles to facilitate viral dissemination. HCMV infection in monocytes and macrophages leads to the downregulation of several cell surface markers via an undefined mechanism. Previously, we showed that HCMV pUL42 associates with the Nedd4 family ubiquitin E3 ligases through the PPXY motif on pUL42 and downregulates Nedd4 and Itch proteins in HCMV-infected fibroblasts. Homologous proteins of HCMV pUL42, such as HHV-6 U24, downregulate cell surface markers. To reveal the downregulation property of pUL42, we focused on CD86, the key costimulatory factor for acquired immunity. Here, we constructed CD86-expressing THP-1 cells using a retroviral vector and analyzed the effects of HCMV infection and pUL42 on CD86 downregulation. Disruption of the PPXY motifs of pUL42 (UL42PA) decelerated the degradation of CD86 in recombinant virus-infected cells, indicating the involvement of Nedd4 family functions. However, no direct interactions were observed between CD86 and Itch. Interestingly, unlike fibroblast infection, the expression of Nedd4 and Itch proteins increased in HCMV-infected THP-1 cells, accompanied by an increase in their transcript levels. Although the function of pUL42 did not relate to the increase of Nedd4 and Itch proteins, pUL42 should affect these Nedd4 proteins to downregulate CD86.
Collapse
Affiliation(s)
- Tetsuo Koshizuka
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Yuta Sasaki
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Kondo
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Juri Koizumi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| | - Keita Takahashi
- Microbiology and Immunology, Gifu Pharmaceutical University, Gifu, Japan
| |
Collapse
|
5
|
Dai L, Chen H, Tan Q, Wang Y, Li L, Lou N, Fan G, Xie T, Luo R, Wang S, Zhou Y, Zhong Q, Yao J, Zhang Z, Tang L, Shi Y, Han X. Identification of novel prognostic autoantibodies in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone via a high-throughput antigen microarray. Cancer 2024; 130:1257-1269. [PMID: 38133926 DOI: 10.1002/cncr.35158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) is a standard first-line treatment for diffuse large B-cell lymphoma (DLBCL). However, 20%-40% of patients survive less than 5 years. Novel prognostic biomarkers remain in demand. METHODS Baseline plasma autoantibodies (AAbs) were assessed in 336 DLBCLs. In the discovery phase (n = 20), a high-density antigen microarray (∼21,000 proteins) was used to expound AAb profiles. In the verification phase (n = 181), with a DLBCL-focused microarray, comparative results based on event-free survival at 24 months (EFS24) and lasso Cox regression models of progression-free survival (PFS) and overall survival (OS) were integrated to identify potential biomarkers. They were further validated by enzyme-linked immunosorbent assay in validation phase 1 (n = 135) and a dynamic cohort (n = 12). In validation phase 2, a two-AAb-based risk score was established. They were further validated in an immunohistochemistry cohort (n = 55) and four independent Gene Expression Omnibus datasets (n = 1598). RESULTS Four AAbs (CREB1, N4BP1, UBAP2, and DEAF1) were identified that showed associations with EFS24 status (p < .05) and superior PFS and OS (p < .05). A novel risk score model based on CREB1 and N4BP1 AAbs was developed to predict PFS with areas under the curve of 0.72, 0.71, 0.76, and 0.82 at 1, 3, 5, and 7 years, respectively, in DLBCL treated with R-CHOP independent of the International Prognostic Index (IPI) and provided significant additional recurrence risk discrimination (p < .05) for the IPI. CREB1 and N4BP1 proteins and messenger RNAs were also associated with better PFS and OS (p < .05). CONCLUSIONS This study identified a novel prognostic panel of CREB1, N4BP1, DEAF1, and UBAP2 AAbs that is independent of the IPI in DLBCL.
Collapse
Affiliation(s)
- Liyuan Dai
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haizhu Chen
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Qiaoyun Tan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yanrong Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Lin Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Lou
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangyu Fan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Tongji Xie
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Rongrong Luo
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shasha Wang
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Qiaofeng Zhong
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Jiarui Yao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Zhishang Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Le Tang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing Key Laboratory of Clinical Study on Anticancer Molecular Targeted Drugs, Beijing, China
| | - Xiaohong Han
- Clinical Pharmacology Research Center, Peking Union Medical College Hospital, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Silonov SA, Mokin YI, Nedelyaev EM, Smirnov EY, Kuznetsova IM, Turoverov KK, Uversky VN, Fonin AV. On the Prevalence and Roles of Proteins Undergoing Liquid-Liquid Phase Separation in the Biogenesis of PML-Bodies. Biomolecules 2023; 13:1805. [PMID: 38136675 PMCID: PMC10741438 DOI: 10.3390/biom13121805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The formation and function of membrane-less organelles (MLOs) is one of the main driving forces in the molecular life of the cell. These processes are based on the separation of biopolymers into phases regulated by multiple specific and nonspecific inter- and intramolecular interactions. Among the realm of MLOs, a special place is taken by the promyelocytic leukemia nuclear bodies (PML-NBs or PML bodies), which are the intranuclear compartments involved in the regulation of cellular metabolism, transcription, the maintenance of genome stability, responses to viral infection, apoptosis, and tumor suppression. According to the accepted models, specific interactions, such as SUMO/SIM, the formation of disulfide bonds, etc., play a decisive role in the biogenesis of PML bodies. In this work, a number of bioinformatics approaches were used to study proteins found in the proteome of PML bodies for their tendency for spontaneous liquid-liquid phase separation (LLPS), which is usually caused by weak nonspecific interactions. A total of 205 proteins found in PML bodies have been identified. It has been suggested that UBC9, P53, HIPK2, and SUMO1 can be considered as the scaffold proteins of PML bodies. It was shown that more than half of the proteins in the analyzed proteome are capable of spontaneous LLPS, with 85% of the analyzed proteins being intrinsically disordered proteins (IDPs) and the remaining 15% being proteins with intrinsically disordered protein regions (IDPRs). About 44% of all proteins analyzed in this study contain SUMO binding sites and can potentially be SUMOylated. These data suggest that weak nonspecific interactions play a significantly larger role in the formation and biogenesis of PML bodies than previously expected.
Collapse
Affiliation(s)
- Sergey A. Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Yakov I. Mokin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene M. Nedelyaev
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Eugene Y. Smirnov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia; (S.A.S.); (Y.I.M.); (E.M.N.); (E.Y.S.); (I.M.K.); (K.K.T.)
| |
Collapse
|
7
|
Ma Z, Zeng Y, Wang M, Liu W, Zhou J, Wu C, Hou L, Yin B, Qiang B, Shu P, Peng X. N4BP1 mediates RAM domain-dependent notch signaling turnover during neocortical development. EMBO J 2023; 42:e113383. [PMID: 37807845 PMCID: PMC10646556 DOI: 10.15252/embj.2022113383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Notch signaling pathway activity, particularly fluctuations in the biologically active effector fragment NICD, is required for rapid and efficient dynamic regulation of proper fate decisions in stem cells. In this study, we identified NEDD4-binding protein 1 (N4BP1), which is highly expressed in the developing mouse cerebral cortex, as a negative modulator of Notch signaling dynamics in neural progenitor cells. Intriguingly, N4BP1 regulated NICD stability specifically after Notch1 S3 cleavage through ubiquitin-mediated degradation that depended on its RAM domain, not its PEST domain, as had been extensively and previously described. The CoCUN domain in N4BP1, particularly the "Phe-Pro" motif (862/863 amino acid), was indispensable for mediating NICD degradation. The Ring family E3 ligase Trim21 was, in contrast to other NEDD4 family members, required for N4BP1-regulated NICD degradation. Overexpression of N4BP1 in cortical neural progenitors promoted neural stem cell differentiation, whereas neural progenitor cells lacking N4BP1 were sensitized to Notch signaling, resulting in the maintenance of stem-like properties in neural progenitor cells and lower production of cortical neurons.
Collapse
Affiliation(s)
- Zhihua Ma
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Yi Zeng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of Infectious Diseases, Institute for Viral Hepatitis, The Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)The Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Ming Wang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- Present address:
Department of Otolaryngology, Head and Neck Surgery, Beijing Tongren HospitalCapital Medical University, Beijing Key Laboratory of Nasal Diseases, Beijing Institute of OtolaryngologyBeijingChina
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Jiafeng Zhou
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Chao Wu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
| | - Lin Hou
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Bin Yin
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Boqin Qiang
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Common Mechanism Research for Major DiseasesBeijingChina
- Chinese Institute for Brain ResearchBeijingChina
| | - Xiaozhong Peng
- Department of Molecular Biology and Biochemistry, Medical Primate Research Center, Neuroscience CenterInstitute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical CollegeBeijingChina
- State Key Laboratory of Respiratory Health and MultimorbidityBeijingChina
- Institute of Laboratory Animal ScienceChinese Academy of Medical Sciences, Peking Union Medical CollegeBeijingChina
| |
Collapse
|
8
|
Lista MJ, Ficarelli M, Wilson H, Kmiec D, Youle RL, Wanford J, Winstone H, Odendall C, Taylor IA, Neil SJD, Swanson CM. A Nuclear Export Signal in KHNYN Required for Its Antiviral Activity Evolved as ZAP Emerged in Tetrapods. J Virol 2023; 97:e0087222. [PMID: 36633408 PMCID: PMC9888277 DOI: 10.1128/jvi.00872-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
The zinc finger antiviral protein (ZAP) inhibits viral replication by directly binding CpG dinucleotides in cytoplasmic viral RNA to inhibit protein synthesis and target the RNA for degradation. ZAP evolved in tetrapods and there are clear orthologs in reptiles, birds, and mammals. When ZAP emerged, other proteins may have evolved to become cofactors for its antiviral activity. KHNYN is a putative endoribonuclease that is required for ZAP to restrict retroviruses. To determine its evolutionary path after ZAP emerged, we compared KHNYN orthologs in mammals and reptiles to those in fish, which do not encode ZAP. This identified residues in KHNYN that are highly conserved in species that encode ZAP, including several in the CUBAN domain. The CUBAN domain interacts with NEDD8 and Cullin-RING E3 ubiquitin ligases. Deletion of the CUBAN domain decreased KHNYN antiviral activity, increased protein expression and increased nuclear localization. However, mutation of residues required for the CUBAN domain-NEDD8 interaction increased KHNYN abundance but did not affect its antiviral activity or cytoplasmic localization, indicating that Cullin-mediated degradation may control its homeostasis and regulation of protein turnover is separable from its antiviral activity. By contrast, the C-terminal residues in the CUBAN domain form a CRM1-dependent nuclear export signal (NES) that is required for its antiviral activity. Deletion or mutation of the NES increased KHNYN nuclear localization and decreased its interaction with ZAP. The final 2 positions of this NES are not present in fish KHNYN orthologs and we hypothesize their evolution allowed KHNYN to act as a ZAP cofactor. IMPORTANCE The interferon system is part of the innate immune response that inhibits viruses and other pathogens. This system emerged approximately 500 million years ago in early vertebrates. Since then, some genes have evolved to become antiviral interferon-stimulated genes (ISGs) while others evolved so their encoded protein could interact with proteins encoded by ISGs and contribute to their activity. However, this remains poorly characterized. ZAP is an ISG that arose during tetrapod evolution and inhibits viral replication. Because KHNYN interacts with ZAP and is required for its antiviral activity against retroviruses, we conducted an evolutionary analysis to determine how specific amino acids in KHNYN evolved after ZAP emerged. This identified a nuclear export signal that evolved in tetrapods and is required for KHNYN to traffic in the cell and interact with ZAP. Overall, specific residues in KHNYN evolved to allow it to act as a cofactor for ZAP antiviral activity.
Collapse
Affiliation(s)
- Maria J. Lista
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Mattia Ficarelli
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Harry Wilson
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Dorota Kmiec
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Rebecca L. Youle
- King’s College London, Department of Infectious Diseases, London, United Kingdom
- The Francis Crick Institute, Macromolecular Structure Laboratory, London, United Kingdom
| | - Joseph Wanford
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Helena Winstone
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Charlotte Odendall
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Ian A. Taylor
- The Francis Crick Institute, Macromolecular Structure Laboratory, London, United Kingdom
| | - Stuart J. D. Neil
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| | - Chad M. Swanson
- King’s College London, Department of Infectious Diseases, London, United Kingdom
| |
Collapse
|
9
|
Niu Q, Hou W, Yan Y, Sun S, Lin Y, Fang H, Ma C, Dong C, Cheng Y, Xu Y, Ding M, Wang S, Cui Z, Chen Y, Li H, Li H, Xiao N. Antileukemic effects of topoisomerase I inhibitors mediated by de-SUMOylase SENP1. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166492. [PMID: 35850175 DOI: 10.1016/j.bbadis.2022.166492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022]
Abstract
SUMO-specific proteases (SENPs) play pivotal roles in maintaining the balance of SUMOylation/de-SUMOylation and in SUMO recycling. Deregulation of SENPs leads to cellular dysfunction and corresponding diseases. As a key member of the SENP family, SENP1 is highly correlated with various cancers. However, the potential role of SENP1 in leukemia, especially in acute lymphoblastic leukemia (ALL), is not clear. This study shows that ALL cells knocking down SENP1 display compromised growth rather than significant alterations in chemosensitivity, although ALL relapse samples have a relatively higher expression of SENP1 than the paired diagnosis samples. Camptothecin derivatives 7-ethylcamptothecin (7E-CPT, a monomer compound) and topotecan (TPT, an approved clinical drug) induce specific SENP1 reduction and severe apoptosis of ALL cells, showing strong anticancer effects against ALL. Conversely, SENP1 could attenuate this inhibitory effect by targeting DNA topoisomerase I (TOP1) for de-SUMOylation, indicating that specific reduction in SENP1 induced by 7E-CPT and/or topotecan inhibits the proliferation of ALL cells.
Collapse
Affiliation(s)
- Qun Niu
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanxin Hou
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yinjie Yan
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuzhang Sun
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Lin
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chunshuang Ma
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Changsheng Dong
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yixuan Cheng
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xu
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Ding
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuxuan Wang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhiyan Cui
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Chen
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hegen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Hui Li
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Department of Pharmacology and Chemical Biology, School of Basic Medicine and Collaborative Innovation Center for Translational Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Fujian Children's Hospital, Fujian Branch of Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Fujian, China.
| | - Ning Xiao
- Clinical Research Center, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
10
|
The Role of NEDD4 E3 Ubiquitin–Protein Ligases in Parkinson’s Disease. Genes (Basel) 2022; 13:genes13030513. [PMID: 35328067 PMCID: PMC8950476 DOI: 10.3390/genes13030513] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/25/2023] Open
Abstract
Parkinson’s disease (PD) is a debilitating neurodegenerative disease that causes a great clinical burden. However, its exact molecular pathologies are not fully understood. Whilst there are a number of avenues for research into slowing, halting, or reversing PD, one central idea is to enhance the clearance of the proposed aetiological protein, oligomeric α-synuclein. Oligomeric α-synuclein is the main constituent protein in Lewy bodies and neurites and is considered neurotoxic. Multiple E3 ubiquitin-protein ligases, including the NEDD4 (neural precursor cell expressed developmentally downregulated protein 4) family, parkin, SIAH (mammalian homologues of Drosophila seven in absentia), CHIP (carboxy-terminus of Hsc70 interacting protein), and SCFFXBL5 SCF ubiquitin ligase assembled by the S-phase kinase-associated protein (SKP1), cullin-1 (Cul1), a zinc-binding RING finger protein, and the F-box domain/Leucine-rich repeat protein 5-containing protein FBXL5), have been shown to be able to ubiquitinate α-synuclein, influencing its subsequent degradation via the proteasome or lysosome. Here, we explore the link between NEDD4 ligases and PD, which is not only via α-synuclein but further strengthened by several additional substrates and interaction partners. Some members of the NEDD4 family of ligases are thought to crosstalk even with PD-related genes and proteins found to be mutated in familial forms of PD. Mutations in NEDD4 family genes have not been observed in PD patients, most likely because of their essential survival function during development. Following further in vivo studies, it has been thought that NEDD4 ligases may be viable therapeutic targets in PD. NEDD4 family members could clear toxic proteins, enhancing cell survival and slowing disease progression, or might diminish beneficial proteins, reducing cell survival and accelerating disease progression. Here, we review studies to date on the expression and function of NEDD4 ubiquitin ligases in the brain and their possible impact on PD pathology.
Collapse
|
11
|
Tsunoda T, Riku M, Yamada N, Tsuchiya H, Tomita T, Suzuki M, Kizuki M, Inoko A, Ito H, Murotani K, Murakami H, Saeki Y, Kasai K. ENTREP/FAM189A2 encodes a new ITCH ubiquitin ligase activator that is downregulated in breast cancer. EMBO Rep 2022; 23:e51182. [PMID: 34927784 PMCID: PMC8811627 DOI: 10.15252/embr.202051182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
The HECT-type ubiquitin E3 ligases including ITCH regulate many aspects of cellular function through ubiquitinating various substrates. These ligases are known to be allosterically autoinhibited and to require an activator protein to fully achieve the ubiquitination of their substrates. Here we demonstrate that FAM189A2, a downregulated gene in breast cancer, encodes a new type of ITCH activator. FAM189A2 is a transmembrane protein harboring PPxY motifs, and the motifs mediate its association with and ubiquitination by ITCH. FAM189A2 also associates with Epsin and accumulates in early and late endosomes along with ITCH. Intriguingly, FAM189A2 facilitates the association of a chemokine receptor CXCR4 with ITCH and enhances ITCH-mediated ubiquitination of CXCR4. FAM189A2-knockout prohibits CXCL12-induced endocytosis of CXCR4, thereby enhancing the effects of CXCL12 on the chemotaxis and mammosphere formation of breast cancer cells. In comparison to other activators or adaptors known in the previous studies, FAM189A2 is a unique activator for ITCH to desensitize CXCR4 activity, and we here propose that FAM189A2 be renamed as ENdosomal TRansmembrane binding with EPsin (ENTREP).
Collapse
Affiliation(s)
- Takumi Tsunoda
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Miho Riku
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Norika Yamada
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Hikaru Tsuchiya
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Takuya Tomita
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Minako Suzuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Mari Kizuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Akihito Inoko
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Hideaki Ito
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | | | - Hideki Murakami
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Yasushi Saeki
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kenji Kasai
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|
12
|
Zhao B, Zhang Z, Chen X, Shen Y, Qin Y, Yang X, Xing Z, Zhang S, Long X, Zhang Y, An S, Wu H, Qi Y. The important roles of protein SUMOylation in the occurrence and development of leukemia and clinical implications. J Cell Physiol 2020; 236:3466-3480. [PMID: 33151565 DOI: 10.1002/jcp.30143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 01/01/2023]
Abstract
Leukemia is a severe malignancy of the hematopoietic system, which is characterized by uncontrolled proliferation and dedifferentiation of immature hematopoietic precursor cells in the lymphatic system and bone marrow. Leukemia is caused by alterations of the genetic and epigenetic regulation of processes underlying hematologic malignancies, including SUMO modification (SUMOylation). Small ubiquitin-like modifier (SUMO) proteins covalently or noncovalently conjugate and modify a large number of target proteins via lysine residues. SUMOylation is a small ubiquitin-like modification that is catalyzed by the SUMO-specific activating enzyme E1, the binding enzyme E2, and the ligating enzyme E3. SUMO is covalently linked to substrate proteins to regulate the cellular localization of target proteins and the interaction of target proteins with other biological macromolecules. SUMOylation has emerged as a critical regulatory mechanism for subcellular localization, protein stability, protein-protein interactions, and biological function and thus regulates normal life activities. If the SUMOylation process of proteins is affected, it will cause a cellular reaction and ultimately lead to various diseases, including leukemia. There is growing evidence showing that a large number of proteins are SUMOylated and that SUMOylated proteins play an important role in the occurrence and development of various types of leukemia. Targeting the SUMOylation of proteins alone or in combination with current treatments might provide powerful targeted therapeutic strategies for the clinical treatment of leukemia.
Collapse
Affiliation(s)
- Biying Zhao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhenzhen Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xu Chen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yajie Shen
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuanyuan Qin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyi Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhengcao Xing
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Shanshan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaojun Long
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yuhong Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Siming An
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Hongmei Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Wang ZW, Hu X, Ye M, Lin M, Chu M, Shen X. NEDD4 E3 ligase: Functions and mechanism in human cancer. Semin Cancer Biol 2020; 67:92-101. [PMID: 32171886 DOI: 10.1016/j.semcancer.2020.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022]
Abstract
A growing amount of evidence indicates that the neuronally expressed developmentally downregulated 4 (NEDD4, also known as NEDD4-1) E3 ligase plays a critical role in a variety of cellular processes via the ubiquitination-mediated degradation of multiple substrates. The abnormal regulation of NEDD4 protein has been implicated in cancer development and progression. In this review article, we briefly delineate the downstream substrates and upstream regulators of NEDD4, which are involved in carcinogenesis. Moreover, we succinctly elucidate the functions of NEDD4 protein in tumorigenesis and progression, including cell proliferation, apoptosis, cell cycle, migration, invasion, epithelial mesenchymal transition (EMT), cancer stem cells, and drug resistance. The findings regarding NEDD4 functions are further supported by knockout mouse models and human tumor tissue studies. This review could provide a promising and optimum anticancer therapeutic strategy via targeting the NEDD4 protein.
Collapse
Affiliation(s)
- Zhi-Wei Wang
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Xiaoli Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Min Lin
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| |
Collapse
|
14
|
Santonico E. Old and New Concepts in Ubiquitin and NEDD8 Recognition. Biomolecules 2020; 10:biom10040566. [PMID: 32272761 PMCID: PMC7226360 DOI: 10.3390/biom10040566] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Post-translational modifications by ubiquitin and ubiquitin-like proteins (Ubls) have known roles in a myriad of cellular processes. Ubiquitin- and Ubl-binding domains transmit the information conferred by these post-translational modifications by recognizing functional surfaces and, when present, different chain structures. Numerous domains binding to ubiquitin have been characterized and their structures solved. Analogously, motifs selectively interacting with SUMO (small ubiquitin-like modifier) have been identified in several proteins and their role in SUMO-dependent processes investigated. On the other hand, proteins that specifically recognize other Ubl modifications are known only in a few cases. The high sequence identity between NEDD8 and ubiquitin has made the identification of specific NEDD8-binding domains further complicated due to the promiscuity in the recognition by several ubiquitin-binding domains. Two evolutionarily related domains, called CUBAN (cullin-binding domain associating with NEDD8) and CoCUN (cousin of CUBAN), have been recently described. The CUBAN binds monomeric NEDD8 and neddylated cullins, but it also interacts with di-ubiquitin chains. Conversely, the CoCUN domain only binds ubiquitin. CUBAN and CoCUN provide an intriguing example of how nature solved the issue of promiscuity versus selectivity in the recognition of these two highly related molecules. The structural information available to date suggests that the ancestor of CUBAN and CoCUN was a three-helix bundle domain that diversified in KHNYN (KH and NYN domain-containing) and N4BP1 (NEDD4-binding protein-1) by acquiring different features. Indeed, these domains diverged towards two recognition modes, that recall respectively the electrostatic interaction utilized by the E3-ligase RBX1/2 in the interaction with NEDD8, and the hydrophobic features described in the recognition of ubiquitin by CUE (coupling ubiquitin conjugation to ER degradation) domains. Intriguingly, CUBAN and CoCUN domains are only found in KHNYN and N4BP1, respectively, both proteins belonging to the PRORP family whose members are characterized by the combination of protein modules involved in RNA metabolism with domains mediating ubiquitin/NEDD8 recognition. This review recapitulates the current knowledge and recent findings of CUBAN and CoCUN domains and the proteins containing them.
Collapse
Affiliation(s)
- Elena Santonico
- Department of Biology, University of Rome Tor Vergata, Via della ricerca scientifica, 00133 Rome, Italy
| |
Collapse
|
15
|
The many substrates and functions of NEDD4-1. Cell Death Dis 2019; 10:904. [PMID: 31787758 PMCID: PMC6885513 DOI: 10.1038/s41419-019-2142-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Tumorigenesis, tumor growth, and prognosis are highly related to gene alterations and post-translational modifications (PTMs). Ubiquitination is a critical PTM that governs practically all aspects of cellular function. An increasing number of studies show that E3 ubiquitin ligases (E3s) are important enzymes in the process of ubiquitination that primarily determine substrate specificity and thus need to be tightly controlled. Among E3s, neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) has been shown to play a critical role in modulating the proliferation, migration, and invasion of cancer cells and the sensitivity of cancer cells to anticancer therapies via regulating multiple substrates. This review discusses some significant discoveries on NEDD4-1 substrates and the signaling pathways in which NEDD4-1 participates. In addition, we introduce the latest potential therapeutic strategies that inhibit or activate NEDD4-1 activity using small molecules. NEDD4-1 likely acts as a novel drug target or diagnostic marker in the battle against cancer.
Collapse
|
16
|
Nepravishta R, Ferrentino F, Mandaliti W, Mattioni A, Weber J, Polo S, Castagnoli L, Cesareni G, Paci M, Santonico E. CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules 2019; 9:biom9070284. [PMID: 31319543 PMCID: PMC6681339 DOI: 10.3390/biom9070284] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin binding domains (UBDs) are modular elements that bind non-covalently to ubiquitin and act as downstream effectors and amplifiers of the ubiquitination signal. With few exceptions, UBDs recognize the hydrophobic path centered on Ile44, including residues Leu8, Ile44, His68, and Val70. A variety of different orientations, which can be attributed to specific contacts between each UBD and surface residues surrounding the hydrophobic patch, specify how each class of UBD specifically contacts ubiquitin. Here, we describe the structural model of a novel ubiquitin-binding domain that we identified in NEDD4 binding protein 1 (N4BP1). By performing protein sequence analysis, mutagenesis, and nuclear magnetic resonance (NMR) spectroscopy of the 15N isotopically labeled protein, we demonstrate that a Phe-Pro motif in N4BP1 recognizes the canonical hydrophobic patch of ubiquitin. This recognition mode resembles the molecular mechanism evolved in the coupling of ubiquitin conjugation to endoplasmic-reticulum (ER) degradation (CUE) domain family, where an invariant proline, usually following a phenylalanine, is required for ubiquitin binding. Interestingly, this novel UBD, which is not evolutionary related to CUE domains, shares a 40% identity and 47% similarity with cullin binding domain associating with NEDD8 (CUBAN), a protein module that also recognizes the ubiquitin-like NEDD8. Based on these features, we dubbed the region spanning the C-terminal 50 residues of N4BP1 the CoCUN domain, for Cousin of CUBAN. By performing circular dichroism and 15N NMR chemical shift perturbation of N4BP1 in complex with ubiquitin, we demonstrate that the CoCUN domain lacks the NEDD8 binding properties observed in CUBAN. We also show that, in addition to mediating the interaction with ubiquitin and ubiquitinated substrates, both CUBAN and CoCUN are poly-ubiquitinated in cells. The structural and the functional characterization of this novel UBD can contribute to a deeper understanding of the molecular mechanisms governing N4BP1 function, providing at the same time a valuable tool for clarifying how the discrimination between ubiquitin and the highly related NEDD8 is achieved.
Collapse
Affiliation(s)
- Ridvan Nepravishta
- School of Pharmacy East Anglia, University of Norwich, Norwich NR4 7TJ, UK
| | | | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Anna Mattioni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Janine Weber
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Simona Polo
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Gianni Cesareni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
- DIPO, Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, 20122 Milan, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Elena Santonico
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| |
Collapse
|
17
|
Yamasoba D, Sato K, Ichinose T, Imamura T, Koepke L, Joas S, Reith E, Hotter D, Misawa N, Akaki K, Uehata T, Mino T, Miyamoto S, Noda T, Yamashita A, Standley DM, Kirchhoff F, Sauter D, Koyanagi Y, Takeuchi O. N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nat Microbiol 2019; 4:1532-1544. [PMID: 31133753 DOI: 10.1038/s41564-019-0460-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 04/16/2019] [Indexed: 01/04/2023]
Abstract
RNA-modulating factors not only regulate multiple steps of cellular RNA metabolism, but also emerge as key effectors of the immune response against invading viral pathogens including human immunodeficiency virus type-1 (HIV-1). However, the cellular RNA-binding proteins involved in the establishment and maintenance of latent HIV-1 reservoirs have not been extensively studied. Here, we screened a panel of 62 cellular RNA-binding proteins and identified NEDD4-binding protein 1 (N4BP1) as a potent interferon-inducible inhibitor of HIV-1 in primary T cells and macrophages. N4BP1 harbours a prototypical PilT N terminus-like RNase domain and inhibits HIV-1 replication by interacting with and degrading viral mRNA species. Following activation of CD4+ T cells, however, N4BP1 undergoes rapid cleavage at Arg 509 by the paracaspase named mucosa-associated lymphoid tissue lymphoma translocation 1 (MALT1). Mutational analyses and knockout studies revealed that MALT1-mediated inactivation of N4BP1 facilitates the reactivation of latent HIV-1 proviruses. Taken together, our findings demonstrate that the RNase N4BP1 is an efficient restriction factor of HIV-1 and suggest that inactivation of N4BP1 by induction of MALT1 activation might facilitate elimination of latent HIV-1 reservoirs.
Collapse
Affiliation(s)
- Daichi Yamasoba
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,CREST, Japan Science and Technology Agency, Saitama, Japan.,Department of Systems Virology, Institute for Medical Science, University of Tokyo, Tokyo, Japan
| | - Takuya Ichinose
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tomoko Imamura
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Lennart Koepke
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Simone Joas
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Elisabeth Reith
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dominik Hotter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Naoko Misawa
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kotaro Akaki
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Takuya Uehata
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Mino
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sho Miyamoto
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto, Japan
| | - Akio Yamashita
- Department of Molecular Biology, Yokohama City University School of Medicine, Kanagawa, Japan
| | - Daron M Standley
- Department of Genome Informatics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Yoshio Koyanagi
- Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Osamu Takeuchi
- Department of Medical Chemistry, Graduate School of Medicine, Kyoto University, Kyoto, Japan. .,Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
18
|
Sun L, Bian K. The Nuclear Export and Ubiquitin-Proteasome-Dependent Degradation of PPARγ Induced By Angiotensin II. Int J Biol Sci 2019; 15:1215-1224. [PMID: 31223281 PMCID: PMC6567814 DOI: 10.7150/ijbs.29741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/12/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence has documented local angiotensin II (Ang II) as a pro-oxidant and pro-inflammatory molecule contributes to progressive deterioration of organ function in diseases. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, plays crucial roles in protection against oxidative stress and inflammation. Ang II stimulation decreases PPARγ protein in multiple types of cells, while the regulatory role of Ang II on PPARγ is not clear. Here we show that Ang II down-regulated PPARγ in ECV304 cells through 2 actions, inducing nuclear export and loss of protein. The nuclear export of PPARγ occurred transiently in the early phase, while the reduction in PPARγ protein happened in the later phase and was more persistent. Both alterations in PPARγ were accompanied by the decrease in PPARγ-DNA binding activity. Reduction of PPARγ protein levels was also coupled with the inhibition of PPARγ target genes. In addition, activation of PPARγ by its ligand troglitazone could completely counteract both 2 actions of Ang II on PPARγ. Further studies demonstrated that the decline of PPARγ protein was in association with ubiquitin-proteasome-dependent degradation, which was supported by the increase in polyubiquitin-PPARγ conjugates and the inhibitory effect of lactacystin, a specific proteasome inhibitor, on the loss of PPARγ. Taken together, this study uncovers a novel means by which Ang II down-regulates PPARγ. This down-regulation disrupts nuclear PPARγ function, which may lead to the loss of beneficial effects of PPARγ in response to Ang II stress.
Collapse
Affiliation(s)
- Li Sun
- Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, PR China.,Murad Research Institute for Modernized Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Ka Bian
- Department of Biochemistry and Molecular Medicine, The George Washington University, Ross Hall 2300 Eye Street, NW, Washington, DC 20037, USA
| |
Collapse
|
19
|
Gobert A, Bruggeman M, Giegé P. Involvement of PIN-like domain nucleases in tRNA processing and translation regulation. IUBMB Life 2019; 71:1117-1125. [PMID: 31066520 DOI: 10.1002/iub.2062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/24/2019] [Indexed: 12/29/2022]
Abstract
Transfer RNAs require essential maturation steps to become functional. Among them, RNase P removes 5' leader sequences of pre-tRNAs. Although RNase P was long thought to occur universally as ribonucleoproteins, different types of protein-only RNase P enzymes were discovered in both eukaryotes and prokaryotes. Interestingly, all these enzymes belong to the super-group of PilT N-terminal-like nucleases (PIN)-like ribonucleases. This wide family of enzymes can be subdivided into major subgroups. Here, we review recent studies at both functional and mechanistic levels on three PIN-like ribonucleases groups containing enzymes connected to tRNA maturation and/or translation regulation. The evolutive distribution of these proteins containing PIN-like domains as well as their organization and fusion with various functional domains is discussed and put in perspective with the diversity of functions they acquired during evolution, for the maturation and homeostasis of tRNA and a wider array of RNA substrates. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1117-1125, 2019.
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de Biologie de Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathieu Bruggeman
- Institut de Biologie de Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Philippe Giegé
- Institut de Biologie de Moléculaire des Plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
20
|
Castagnoli L, Mandaliti W, Nepravishta R, Valentini E, Mattioni A, Procopio R, Iannuccelli M, Polo S, Paci M, Cesareni G, Santonico E. Selectivity of the CUBAN domain in the recognition of ubiquitin and NEDD8. FEBS J 2019; 286:653-677. [PMID: 30659753 DOI: 10.1111/febs.14752] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/25/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
Among the members of the ubiquitin-like (Ubl) protein family, neural precursor cell expressed developmentally down-regulated protein 8 (NEDD8) is the closest in sequence to ubiquitin (57% identity). The two modification mechanisms and their functions, however, are highly distinct and the two Ubls are not interchangeable. A complex network of interactions between modifying enzymes and adaptors, most of which are specific while others are promiscuous, ensures selectivity. Many domains that bind the ubiquitin hydrophobic patch also bind NEDD8 while no domain that specifically binds NEDD8 has yet been described. Here, we report an unbiased selection of domains that bind ubiquitin and/or NEDD8 and we characterize their specificity/promiscuity. Many ubiquitin-binding domains bind ubiquitin preferentially and, to a lesser extent, NEDD8. In a few cases, the affinity of these domains for NEDD8 can be increased by substituting the alanine at position 72 with arginine, as in ubiquitin. We have also identified a unique domain, mapping to the carboxyl end of the protein KHNYN, which has a stark preference for NEDD8. Given its ability to bind neddylated cullins, we have named this domain CUBAN (Cullin-Binding domain Associating with NEDD8). We present here the solution structure of the CUBAN domain both in the isolated form and in complex with NEDD8. The results contribute to the understanding of the discrimination mechanism between ubiquitin and the Ubl. They also provide new insights on the biological role of a ill-defined protein, whose function is hitherto only predicted.
Collapse
Affiliation(s)
| | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, Tor Vergata University, Rome, Italy
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, Tor Vergata University, Rome, Italy.,School of Pharmacy East Anglia, University of Norwich, UK
| | | | - Anna Mattioni
- Department of Biology, Tor Vergata University, Rome, Italy
| | - Radha Procopio
- Department of Biology, Tor Vergata University, Rome, Italy.,Institute of Molecular Bioimaging and Physiology, CNR, Catanzaro, Italy
| | | | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,DIPO, Dipartimento di Oncologia ed Emato-oncologia, University of Milan, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, Tor Vergata University, Rome, Italy
| | | | | |
Collapse
|
21
|
Abstract
Fanconi anemia (FA) is a disease of DNA repair characterized by bone marrow failure and a reduced ability to remove DNA interstrand cross-links. Here, we provide evidence that the FA protein FANCI also functions in ribosome biogenesis, the process of making ribosomes that initiates in the nucleolus. We show that FANCI localizes to the nucleolus and is functionally and physically tied to the transcription of pre-ribosomal RNA (pre-rRNA) and to large ribosomal subunit (LSU) pre-rRNA processing independent of FANCD2. While FANCI is known to be monoubiquitinated when activated for DNA repair, we find that it is predominantly in the deubiquitinated state in the nucleolus, requiring the nucleoplasmic deubiquitinase (DUB) USP1 and the nucleolar DUB USP36. Our model suggests a possible dual pathophysiology for FA that includes defects in DNA repair and in ribosome biogenesis.
Collapse
|
22
|
Xu J, Jiang N, Shi H, Zhao S, Yao S, Shen H. miR-28-5p promotes the development and progression of ovarian cancer through inhibition of N4BP1. Int J Oncol 2017; 50:1383-1391. [DOI: 10.3892/ijo.2017.3915] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 02/21/2017] [Indexed: 11/06/2022] Open
|
23
|
Wang FF, Liu MZ, Sui Y, Cao Q, Yan B, Jin ML, Mo X. Deficiency of SUMO-specific protease 1 induces arsenic trioxide-mediated apoptosis by regulating XBP1 activity in human acute promyelocytic leukemia. Oncol Lett 2016; 12:3755-3762. [PMID: 27895727 PMCID: PMC5104160 DOI: 10.3892/ol.2016.5162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/22/2016] [Indexed: 01/08/2023] Open
Abstract
Small ubiquitin-like modifier (SUMO)/sentrin-specific protease 1 (SENP1), a member of the SENP family, is highly expressed in several neoplastic tissues. However, the effect of SENP1 in acute promyelocytic leukemia (APL) has not been elucidated. In the present study, it was observed that SENP1 deficiency had no effect on the spontaneous apoptosis or differentiation of NB4 cells. Arsenic trioxide (As2O3) could induce the upregulation of endoplasmic reticulum (ER) stress, resulting in the apoptosis of NB4 cells. Additionally, knockdown of SENP1 significantly increased As2O3-induced apoptosis in NB4 cells transfected with small interfering RNA targeting SENP1. SENP1 deficiency also increased the accumulation of SUMOylated X-box binding protein 1 (XBP1), which was accompanied by the downregulation of the messenger RNA expression and transcriptional activity of the XBP1 target genes endoplasmic reticulum-localized DnaJ 4 and Sec61a, which were involved in ER stress and closely linked to the apoptosis of NB4 cells. Taken together, these results revealed that the specific de-SUMOylation activity of SENP1 for XBP1 was involved in the ER stress-mediated apoptosis caused by As2O3 treatment in NB4 cells, thus providing insight into potential therapeutic targets for APL treatment via manipulating XBP1 signaling during ER stress by targeting SENP1.
Collapse
Affiliation(s)
- Fei-Fei Wang
- Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China; Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Ming-Zhu Liu
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Yi Sui
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Qing Cao
- Department of Infectious Diseases, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| | - Bo Yan
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Mei-Ling Jin
- Shanghai YiBeiRui Biotechnology Co., Ltd., Shanghai 201318, P.R. China
| | - Xi Mo
- Institute for Pediatric Translational Medicine, Shanghai Children's Medical Center of Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
24
|
SENP1-modulated sumoylation regulates retinoblastoma protein (RB) and Lamin A/C interaction and stabilization. Oncogene 2016; 35:6429-6438. [PMID: 27270425 DOI: 10.1038/onc.2016.177] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 02/03/2016] [Accepted: 04/03/2016] [Indexed: 12/13/2022]
Abstract
The retinoblastoma tumor suppressor protein (RB) plays a critical role in cell proliferation and differentiation and its inactivation is a frequent underlying factor in tumorigenesis. While the regulation of RB function by phosphorylation is well studied, proteasome-mediated RB protein degradation is emerging as an important regulatory mechanism. Although our understanding of RB turnover is currently limited, there is evidence that the nuclear lamina filament protein Lamin A/C protects RB from proteasomal degradation. Here we show that SUMO1 conjugation of RB and Lamin A/C is modulated by the SUMO protease SENP1 and that sumoylation of both proteins is required for their interaction. Importantly, this SUMO1-dependent complex protects both RB and Lamin A/C from proteasomal turnover.
Collapse
|
25
|
Koné MC, Fleurot R, Chebrout M, Debey P, Beaujean N, Bonnet-Garnier A. Three-Dimensional Distribution of UBF and Nopp140 in Relationship to Ribosomal DNA Transcription During Mouse Preimplantation Development. Biol Reprod 2016; 94:95. [PMID: 26984997 DOI: 10.1095/biolreprod.115.136366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
The nucleolus is a dynamic nuclear compartment that is mostly involved in ribosome subunit biogenesis; however, it may also play a role in many other biological processes, such as stress response and the cell cycle. Mainly using electron microscopy, several studies have tried to decipher how active nucleoli are set up during early development in mice. In this study, we analyzed nucleologenesis during mouse early embryonic development using 3D-immunofluorescent detection of UBF and Nopp140, two proteins associated with different nucleolar compartments. UBF is a transcription factor that helps maintain the euchromatic state of ribosomal genes; Nopp140 is a phosphoprotein that has been implicated in pre-rRNA processing. First, using detailed image analyses and the in situ proximity ligation assay technique, we demonstrate that UBF and Nopp140 dynamic redistribution between the two-cell and blastocyst stages (time of implantation) is correlated with morphological and structural modifications that occur in embryonic nucleolar compartments. Our results also support the hypothesis that nucleoli develop at the periphery of nucleolar precursor bodies. Finally, we show that the RNA polymerase I inhibitor CX-5461: 1) disrupts transcriptional activity, 2) alters preimplantation development, and 3) leads to a complete reorganization of UBF and Nopp140 distribution. Altogether, our results underscore that highly dynamic changes are occurring in the nucleoli of embryos and confirm a close link between ribosomal gene transcription and nucleologenesis during the early stages of development.
Collapse
Affiliation(s)
| | - Renaud Fleurot
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Martine Chebrout
- UMR BDR, INRA, ENVA, Université Paris Saclay, Jouy en Josas, France
| | - Pascale Debey
- Sorbonne-Universités, MNHN, CNRS, INSERM, Structure et instabilité des génomes, Paris, France
| | | | | |
Collapse
|
26
|
Deschênes-Simard X, Lessard F, Gaumont-Leclerc MF, Bardeesy N, Ferbeyre G. Cellular senescence and protein degradation: breaking down cancer. Cell Cycle 2014; 13:1840-58. [PMID: 24866342 DOI: 10.4161/cc.29335] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Autophagy and the ubiquitin-proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.
Collapse
Affiliation(s)
- Xavier Deschênes-Simard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | - Frédéric Lessard
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| | | | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center; Harvard Medical School; Boston, MA USA
| | - Gerardo Ferbeyre
- Department of Biochemistry and Molecular Medicine; Université de Montréal; Montréal, Québec, Canada
| |
Collapse
|
27
|
Cai J, Yang L, Wang B, Huang Y, Tang J, Lu Y, Wu Z, Jian J. Identification of a novel N4BP1-like gene from grass carp (Ctenopharyngodon idella) in response to GCRV infection. FISH & SHELLFISH IMMUNOLOGY 2014; 36:223-228. [PMID: 24220004 DOI: 10.1016/j.fsi.2013.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/03/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Nedd4 binding protein 1 (N4BP1) has been identified as an interacting protein and a substrate of Nedd4 E3 ligase. However, the report about N4BP1's function is limit. In this study, a novel N4BP1 gene (CiN4BP1) was cloned from grass carp (Ctenopharyngodon idella). The full-length cDNA sequence of CiN4BP1 (3022 bp) included an open reading frame (ORF) of 2565 bp, which encoded a putative peptides of 854 amino acids containing one KH domain and one NYN domain. It was close homology (47% identify) to Oryzias latipes N4BP1. And mRNA expression of CiN4BP1 gene showed relatively high level in skin, gill, head kidney and spleen. After grass carp reovirus (GCRV) infection, CiN4BP1 was up-regulated in vivo and in vitro. Furthermore, overexpression of CiN4BP1 in CIK cells inhibited viral gene transcription. These data indicated that CiN4BP1 might play an important role in immune response to viral invasion.
Collapse
Affiliation(s)
- Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Lin Yang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yucong Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China
| | - Zaohe Wu
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China; Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524088, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang 524088, China.
| |
Collapse
|
28
|
Sharma P, Yamada S, Lualdi M, Dasso M, Kuehn MR. Senp1 is essential for desumoylating Sumo1-modified proteins but dispensable for Sumo2 and Sumo3 deconjugation in the mouse embryo. Cell Rep 2013; 3:1640-50. [PMID: 23684609 PMCID: PMC3775507 DOI: 10.1016/j.celrep.2013.04.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 02/15/2013] [Accepted: 04/18/2013] [Indexed: 12/31/2022] Open
Abstract
Posttranslational modification with small ubiquitin-like modifier (Sumo) regulates numerous cellular and developmental processes. Sumoylation is dynamic with deconjugation by Sumo-specific proteases (Senps) regulating steady-state levels. Different Senps are found in distinct subcellular domains, which may limit their deconjugation activity to colocalizing Sumo-modified proteins. In vitro, Senps can discriminate between the different Sumo paralogs: Sumo1 versus the highly related Sumo2 and Sumo3 (Sumo2/3), which can form poly-Sumo chains. However, a full understanding of Senp specificity in vivo is still lacking. Here, using biochemical and genetic approaches, we establish that Senp1 has an essential, nonredundant function to desumoylate Sumo1-modified proteins during mouse embryonic development. Senp1 specificity for Sumo1 conjugates represents an intrinsic function and not simply a product of colocalization. In contrast, Senp1 has only a limited role in Sumo2/3 desumoylation, although it may regulate Sumo1-mediated termination of poly-Sumo2/3 chains.
Collapse
Affiliation(s)
- Prashant Sharma
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Satoru Yamada
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Margaret Lualdi
- Laboratory Animal Sciences Program, SAIC-Frederick, Frederick, MD 21702, USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael R. Kuehn
- Laboratory of Protein Dynamics and Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
29
|
Malloy MT, McIntosh DJ, Walters TS, Flores A, Goodwin JS, Arinze IJ. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: implications for degradation of NRF2 in the nucleus. J Biol Chem 2013; 288:14569-14583. [PMID: 23543742 DOI: 10.1074/jbc.m112.437392] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ubiquitylation of Nrf2 by the Keap1-Cullin3/RING box1 (Cul3-Rbx1) E3 ubiquitin ligase complex targets Nrf2 for proteasomal degradation in the cytoplasm and is an extensively studied mechanism for regulating the cellular level of Nrf2. Although mechanistic details are lacking, reports abound that Nrf2 can also be degraded in the nucleus. Here, we demonstrate that Nrf2 is a target for sumoylation by both SUMO-1 and SUMO-2. HepG2 cells treated with As2O3, which enhances attachment of SUMO-2/3 to target proteins, increased SUMO-2/3-modification (polysumoylation) of Nrf2. We show that Nrf2 traffics, in part, to promyelocytic leukemia-nuclear bodies (PML-NBs). Cell fractions harboring key components of PML-NBs did not contain biologically active Keap1 but contained modified Nrf2 as well as RING finger protein 4 (RNF4), a poly-SUMO-specific E3 ubiquitin ligase. Overexpression of wild-type RNF4, but not the catalytically inactive mutant, decreased the steady-state levels of Nrf2, measured in the PML-NB-enriched cell fraction. The proteasome inhibitor MG-132 interfered with this decrease, resulting in elevated levels of polysumoylated Nrf2 that was also ubiquitylated. Wild-type RNF4 accelerated the half-life (t½) of Nrf2, measured in PML-NB-enriched cell fractions. These results suggest that RNF4 mediates polyubiquitylation of polysumoylated Nrf2, leading to its subsequent degradation in PML-NBs. Overall, this work identifies Nrf2 as a target for sumoylation and provides a novel mechanism for its degradation in the nucleus, independent of Keap1.
Collapse
Affiliation(s)
- Melanie Theodore Malloy
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208-3599
| | - Deneshia J McIntosh
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208-3599
| | - Treniqka S Walters
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208-3599
| | - Andrea Flores
- Department of Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208-3599
| | - J Shawn Goodwin
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208-3599
| | - Ifeanyi J Arinze
- Department of Physiology, School of Medicine, Meharry Medical College, Nashville, Tennessee 37208-3599.
| |
Collapse
|
30
|
Krzysik-Walker SM, González-Mariscal I, Scheibye-Knudsen M, Indig FE, Bernier M. The biarylpyrazole compound AM251 alters mitochondrial physiology via proteolytic degradation of ERRα. Mol Pharmacol 2013; 83:157-66. [PMID: 23066093 PMCID: PMC3533472 DOI: 10.1124/mol.112.082651] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/12/2012] [Indexed: 02/06/2023] Open
Abstract
The orphan nuclear receptor estrogen-related receptor alpha (ERRα) directs the transcription of nuclear genes involved in energy homeostasis control and the regulation of mitochondrial mass and function. A crucial role for controlling ERRα-mediated target gene expression has been ascribed to the biarylpyrazole compound 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251) through direct binding to and destabilization of ERRα protein. Here, we provide evidence that structurally related AM251 analogs also have negative impacts on ERRα protein levels in a cell-type-dependent manner while having no deleterious actions on ERRγ. We show that these off-target cellular effects of AM251 are mediated by proteasomal degradation of nuclear ERRα. Cell treatment with the nuclear export inhibitor leptomycin B did not prevent AM251-induced destabilization of ERRα protein, whereas proteasome inhibition with MG132 stabilized and maintained its DNA-binding function, indicative of ERRα being a target of nuclear proteasomal complexes. NativePAGE analysis revealed that ERRα formed a ∼220-kDa multiprotein nuclear complex that was devoid of ERRγ and the coregulator peroxisome proliferator-activated receptor γ coactivator-1. AM251 induced SUMO-2,3 incorporation in ERRα in conjunction with increased protein kinase C activity, whose activation by phorbol ester also promoted ERRα protein loss. Down-regulation of ERRα by AM251 or small interfering RNA led to increased mitochondria biogenesis while negatively impacting mitochondrial membrane potential. These results reveal a novel molecular mechanism by which AM251 and related compounds alter mitochondrial physiology through destabilization of ERRα.
Collapse
Affiliation(s)
- Susan M Krzysik-Walker
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, 251 Bayview Boulevard, Suite 100, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
31
|
Ulbricht T, Alzrigat M, Horch A, Reuter N, von Mikecz A, Steimle V, Schmitt E, Krämer OH, Stamminger T, Hemmerich P. PML promotes MHC class II gene expression by stabilizing the class II transactivator. ACTA ACUST UNITED AC 2012; 199:49-63. [PMID: 23007646 PMCID: PMC3461510 DOI: 10.1083/jcb.201112015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Promyelocytic leukemia (PML) nuclear bodies selectively associate with transcriptionally active genomic regions, including the gene-rich major histocompatibility (MHC) locus. In this paper, we have explored potential links between PML and interferon (IFN)-γ-induced MHC class II expression. IFN-γ induced a substantial increase in the spatial proximity between PML bodies and the MHC class II gene cluster in different human cell types. Knockdown experiments show that PML is required for efficient IFN-γ-induced MHC II gene transcription through regulation of the class II transactivator (CIITA). PML mediates this function through protection of CIITA from proteasomal degradation. We also show that PML isoform II specifically forms a stable complex with CIITA at PML bodies. These observations establish PML as a coregulator of IFN-γ-induced MHC class II expression.
Collapse
Affiliation(s)
- Tobias Ulbricht
- Leibniz Institute for Age Research, Fritz-Lipmann Institute, 07745 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Wang J. Cardiac function and disease: emerging role of small ubiquitin-related modifier. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2011; 3:446-57. [PMID: 21197655 PMCID: PMC3110591 DOI: 10.1002/wsbm.130] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small ubiquitin-related modifiers, or SUMOs, have emerged as versatile regulators of many biological functions that do so by covalent attachment to a variety of substrates via enzymatic reactions. SUMO conjugation has also been shown to be involved in a number of human pathogenic processes. More recent advances in the SUMO field have indicated a potential role for SUMO conjugation pathway in cardiogenesis. This advanced review will describe the basic features of the SUMO conjugation pathway and will summarize the most recent studies implicating the influence of the sumoylation pathway in cardiac function under both physiological and pathological conditions. WIREs Syst Biol Med 2011 3 446-457 DOI: 10.1002/wsbm.130
Collapse
Affiliation(s)
- Jun Wang
- Center for Stem Cell Engineering, Department of Basic Research Laboratories, Texas Heart Institute, Houston, TX, USA.
| |
Collapse
|
33
|
Abstract
The cell nucleus is responsible for the storage, expression, propagation, and maintenance of the genetic material it contains. Highly organized macromolecular complexes are required for these processes to occur faithfully in an extremely crowded nuclear environment. In addition to chromosome territories, the nucleus is characterized by the presence of nuclear substructures, such as the nuclear envelope, the nucleolus, and other nuclear bodies. Other smaller structural entities assemble on chromatin in response to required functions including RNA transcription, DNA replication, and DNA repair. Experiments in living cells over the last decade have revealed that many DNA binding proteins have very short residence times on chromatin. These observations have led to a model in which the assembly of nuclear macromolecular complexes is based on the transient binding of their components. While indeed most nuclear proteins are highly dynamic, we found after an extensive survey of the FRAP literature that an important subset of nuclear proteins shows either very slow turnover or complete immobility. These examples provide compelling evidence for the establishment of stable protein complexes in the nucleus over significant fractions of the cell cycle. Stable interactions in the nucleus may, therefore, contribute to the maintenance of genome integrity. Based on our compilation of FRAP data, we propose an extension of the existing model for nuclear organization which now incorporates stable interactions. Our new “induced stability” model suggests that self-organization, self-assembly, and assisted assembly contribute to nuclear architecture and function.
Collapse
|
34
|
Shcherbik N, Pestov DG. Ubiquitin and ubiquitin-like proteins in the nucleolus: multitasking tools for a ribosome factory. Genes Cancer 2010; 1:681-689. [PMID: 21113400 DOI: 10.1177/1947601910381382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Synthesis of new ribosomes is an essential process upregulated during cell growth and proliferation. Here, we review our current understanding of the role that ubiquitin and ubiquitin-like proteins (UBLs) play in ribosome biogenesis, with a focus on mammalian cells. One important function of the nuclear ubiquitin-proteasome system is to control the supply of ribosomal proteins for the assembly of new ribosomal subunits in the nucleolus. Mutations in ribosomal proteins or ribosome assembly factors, stress, and many anticancer drugs have been shown to disrupt normal ribosome biogenesis, triggering a p53-dependent response. We discuss how p53 can be activated by the aberrant ribosome formation, centering on the current models of the interaction between ribosomal proteins released from the nucleolus and the ubiquitin ligase Mdm2. Recent studies also revealed multiple ubiquitin- and UBL-conjugated forms of nucleolar proteins with largely unknown functions, indicating that many new details about the role of these modifications in the nucleolus await to be discovered.
Collapse
Affiliation(s)
- Natalia Shcherbik
- Department of Cell Biology, University of Medicine and Dentistry of New Jersey, Stratford, NJ 08084
| | | |
Collapse
|