1
|
Frappier L. EBNA1. Curr Top Microbiol Immunol 2025. [PMID: 40399573 DOI: 10.1007/82_2025_299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
EBNA1 plays multiple important roles in EBV latent infection and has also been shown to impact EBV lytic infection. EBNA1 is required for the stable persistence of the EBV genomes in latent infection and activates the expression of other EBV latency genes through interactions with specific DNA sequences in the viral episomes. EBNA1 also interacts with several cellular proteins and cellular DNA sites to modulate multiple cellular pathways important for viral persistence and cell survival. These cellular effects are also implicated in oncogenesis, suggesting a direct role of EBNA1 in the development of EBV-associated tumours.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Dinh VT, Loaëc N, Quillévéré A, Le Sénéchal R, Keruzoré M, Martins RP, Granzhan A, Blondel M. The hide-and-seek game of the oncogenic Epstein-Barr virus-encoded EBNA1 protein with the immune system: An RNA G-quadruplex tale. Biochimie 2023; 214:57-68. [PMID: 37473831 DOI: 10.1016/j.biochi.2023.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The Epstein-Barr virus (EBV) is the first oncogenic virus described in human. EBV infects more than 90% of the human population worldwide, but most EBV infections are asymptomatic. After the primary infection, the virus persists lifelong in the memory B cells of the infected individuals. Under certain conditions the virus can cause several human cancers, that include lymphoproliferative disorders such as Burkitt and Hodgkin lymphomas and non-lymphoid malignancies such as 100% of nasopharyngeal carcinoma and 10% of gastric cancers. Each year, about 200,000 EBV-related cancers emerge, hence accounting for at least 1% of worldwide cancers. Like all gammaherpesviruses, EBV has evolved a strategy to escape the host immune system. This strategy is mainly based on the tight control of the expression of its Epstein-Barr nuclear antigen-1 (EBNA1) protein, the EBV-encoded genome maintenance protein. Indeed, EBNA1 is essential for viral genome replication and maintenance but, at the same time, is also highly antigenic and T cells raised against EBNA1 exist in infected individuals. For this reason, EBNA1 is considered as the Achilles heel of EBV and the virus has seemingly evolved a strategy that employs the binding of nucleolin, a host cell factor, to RNA G-quadruplex (rG4) within EBNA1 mRNA to limit its expression to the minimal level required for function while minimizing immune recognition. This review recapitulates in a historical way the knowledge accumulated on EBNA1 immune evasion and discusses how this rG4-dependent mechanism can be exploited as an intervention point to unveil EBV-related cancers to the immune system.
Collapse
Affiliation(s)
- Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France
| | | | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français Du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 Avenue Camille Desmoulins, F-29200 Brest, France.
| |
Collapse
|
3
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
4
|
Li JN, Wang MY, Chen YT, Kuo YL, Chen PS. Expression of SnoRNA U50A Is Associated with Better Prognosis and Prolonged Mitosis in Breast Cancer. Cancers (Basel) 2021; 13:cancers13246304. [PMID: 34944924 PMCID: PMC8699759 DOI: 10.3390/cancers13246304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary SnoRNAs are essential for fundamental cellular processes. However, emerging evidence shows that snoRNAs play regulatory roles during cancer progression. The snoRNA U50A (U50A) is a newly-identified putative tumor suppressor, but its clinical and mechanistic impacts in breast cancer remain elusive. In this study, we quantified the copy number of U50A in breast cancer patient tissues and found that a higher level of U50A expression is correlated with better overall survival in breast cancer patients. By utilizing transcriptomic analysis, we demonstrated that U50A prolongs mitosis and reduces colony-forming ability through downregulating mitosis-related genes. Consistent with these in vitro results, breast cancer tissues expressing higher U50A significantly exhibited accumulated mitotic tumor cells and were associated with reduced tumor size. Altogether, this is the first study showing the clinical, cellular, and regulatory impacts of snoRNA U50A in human breast cancer. Abstract Small nucleolar RNAs (snoRNAs) are small noncoding RNAs generally recognized as housekeeping genes. Genomic analysis has shown that snoRNA U50A (U50A) is a candidate tumor suppressor gene deleted in less than 10% of breast cancer patients. To date, the pathological roles of U50A in cancer, including its clinical significance and its regulatory impact at the molecular level, are not well-defined. Here, we quantified the copy number of U50A in human breast cancer tissues. Our results showed that the U50A expression level is correlated with better prognosis in breast cancer patients. Utilizing RNA-sequencing for transcriptomic analysis, we revealed that U50A downregulates mitosis-related genes leading to arrested cancer cell mitosis and suppressed colony-forming ability. Moreover, in support of the impacts of U50A in prolonging mitosis and inhibiting clonogenic activity, breast cancer tissues with higher U50A expression exhibit accumulated mitotic tumor cells. In conclusion, based on the evidence from U50A-downregulated mitosis-related genes, prolonged mitosis, repressed colony-forming ability, and clinical analyses, we demonstrated molecular insights into the pathological impact of snoRNA U50A in human breast cancer.
Collapse
Affiliation(s)
- Jie-Ning Li
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ming-Yang Wang
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Yi-Ting Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yao-Lung Kuo
- Department of Surgery, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Breast Medical Center, National Cheng Kung University Hospital, Tainan 701, Taiwan
- Correspondence: (Y.-L.K.); or (P.-S.C.); Tel.: +886-6-2353535 (ext. 5224) (Y.-L.K.); +886-6-2353535 (ext. 6233) (P.-S.C.); Fax: +886-6-2368549 (Y.-L.K.); +886-6-2363956 (P.-S.C.)
| | - Pai-Sheng Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Correspondence: (Y.-L.K.); or (P.-S.C.); Tel.: +886-6-2353535 (ext. 5224) (Y.-L.K.); +886-6-2353535 (ext. 6233) (P.-S.C.); Fax: +886-6-2368549 (Y.-L.K.); +886-6-2363956 (P.-S.C.)
| |
Collapse
|
5
|
Helicobacter pylori and Epstein-Barr Virus Coinfection Stimulates Aggressiveness in Gastric Cancer through the Regulation of Gankyrin. mSphere 2021; 6:e0075121. [PMID: 34585958 PMCID: PMC8550222 DOI: 10.1128/msphere.00751-21] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Persistent coinfection with Helicobacter pylori and Epstein-Barr virus (EBV) promotes aggressive gastric carcinoma (GC). The molecular mechanisms underlying the aggressiveness in H. pylori and EBV-mediated GC are not well characterized. We investigated the molecular mechanism involved in H. pylori- and EBV-driven proliferation of gastric epithelial cells. Results showed that the coinfection is significantly more advantageous to the pathogens as coinfection creates a microenvironment favorable to higher pathogen-associated gene expression. The EBV latent genes ebna1 and ebna3c are highly expressed in the coinfection compared to lone EBV infection at 12 and 24 h. The H. pylori-associated genes 16S rRNA, cagA, and babA were also highly expressed during coinfection compared to H. pylori alone. In addition, upregulation of gankyrin, which is a small oncoprotein, modulates various cell signaling pathways, leading to oncogenesis. Notably, the knockdown of gankyrin decreased the cancer properties of gastric epithelial cells. Gankyrin showed a similar expression pattern as that of ebna3c at both transcript and protein levels, suggesting a possible correlation. Further, EBV and H. pylori created a microenvironment that induced cell transformation and oncogenesis through dysregulation of the cell cycle regulatory (ccnd1, dapk3, pcna, and akt), GC marker (abl1, tff-2, and cdx2), cell migration (mmp3 and mmp7), DNA response (pRB, pten, and p53), and antiapoptotic (bcl2) genes in infected gastric epithelial cells through gankyrin. Our study provides a new insight into the interplay of two oncogenic agents (H. pylori and EBV) that leads to an enhanced carcinogenic activity in gastric epithelial cells through overexpression of gankyrin. IMPORTANCE In the present study, we evaluated the synergistic effects of EBV and H. pylori infection on gastric epithelial cells in various coinfection models. These coinfection models were among the first to depict the exposures of gastric epithelial cells to EBV followed by H. pylori; however, coinfection models exist that narrated the scenario upon exposure to H. pylori followed by that to EBV. We determined that a coinfection by EBV and H. pylori enhanced the expression of oncogenic protein gankyrin. The interplay between EBV and H. pylori promoted the oncogenic properties of AGS cells like elevated focus formation, cell migration, and cell proliferation through gankyrin. EBV and H. pylori mediated an enhanced expression of gankyrin, which further dysregulated cancer-associated genes such as cell migratory, tumor suppressor, DNA damage response, and proapoptotic genes.
Collapse
|
6
|
Kim KD, Tanizawa H, De Leo A, Vladimirova O, Kossenkov A, Lu F, Showe LC, Noma KI, Lieberman PM. Epigenetic specifications of host chromosome docking sites for latent Epstein-Barr virus. Nat Commun 2020; 11:877. [PMID: 32054837 PMCID: PMC7018943 DOI: 10.1038/s41467-019-14152-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) genomes persist in latently infected cells as extrachromosomal episomes that attach to host chromosomes through the tethering functions of EBNA1, a viral encoded sequence-specific DNA binding protein. Here we employ circular chromosome conformation capture (4C) analysis to identify genome-wide associations between EBV episomes and host chromosomes. We find that EBV episomes in Burkitt's lymphoma cells preferentially associate with cellular genomic sites containing EBNA1 binding sites enriched with B-cell factors EBF1 and RBP-jK, the repressive histone mark H3K9me3, and AT-rich flanking sequence. These attachment sites correspond to transcriptionally silenced genes with GO enrichment for neuronal function and protein kinase A pathways. Depletion of EBNA1 leads to a transcriptional de-repression of silenced genes and reduction in H3K9me3. EBV attachment sites in lymphoblastoid cells with different latency type show different correlations, suggesting that host chromosome attachment sites are functionally linked to latency type gene expression programs.
Collapse
MESH Headings
- Attachment Sites, Microbiological/genetics
- Attachment Sites, Microbiological/physiology
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/virology
- Cell Line, Tumor
- Chromosomes, Human/genetics
- Chromosomes, Human/virology
- Epigenesis, Genetic
- Epstein-Barr Virus Nuclear Antigens/physiology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 4, Human/physiology
- Host Microbial Interactions/genetics
- Host Microbial Interactions/physiology
- Humans
- Models, Biological
- Plasmids/genetics
- Virus Latency/genetics
- Virus Latency/physiology
Collapse
Affiliation(s)
- Kyoung-Dong Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Korea
| | - Hideki Tanizawa
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Alessandra De Leo
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Olga Vladimirova
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Andrew Kossenkov
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Fang Lu
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Louise C Showe
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA
| | - Ken-Ichi Noma
- Institute of Molecular Biology, University of Oregon, Eugene, OR, 97403, USA
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA, 19146, USA.
| |
Collapse
|
7
|
Csorba K, Schirmbeck LA, Tuncer E, Ribi C, Roux-Lombard P, Chizzolini C, Huynh-Do U, Vanhecke D, Trendelenburg M. Anti-C1q Antibodies as Occurring in Systemic Lupus Erythematosus Could Be Induced by an Epstein-Barr Virus-Derived Antigenic Site. Front Immunol 2019; 10:2619. [PMID: 31787984 PMCID: PMC6853867 DOI: 10.3389/fimmu.2019.02619] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/21/2019] [Indexed: 01/08/2023] Open
Abstract
Previous infection with Epstein-Barr virus (EBV) is believed to trigger autoimmunity and to drive autoantibody generation as occurring in patients with systemic lupus erythematosus (SLE). Complement C1q and autoantibodies targeting it (anti-C1q) are also considered to be involved in the pathogenesis of SLE, independently of the impact of environmental insults. Still, the circumstances under which these autoantibodies arise remain elusive. By studying a major antigenic site of C1q targeted by anti-C1q (A08), we aimed to determine environmental factors and possible mechanisms leading to the development of anti-C1q. First, we determined antigenic residues of A08 that were critical for the binding of anti-C1q; importantly, we found the binding to depend on amino-acid-identity. Anti-C1q of SLE patients targeting these critical antigenic residues specifically cross-reacted with the EBV-related EBNA-1 (Epstein-Barr virus nuclear antigen 1)-derived peptide EBNA348. In a cohort of 180 SLE patients we confirmed that patients that were seropositive for EBV and recognized the EBNA348 peptide had increased levels of anti-A08 and anti-C1q, respectively. The correlation of anti-EBNA348 with anti-A08 levels was stronger in SLE patients than in matched healthy controls. Finally, EBNA348 peptide-immunization of C1q−/− mice induced the generation of cross-reactive antibodies which recognized both the A08 epitope of C1q and intact C1q. These findings suggest that anti-C1q in SLE patients could be induced by an EBV-derived epitope through molecular mimicry, thereby further supporting the pathogenic role of EBV in the development of SLE. Considering the role of C1q and anti-C1q, modifying the anti-EBV response might be a promising strategy to improve the course of the disease.
Collapse
Affiliation(s)
- Kinga Csorba
- Clinical Immunology, Department of Biomedicine and Division of Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Lucia A Schirmbeck
- Clinical Immunology, Department of Biomedicine and Division of Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Eylul Tuncer
- Clinical Immunology, Department of Biomedicine and Division of Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Camillo Ribi
- Immunology and Allergy, Department of Internal Medicine, University Hospital Lausanne, Lausanne, Switzerland
| | - Pascale Roux-Lombard
- Division of Immunology and Allergy, Department of Medicine, University Hospital and University of Geneva, Geneva, Switzerland
| | - Carlo Chizzolini
- Division of Immunology and Allergy, Department of Medicine, University Hospital and University of Geneva, Geneva, Switzerland
| | - Uyen Huynh-Do
- Division of Nephrology and Hypertension, University Hospital Bern, Bern, Switzerland
| | - Dominique Vanhecke
- Clinical Immunology, Department of Biomedicine and Division of Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| | - Marten Trendelenburg
- Clinical Immunology, Department of Biomedicine and Division of Internal Medicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
8
|
De Leo A, Calderon A, Lieberman PM. Control of Viral Latency by Episome Maintenance Proteins. Trends Microbiol 2019; 28:150-162. [PMID: 31624007 DOI: 10.1016/j.tim.2019.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/30/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
The human DNA tumor viruses Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and human papillomavirus (HPV) share the common property of persisting as multicopy episomes in the nuclei of rapidly dividing host cells. These episomes form the molecular basis for viral latency and are etiologically linked to virus-associated cancers. Episome maintenance requires epigenetic programming to ensure the proper control of viral gene expression, DNA replication, and genome copy number. For these viruses, episome maintenance requires a dedicated virus-encoded episome maintenance protein (EMP), namely LANA (KSHV), EBNA1 (EBV), and E2 (HPV). Here, we review common features of these viral EMPs and discuss recent advances in understanding how they contribute to the epigenetic control of viral episome maintenance during latency.
Collapse
|
9
|
Abstract
Persistent viral infections require a host cell reservoir that maintains functional copies of the viral genome. To this end, several DNA viruses maintain their genomes as extrachromosomal DNA minichromosomes in actively dividing cells. These viruses typically encode a viral protein that binds specifically to viral DNA genomes and tethers them to host mitotic chromosomes, thus enabling the viral genomes to hitchhike or piggyback into daughter cells. Viruses that use this tethering mechanism include papillomaviruses and the gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. This review describes the advantages and consequences of persistent extrachromosomal viral genome replication.
Collapse
Affiliation(s)
- Tami L Coursey
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Alison A McBride
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
10
|
EBNA1: Oncogenic Activity, Immune Evasion and Biochemical Functions Provide Targets for Novel Therapeutic Strategies against Epstein-Barr Virus- Associated Cancers. Cancers (Basel) 2018; 10:cancers10040109. [PMID: 29642420 PMCID: PMC5923364 DOI: 10.3390/cancers10040109] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 03/26/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022] Open
Abstract
The presence of the Epstein-Barr virus (EBV)-encoded nuclear antigen-1 (EBNA1) protein in all EBV-carrying tumours constitutes a marker that distinguishes the virus-associated cancer cells from normal cells and thereby offers opportunities for targeted therapeutic intervention. EBNA1 is essential for viral genome maintenance and also for controlling viral gene expression and without EBNA1, the virus cannot persist. EBNA1 itself has been linked to cell transformation but the underlying mechanism of its oncogenic activity has been unclear. However, recent data are starting to shed light on its growth-promoting pathways, suggesting that targeting EBNA1 can have a direct growth suppressing effect. In order to carry out its tasks, EBNA1 interacts with cellular factors and these interactions are potential therapeutic targets, where the aim would be to cripple the virus and thereby rid the tumour cells of any oncogenic activity related to the virus. Another strategy to target EBNA1 is to interfere with its expression. Controlling the rate of EBNA1 synthesis is critical for the virus to maintain a sufficient level to support viral functions, while at the same time, restricting expression is equally important to prevent the immune system from detecting and destroying EBNA1-positive cells. To achieve this balance EBNA1 has evolved a unique repeat sequence of glycines and alanines that controls its own rate of mRNA translation. As the underlying molecular mechanisms for how this repeat suppresses its own rate of synthesis in cis are starting to be better understood, new therapeutic strategies are emerging that aim to modulate the translation of the EBNA1 mRNA. If translation is induced, it could increase the amount of EBNA1-derived antigenic peptides that are presented to the major histocompatibility (MHC) class I pathway and thus, make EBV-carrying cancers better targets for the immune system. If translation is further suppressed, this would provide another means to cripple the virus.
Collapse
|
11
|
Dheekollu J, Malecka K, Wiedmer A, Delecluse HJ, Chiang AKS, Altieri DC, Messick TE, Lieberman PM. Carcinoma-risk variant of EBNA1 deregulates Epstein-Barr Virus episomal latency. Oncotarget 2018; 8:7248-7264. [PMID: 28077791 PMCID: PMC5352318 DOI: 10.18632/oncotarget.14540] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/26/2016] [Indexed: 12/27/2022] Open
Abstract
Epstein-Barr Virus (EBV) latent infection is a causative co-factor for endemic Nasopharyngeal Carcinoma (NPC). NPC-associated variants have been identified in EBV-encoded nuclear antigen EBNA1. Here, we solve the X-ray crystal structure of an NPC-derived EBNA1 DNA binding domain (DBD) and show that variant amino acids are found on the surface away from the DNA binding interface. We show that NPC-derived EBNA1 is compromised for DNA replication and episome maintenance functions. Recombinant virus containing the NPC EBNA1 DBD are impaired in their ability to immortalize primary B-lymphocytes and suppress lytic transcription during early stages of B-cell infection. We identify Survivin as a host protein deficiently bound by the NPC variant of EBNA1 and show that Survivin depletion compromises EBV episome maintenance in multiple cell types. We propose that endemic variants of EBNA1 play a significant role in EBV-driven carcinogenesis by altering key regulatory interactions that destabilize latent infection.
Collapse
Affiliation(s)
| | | | | | | | - Alan K S Chiang
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong
| | | | | | | |
Collapse
|
12
|
Structural and Functional Basis for an EBNA1 Hexameric Ring in Epstein-Barr Virus Episome Maintenance. J Virol 2017; 91:JVI.01046-17. [PMID: 28701406 DOI: 10.1128/jvi.01046-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/09/2017] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes a stable latent infection that can persist for the life of the host. EBNA1 is required for the replication, maintenance, and segregation of the latent episome, but the structural features of EBNA1 that confer each of these functions are not completely understood. Here, we have solved the X-ray crystal structure of an EBNA1 DNA-binding domain (DBD) and discovered a novel hexameric ring oligomeric form. The oligomeric interface pivoted around residue T585 as a joint that links and stabilizes higher-order EBNA1 complexes. Substitution mutations around the interface destabilized higher-order complex formation and altered the cooperative DNA-binding properties of EBNA1. Mutations had both positive and negative effects on EBNA1-dependent DNA replication and episome maintenance with OriP. We found that one naturally occurring polymorphism in the oligomer interface (T585P) had greater cooperative DNA binding in vitro, minor defects in DNA replication, and pronounced defects in episome maintenance. The T585P mutant was compromised for binding to OriP in vivo as well as for assembling the origin recognition complex subunit 2 (ORC2) and trimethylated histone 3 lysine 4 (H3K4me3) at OriP. The T585P mutant was also compromised for forming stable subnuclear foci in living cells. These findings reveal a novel oligomeric structure of EBNA1 with an interface subject to naturally occurring polymorphisms that modulate EBNA1 functional properties. We propose that EBNA1 dimers can assemble into higher-order oligomeric structures important for diverse functions of EBNA1.IMPORTANCE Epstein-Barr virus is a human gammaherpesvirus that is causally associated with various cancers. Carcinogenic properties are linked to the ability of the virus to persist in the latent form for the lifetime of the host. EBNA1 is a sequence-specific DNA-binding protein that is consistently expressed in EBV tumors and is the only viral protein required to maintain the viral episome during latency. The structural and biochemical mechanisms by which EBNA1 allows the long-term persistence of the EBV genome are currently unclear. Here, we have solved the crystal structure of an EBNA1 hexameric ring and characterized key residues in the interface required for higher-order complex formation and long-term plasmid maintenance.
Collapse
|
13
|
Kamranvar SA, Masucci MG. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization. Viruses 2017; 9:v9080217. [PMID: 28792435 PMCID: PMC5580474 DOI: 10.3390/v9080217] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/11/2022] Open
Abstract
The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.
Collapse
Affiliation(s)
- Siamak A Kamranvar
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, 751 23 Uppsala, Sweden.
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
14
|
Deschamps T, Bazot Q, Leske DM, MacLeod R, Mompelat D, Tafforeau L, Lotteau V, Maréchal V, Baillie GS, Gruffat H, Wilson JB, Manet E. Epstein-Barr virus nuclear antigen 1 interacts with regulator of chromosome condensation 1 dynamically throughout the cell cycle. J Gen Virol 2017; 98:251-265. [PMID: 28284242 DOI: 10.1099/jgv.0.000681] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) nuclear antigen 1 (EBNA1) is a sequence-specific DNA-binding protein that plays an essential role in viral episome replication and segregation, by recruiting the cellular complex of DNA replication onto the origin (oriP) and by tethering the viral DNA onto the mitotic chromosomes. Whereas the mechanisms of viral DNA replication are well documented, those involved in tethering EBNA1 to the cellular chromatin are far from being understood. Here, we have identified regulator of chromosome condensation 1 (RCC1) as a novel cellular partner for EBNA1. RCC1 is the major nuclear guanine nucleotide exchange factor for the small GTPase Ran enzyme. RCC1, associated with chromatin, is involved in the formation of RanGTP gradients critical for nucleo-cytoplasmic transport, mitotic spindle formation and nuclear envelope reassembly following mitosis. Using several approaches, we have demonstrated a direct interaction between these two proteins and found that the EBNA1 domains responsible for EBNA1 tethering to the mitotic chromosomes are also involved in the interaction with RCC1. The use of an EBNA1 peptide array confirmed the interaction of RCC1 with these regions and also the importance of the N-terminal region of RCC1 in this interaction. Finally, using confocal microscopy and Förster resonance energy transfer analysis to follow the dynamics of interaction between the two proteins throughout the cell cycle, we have demonstrated that EBNA1 and RCC1 closely associate on the chromosomes during metaphase, suggesting an essential role for the interaction during this phase, perhaps in tethering EBNA1 to mitotic chromosomes.
Collapse
Affiliation(s)
- Thibaut Deschamps
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69364, France.,CNRS, UMR5308, Lyon 69364, France.,CIRI, International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, Lyon 69364, France.,Ecole Normale Supérieure de Lyon, Lyon 69364, France.,INSERM, U1111, Lyon 69364, France
| | - Quentin Bazot
- Ecole Normale Supérieure de Lyon, Lyon 69364, France.,CNRS, UMR5308, Lyon 69364, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69364, France.,Present address: Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London, UK.,CIRI, International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, Lyon 69364, France.,INSERM, U1111, Lyon 69364, France
| | - Derek M Leske
- Present address: University of Oxford, Ludwig Institute for Cancer Research, Oxford, UK.,College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ruth MacLeod
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Dimitri Mompelat
- Present address: University Joseph Fourier, Pathogenesis and Lentiviral Vaccination Laboratory, Grenoble, France.,INSERM, U1111, Lyon 69364, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69364, France.,Ecole Normale Supérieure de Lyon, Lyon 69364, France.,CIRI, International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, Lyon 69364, France.,CNRS, UMR5308, Lyon 69364, France
| | - Lionel Tafforeau
- CIRI, International Center for Infectiology Research, Cell Biology of Viral Infections Team, Université de Lyon, Lyon 69364, France.,INSERM, U1111, Lyon 69364, France.,Present address: Cell Biology Lab, University of Mons, Mons, Belgium.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69364, France
| | - Vincent Lotteau
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69364, France.,Ecole Normale Supérieure de Lyon, Lyon 69364, France.,CNRS, UMR5308, Lyon 69364, France.,INSERM, U1111, Lyon 69364, France.,CIRI, International Center for Infectiology Research, Cell Biology of Viral Infections Team, Université de Lyon, Lyon 69364, France
| | - Vincent Maréchal
- UPMC Université Paris 6, Inserm, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), UMR 1135, ERL CNRS 8255, F-75013 Paris, France
| | - George S Baillie
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Henri Gruffat
- CNRS, UMR5308, Lyon 69364, France.,INSERM, U1111, Lyon 69364, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69364, France.,CIRI, International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, Lyon 69364, France.,Ecole Normale Supérieure de Lyon, Lyon 69364, France
| | - Joanna B Wilson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Evelyne Manet
- INSERM, U1111, Lyon 69364, France.,Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon 69364, France.,CIRI, International Center for Infectiology Research, Oncogenic Herpesviruses Team, Université de Lyon, Lyon 69364, France.,Ecole Normale Supérieure de Lyon, Lyon 69364, France.,CNRS, UMR5308, Lyon 69364, France
| |
Collapse
|
15
|
Aydin I, Schelhaas M. Viral Genome Tethering to Host Cell Chromatin: Cause and Consequences. Traffic 2016; 17:327-40. [PMID: 26787361 DOI: 10.1111/tra.12378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/14/2016] [Accepted: 01/14/2016] [Indexed: 12/26/2022]
Abstract
Viruses are small infectious agents that replicate in cells of a host organism and that evolved to use cellular machineries for all stages of the viral life cycle. Here, we critically assess current knowledge on a particular mechanism of persisting viruses, namely, how they tether their genomes to host chromatin, and what consequences arise from this process. A group of persisting DNA viruses, i.e. gamma-herpesviruses and papillomaviruses (PV), uses this tethering strategy to maintain their genomes in the nuclei during cell division. Thus, these viruses face the challenge of viral genome loss during mitosis, as they are transported with the host chromosomes to the nascent daughter nuclei. Incidentally, another group of viruses, certain retroviruses and PV, have adopted this tethering strategy to deliver their genomes into the nuclei of dividing cells during cell entry. By exploiting a phase in the cell cycle when the nuclear envelope is disassembled, viruses bypass the need to engage with the nuclear import machinery. Recent reports suggest that tethering may induce severe cellular consequences that involve activation of mitotic checkpoints, causing missegregation of host chromosomes and genomic instability, which may contribute to cancer.
Collapse
Affiliation(s)
- Inci Aydin
- Cell Biology of Virus Infection Unit, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.,Cells in Motion, CiM, Cluster of Excellence EXC 1003, Münster, Germany
| | - Mario Schelhaas
- Cell Biology of Virus Infection Unit, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.,Cells in Motion, CiM, Cluster of Excellence EXC 1003, Münster, Germany
| |
Collapse
|
16
|
Lista MJ, Voisset C, Contesse M, Friocourt G, Daskalogianni C, Bihel F, Fåhraeus R, Blondel M. The long‐lasting love affair between the budding yeast
Saccharomyces cerevisiae
and the Epstein‐Barr virus. Biotechnol J 2015; 10:1670-81. [DOI: 10.1002/biot.201500161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/03/2015] [Accepted: 07/08/2015] [Indexed: 12/29/2022]
Affiliation(s)
- María José Lista
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Cécile Voisset
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Marie‐Astrid Contesse
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Gaëlle Friocourt
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| | - Chrysoula Daskalogianni
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Frédéric Bihel
- Laboratoire d'Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74, Illkirch, France
| | - Robin Fåhraeus
- Institut National de la Santé et de la Recherche Médicale UMR1162, Université Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d'Hématologie, Paris, France
| | - Marc Blondel
- Institut National de la Santé et de la Recherche Médicale UMR1078; Université de Bretagne Occidentale, Faculté de Médecine et des Sciences de la Santé; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, Brest, France
| |
Collapse
|
17
|
Tarrant-Elorza M, Rossetto CC, Pari GS. Maintenance and replication of the human cytomegalovirus genome during latency. Cell Host Microbe 2015; 16:43-54. [PMID: 25011107 DOI: 10.1016/j.chom.2014.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/26/2014] [Accepted: 05/01/2014] [Indexed: 11/17/2022]
Abstract
Human cytomegalovirus (HCMV) can establish latent infection in hematopoietic progenitor cells (HPCs) or CD14 (+) monocytes. While circularized viral genomes are observed during latency, how viral genomes persist or which viral factors contribute to genome maintenance and/or replication is unclear. Previously, we identified a HCMV cis-acting viral maintenance element (TR element) and showed that HCMV IE1 exon 4 mRNA is expressed in latently infected HPCs. We now show that a smaller IE1 protein species (IE1x4) is expressed in latently infected HPCs. IE1x4 protein expression is required for viral genome persistence and maintenance and replication of a TR element containing plasmid (pTR). Both IE1x4 and the cellular transcription factor Sp1 interact with the TR, and inhibition of Sp1 binding abrogates pTR amplification. Further, IE1x4 interacts with Topoisomerase IIβ (TOPOIIβ), whose activity is required for pTR amplification. These results identify a HCMV latency-specific factor that promotes viral chromosome maintenance and replication.
Collapse
Affiliation(s)
- Margaret Tarrant-Elorza
- University of Nevada School of Medicine, 1664 North Virginia Street/MS320, Reno, NV 89557, USA
| | - Cyprian C Rossetto
- University of Nevada School of Medicine, 1664 North Virginia Street/MS320, Reno, NV 89557, USA
| | - Gregory S Pari
- University of Nevada School of Medicine, 1664 North Virginia Street/MS320, Reno, NV 89557, USA.
| |
Collapse
|
18
|
Chakravorty A, Sugden B. The AT-hook DNA binding ability of the Epstein Barr virus EBNA1 protein is necessary for the maintenance of viral genomes in latently infected cells. Virology 2015; 484:251-258. [PMID: 26122471 DOI: 10.1016/j.virol.2015.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/02/2015] [Accepted: 05/20/2015] [Indexed: 02/01/2023]
Abstract
Epstein Barr Virus (EBV) is a human tumor virus that is causally linked to malignancies such as Burkitt׳s lymphoma, and gastric and nasopharyngeal carcinomas. Tethering of EBV genomes to cellular chromosomes is required for the synthesis and persistence of viral plasmids in tumor cells. However, it is not established how EBV genomes are tethered to cellular chromosomes. We test the hypothesis that the viral protein EBNA1 tethers EBV genomes to chromosomes specifically through its N-terminal AT-hook DNA-binding domains by using a small molecule, netropsin, that has been shown to inhibit the AT-hook DNA-binding of EBNA1 in vitro. We show that netropsin forces the loss of EBV genomes from epithelial and lymphoid cells in an AT-hook dependent manner and that EBV-positive lymphoma cells are significantly more inhibited in their growth by netropsin than are corresponding EBV-negative cells.
Collapse
Affiliation(s)
- Adityarup Chakravorty
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States
| | - Bill Sugden
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
19
|
Abstract
Epstein-Barr nuclear antigen 1 (EBNA1) plays multiple important roles in EBV latent infection and has also been shown to impact EBV lytic infection. EBNA1 is required for the stable persistence of the EBV genomes in latent infection and activates the expression of other EBV latency genes through interactions with specific DNA sequences in the viral episomes. EBNA1 also interacts with several cellular proteins to modulate the activities of multiple cellular pathways important for viral persistence and cell survival. These cellular effects are also implicated in oncogenesis, suggesting a direct role of EBNA1 in the development of EBV-associated tumors.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
20
|
Modelling the structure of full-length Epstein–Barr virus nuclear antigen 1. Virus Genes 2014; 49:358-72. [DOI: 10.1007/s11262-014-1101-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/27/2014] [Indexed: 12/27/2022]
|
21
|
A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis. Cell Death Dis 2014; 5:e1032. [PMID: 24481446 PMCID: PMC4040698 DOI: 10.1038/cddis.2013.536] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/16/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022]
Abstract
The oncoprotein c-Myc is a key transcription factor with essential functions in the nucleolus (NO) to regulate ribosomal RNA (rRNA) synthesis, ribosome biogenesis, and cell proliferation. Yet, the mechanism that regulates the distribution and function of nucleolar c-Myc is still not completely understood. In this study, we identified nucleolar protein ENBA1 binding protein 2 (EBP2) as a novel functional binding partner of c-Myc. We found that coexpression of EBP2 markedly relocalized c-Myc from the nucleus to the NO, whereas depletion of EBP2 reduced the nucleolar distribution of c-Myc. Further study indicated that EBP2 is a direct binding partner of c-Myc and can block the degradation of c-Myc in a FBW7 (F-box and WD repeat domain containing 7)-independent manner. Moreover, EBP2 is a transcriptional target of c-Myc. c-Myc can bind to the promoter of EBP2 and positively regulate the EBP2 expression. Both protein and mRNA levels of EBP2 are upregulated in lung cancer samples and positively correlated with c-Myc expression. Functionally, EBP2 promotes c-Myc-mediated rRNA synthesis and cell proliferation. Collectively, our study indicates that EBP2 is a novel binding partner of c-Myc that regulates the function of nucleolar c-Myc, cell proliferation, and tumorigenesis via a positive feedback loop.
Collapse
|
22
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
23
|
Niller HH, Banati F, Nagy K, Buzas K, Minarovits J. Update on microbe-induced epigenetic changes: bacterial effectors and viral oncoproteins as epigenetic dysregulators. Future Virol 2013. [DOI: 10.2217/fvl.13.97] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Pathoepigenetics is a new discipline describing how disturbances in epigenetic regulation alter the epigenotype and gene-expression pattern of human, animal or plant cells. Such ‘epigenetic reprogramming’ may play an important role in the initiation and progression of a wide variety of diseases. Infectious diseases also belong to this category: recent data demonstrated that microbial pathogens, including bacteria and viruses, are capable of dysregulating the epigenetic machinery of their host cell. The resulting heritable changes in host cell gene expression may favor the colonization, growth or spread of infectious pathogens. It may also facilitate the establishment of latency and malignant cell transformation. In this article, we review how bacterial epigenetic effectors and inflammatory processes elicited by bacteria alter the host cell epigenotype, and describe how oncoproteins encoded by human tumor viruses act as epigenetic dysregulators to alter the phenotype and behavior of host cells.
Collapse
Affiliation(s)
- Hans Helmut Niller
- Institute for Medical Microbiology & Hygiene, University of Regensburg, Franz-Josef-Strauss Allee 11, Regensburg D93053, Germany
| | - Ferenc Banati
- RT-Europe Nonprofit Research Center, H-9200 Mosonmagyarovar, Pozsonyi út 88, Hungary
| | - Katalin Nagy
- University of Szeged, Faculty of Dentistry, Department of Oral Surgery, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Krisztina Buzas
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| | - Janos Minarovits
- University of Szeged, Faculty of Dentistry, Department of Oral Biology & Experimental Dental Research, H-6720 Szeged, Tisza Lajos Krt. 64, Hungary
| |
Collapse
|
24
|
Kanda T, Horikoshi N, Murata T, Kawashima D, Sugimoto A, Narita Y, Kurumizaka H, Tsurumi T. Interaction between basic residues of Epstein-Barr virus EBNA1 protein and cellular chromatin mediates viral plasmid maintenance. J Biol Chem 2013; 288:24189-99. [PMID: 23836915 DOI: 10.1074/jbc.m113.491167] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome is episomally maintained in latently infected cells. The viral protein EBNA1 is a bridging molecule that tethers EBV episomes to host mitotic chromosomes as well as to interphase chromatin. EBNA1 localizes to cellular chromosomes (chromatin) via its chromosome binding domains (CBDs), which are rich in glycine and arginine residues. However, the molecular mechanism by which the CBDs of EBNA1 attach to cellular chromatin is still under debate. Mutation analyses revealed that stepwise substitution of arginine residues within the CBD1 (amino acids 40-54) and CBD2 (amino acids 328-377) regions with alanines progressively impaired chromosome binding activity of EBNA1. The complete arginine-to-alanine substitutions within the CBD1 and -2 regions abolished the ability of EBNA1 to stably maintain EBV-derived oriP plasmids in dividing cells. Importantly, replacing the same arginines with lysines had minimal effect, if any, on chromosome binding of EBNA1 as well as on its ability to stably maintain oriP plasmids. Furthermore, a glycine-arginine-rich peptide derived from the CBD1 region bound to reconstituted nucleosome core particles in vitro, as did a glycine-lysine rich peptide, whereas a glycine-alanine rich peptide did not. These results support the idea that the chromosome binding of EBNA1 is mediated by electrostatic interactions between the basic amino acids within the CBDs and negatively charged cellular chromatin.
Collapse
Affiliation(s)
- Teru Kanda
- Division of Virology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku, Nagoya 464-8681, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cha S, Seo T. Viral genome maintenance and latent replication of human gammaherpesviruses. Future Virol 2013. [DOI: 10.2217/fvl.13.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
During gammaherpesvirus latency, only a few genes are expressed and required for maintenance of viral latency over a long period. While the expressed latent viral proteins play functional roles in viral latent DNA replication, they do not have replication-associated enzymatic activity such as polymerase or helicase activity. Viral genomes are detected in a similar copy number per infected cell, suggesting that the viral genome is replicated and segregated using host replication machinery. Kaposi’s sarcoma-associated herpesvirus and EBV have trans-acting elements required for viral genome maintenance during latency; LANA1 and EBNA1, respectively. The proteins recruit host replication-associated proteins at their latent origins, leading to initiation of viral replication and segregation with host chromosomes once per cell cycle. In addition, viral latent origins (cis-elements) provide trans-element-binding sites as well as a sufficient space for recruitment of cellular factors. In this review, we describe the molecular mechanisms required for replication of the viral genome during latency, including interactions with cellular factors and the interplay between viral trans- and cis-elements.
Collapse
Affiliation(s)
- Seho Cha
- Department of Life Science, Dongguk University-Seoul, 26, 3 Pil-dong, Jung-gu, Seoul, 100-715, Republic of Korea
| | - Taegun Seo
- Department of Life Science, Dongguk University-Seoul, 26, 3 Pil-dong, Jung-gu, Seoul, 100-715, Republic of Korea.
| |
Collapse
|
26
|
Epigenetic regulation of EBV and KSHV latency. Curr Opin Virol 2013; 3:251-9. [PMID: 23601957 DOI: 10.1016/j.coviro.2013.03.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/07/2013] [Accepted: 03/13/2013] [Indexed: 12/25/2022]
Abstract
The gammaherpesviruses are unique for their capacity to establish a variety of gene expression programs during latent and lytic infection. This capacity enables the virus to control host-cell proliferation, prevent programmed cell death, elude immune cell detection, and ultimately adapt to a wide range of environmental and developmental changes in the host cell. This remarkable plasticity of gene expression results from the combined functionalities of viral and host factors that biochemically remodel and epigenetically modify the viral chromosome. These epigenetic modifications range from primary DNA methylations, to chromatin protein post-translational modifications, to higher-order chromosome conformations. In addition, gammaherpesviruses have acquired specialized tools to modulate the epigenetic processes that promote viral genome propagation and host-cell survival.
Collapse
|
27
|
Deng Z, Wang Z, Lieberman PM. Telomeres and viruses: common themes of genome maintenance. Front Oncol 2012; 2:201. [PMID: 23293769 PMCID: PMC3533235 DOI: 10.3389/fonc.2012.00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/08/2012] [Indexed: 12/14/2022] Open
Abstract
Genome maintenance mechanisms actively suppress genetic instability associated with cancer and aging. Some viruses provoke genetic instability by subverting the host's control of genome maintenance. Viruses have their own specialized strategies for genome maintenance, which can mimic and modify host cell processes. Here, we review some of the common features of genome maintenance utilized by viruses and host chromosomes, with a particular focus on terminal repeat (TR) elements. The TRs of cellular chromosomes, better known as telomeres, have well-established roles in cellular chromosome stability. Cellular telomeres are themselves maintained by viral-like mechanisms, including self-propagation by reverse transcription, recombination, and retrotransposition. Viral TR elements, like cellular telomeres, are essential for viral genome stability and propagation. We review the structure and function of viral repeat elements and discuss how they may share telomere-like structures and genome protection functions. We consider how viral infections modulate telomere regulatory factors for viral repurposing and can alter normal host telomere structure and chromosome stability. Understanding the common strategies of viral and cellular genome maintenance may provide new insights into viral-host interactions and the mechanisms driving genetic instability in cancer.
Collapse
Affiliation(s)
- Zhong Deng
- The Wistar Institute Philadelphia, PA, USA
| | | | | |
Collapse
|
28
|
Horigome C, Mizuta K. Ribosome biogenesis factors working with a nuclear envelope SUN domain protein: new players in the solar system. Nucleus 2012; 3:22-8. [PMID: 22156743 DOI: 10.4161/nucl.18930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nucleolus, the most prominent structure observed in the nucleus, is often called a “ribosome factory.” Cells spend an enormous fraction of their resources to achieve the mass-production of ribosomes required by rapid growth. On the other hand, ribosome biogenesis is also tightly controlled, and must be coordinated with other cellular processes. Ribosomal proteins and ribosome biogenesis factors are attractive candidates for this link. Recent results suggest that some of them have functions beyond ribosome biogenesis. Here we review recent progress on ribosome biogenesis factors, Ebp2 and Rrs1, in yeast Saccharomyces cerevisiae. In this organism, Ebp2 and Rrs1 are found in the nucleolus and at the nuclear periphery. At the nuclear envelope, these proteins interact with a membrane-spanning SUN domain protein, Mps3, and play roles in telomere clustering and silencing along with the silent information regulator Sir4. We propose that a protein complex consisting Ebp2, Rrs1 and Mps3 is involved in a wide range of activities at the nuclear envelope.
Collapse
Affiliation(s)
- Chihiro Horigome
- Department of Biofunctional Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | | |
Collapse
|
29
|
Similarities between the Epstein-Barr Virus (EBV) Nuclear Protein EBNA1 and the Pioneer Transcription Factor FoxA: Is EBNA1 a "Bookmarking" Oncoprotein that Alters the Host Cell Epigenotype? Pathogens 2012; 1:37-51. [PMID: 25436603 PMCID: PMC4235684 DOI: 10.3390/pathogens1010037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/21/2012] [Accepted: 09/04/2012] [Indexed: 11/19/2022] Open
Abstract
EBNA1, a nuclear protein expressed in all EBV-associated neoplasms is indispensable for the maintenance of the viral episomes in latently infected cells. EBNA1 may induce genetic alterations by upregulating cellular recombinases, production of reactive oxygen species (ROS) and affecting p53 levels and function. All these changes may contribute to tumorigenesis. In this overview we focus, however, on the epigenetic alterations elicited by EBNA1 by drawing a parallel between EBNA1 and the FoxA family of pioneer transcription factors. Both EBNA1 and FoxA induce local DNA demethylation, nucleosome destabilization and bind to mitotic chromosomes. Local DNA demethylation and nucleosome rearrangement mark active promoters and enhancers. In addition, EBNA1 and FoxA, when associated with mitotic chromatin may “bookmark” active genes and ensure their reactivation in postmitotic cells (epigenetic memory). We speculate that DNA looping induced by EBNA1-EBNA1 interactions may reorganize the cellular genome. Such chromatin loops, sustained in mitotic chromatin similarly to the long-distance interactions mediated by the insulator protein CTCF, may also mediate the epigenetic inheritance of gene expression patterns. We suggest that EBNA1 has the potential to induce patho-epigenetic alterations contributing to tumorigenesis.
Collapse
|
30
|
Interactions of the human MCM-BP protein with MCM complex components and Dbf4. PLoS One 2012; 7:e35931. [PMID: 22540012 PMCID: PMC3335088 DOI: 10.1371/journal.pone.0035931] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/27/2012] [Indexed: 12/22/2022] Open
Abstract
MCM-BP was discovered as a protein that co-purified from human cells with MCM proteins 3 through 7; results which were recapitulated in frogs, yeast and plants. Evidence in all of these organisms supports an important role for MCM-BP in DNA replication, including contributions to MCM complex unloading. However the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood. Here we show that human MCM-BP is capable of interacting with individual MCM proteins 2 through 7 when co-expressed in insect cells and can greatly increase the recovery of some recombinant MCM proteins. Glycerol gradient sedimentation analysis indicated that MCM-BP interacts most strongly with MCM4 and MCM7. Similar gradient analyses of human cell lysates showed that only a small amount of MCM-BP overlapped with the migration of MCM complexes and that MCM complexes were disrupted by exogenous MCM-BP. In addition, large complexes containing MCM-BP and MCM proteins were detected at mid to late S phase, suggesting that the formation of specific MCM-BP complexes is cell cycle regulated. We also identified an interaction between MCM-BP and the Dbf4 regulatory component of the DDK kinase in both yeast 2-hybrid and insect cell co-expression assays, and this interaction was verified by co-immunoprecipitation of endogenous proteins from human cells. In vitro kinase assays showed that MCM-BP was not a substrate for DDK but could inhibit DDK phosphorylation of MCM4,6,7 within MCM4,6,7 or MCM2-7 complexes, with little effect on DDK phosphorylation of MCM2. Since DDK is known to activate DNA replication through phosphorylation of these MCM proteins, our results suggest that MCM-BP may affect DNA replication in part by regulating MCM phosphorylation by DDK.
Collapse
|
31
|
Live-cell imaging reveals multiple interactions between Epstein-Barr virus nuclear antigen 1 and cellular chromatin during interphase and mitosis. J Virol 2012; 86:5314-29. [PMID: 22345443 DOI: 10.1128/jvi.06303-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) establishes a life-long latent infection in humans. In proliferating latently infected cells, EBV genomes persist as multiple episomes that undergo one DNA replication event per cell cycle and remain attached to the mitotic chromosomes. EBV nuclear antigen 1 (EBNA-1) binding to the episome and cellular genome is essential to ensure proper episome replication and segregation. However, the nature and regulation of EBNA-1 interaction with chromatin has not been clearly elucidated. This activity has been suggested to involve EBNA-1 binding to DNA, duplex RNA, and/or proteins. EBNA-1 binding protein 2 (EBP2), a nucleolar protein, has been proposed to act as a docking protein for EBNA-1 on mitotic chromosomes. However, there is no direct evidence thus far for EBP2 being associated with EBNA-1 during mitosis. By combining video microscopy and Förster resonance energy transfer (FRET) microscopy, we demonstrate here for the first time that EBNA-1 and EBP2 interact in the nucleoplasm, as well as in the nucleoli during interphase. However, in strong contrast to the current proposed model, we were unable to observe any interaction between EBNA-1 and EBP2 on mitotic chromosomes. We also performed a yeast double-hybrid screening, followed by a FRET analysis, that led us to identify HMGB2 (high-mobility group box 2), a well-known chromatin component, as a new partner for EBNA-1 on chromatin during interphase and mitosis. Although the depletion of HMGB2 partly altered EBNA-1 association with chromatin in HeLa cells during interphase and mitosis, it did not significantly impact the maintenance of EBV episomes in Raji cells.
Collapse
|
32
|
Frappier L. The Epstein-Barr Virus EBNA1 Protein. SCIENTIFICA 2012; 2012:438204. [PMID: 24278697 PMCID: PMC3820569 DOI: 10.6064/2012/438204] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/28/2012] [Indexed: 05/06/2023]
Abstract
Epstein-Barr virus (EBV) is a widespread human herpes virus that immortalizes cells as part of its latent infection and is a causative agent in the development of several types of lymphomas and carcinomas. Replication and stable persistence of the EBV genomes in latent infection require the viral EBNA1 protein, which binds specific DNA sequences in the viral DNA. While the roles of EBNA1 were initially thought to be limited to effects on the viral genomes, more recently EBNA1 has been found to have multiple effects on cellular proteins and pathways that may also be important for viral persistence. In addition, a role for EBNA1 in lytic infection has been recently identified. The multiple roles of EBNA1 in EBV infection are the subject of this paper.
Collapse
Affiliation(s)
- Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, ON, Canada M5S 1A8
- *Lori Frappier:
| |
Collapse
|
33
|
Symens N, Soenen SJ, Rejman J, Braeckmans K, De Smedt SC, Remaut K. Intracellular partitioning of cell organelles and extraneous nanoparticles during mitosis. Adv Drug Deliv Rev 2012; 64:78-94. [PMID: 22210278 DOI: 10.1016/j.addr.2011.11.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/21/2011] [Accepted: 11/23/2011] [Indexed: 02/06/2023]
Abstract
The nucleocytoplasmic partitioning of nanoparticles as a result of cell division is highly relevant to the field of nonviral gene delivery. We reviewed the literature on the intracellular distribution of cell organelles (the endosomal vesicles, Golgi apparatus, endoplasmic reticulum and nucleus), foreign macromolecules (dextrans and plasmid DNA) and inorganic nanoparticles (gold, quantum dot and iron oxide) during mitosis. For nonviral gene delivery particles (lipid- or polymer-based), indirect proof of nuclear entry during mitosis is provided. We also describe how retroviruses and latent DNA viruses take advantage of mitosis to transfer their viral genome and segregate their episomes into the host daughter nuclei. Based on this knowledge, we propose strategies to improve nonviral gene delivery in dividing cells with the ultimate goal of designing nonviral gene delivery systems that are as efficient as their viral counterparts but non-immunogenic, non-oncogenic and easy and inexpensive to prepare.
Collapse
Affiliation(s)
- Nathalie Symens
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
| | | | | | | | | | | |
Collapse
|
34
|
Role of EBNA1 in NPC tumourigenesis. Semin Cancer Biol 2011; 22:154-61. [PMID: 22206863 DOI: 10.1016/j.semcancer.2011.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 11/29/2011] [Accepted: 12/09/2011] [Indexed: 12/12/2022]
Abstract
EBNA1 is expressed in all NPC tumours and is the only Epstein-Barr virus protein needed for the stable persistence of EBV episomes. EBNA1 binds to specific sequences in the EBV genome to facilitate the initiation of DNA synthesis, ensure the even distribution of the viral episomes to daughter cells during mitosis and to activate the transcription of other viral latency genes important for cell immortalization. In addition, EBNA1 has been found to alter cellular pathways in multiple ways that likely contribute to cell immortalization and malignant transformation. This chapter discusses the known functions and cellular effects of EBNA1, especially as pertains to NPC.
Collapse
|
35
|
The replisome pausing factor Timeless is required for episomal maintenance of latent Epstein-Barr virus. J Virol 2011; 85:5853-63. [PMID: 21490103 DOI: 10.1128/jvi.02425-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Epstein-Barr virus (EBV) genome is maintained as an extrachromosomal episome during latent infection of B lymphocytes. Episomal maintenance is conferred by the interaction of the EBV-encoded nuclear antigen 1 (EBNA1) with a tandem array of high-affinity binding sites, referred to as the family of repeats (FR), located within the viral origin of plasmid replication (OriP). How this nucleoprotein array confers episomal maintenance is not completely understood. Previous studies have shown that DNA replication forks pause and terminate with high frequency at OriP. We now show that cellular DNA replication fork pausing and protection factors Timeless (Tim) and Tipin (Timeless-interacting protein) accumulate at OriP during S phase of the cell cycle. Depletion of Tim inhibits OriP-dependent DNA replication and causes a complete loss of the closed-circular form of EBV episomes in latently infected B lymphocytes. Tim depletion also led to the accumulation of double-strand breaks at the OriP region. These findings demonstrate that Tim is essential for sustaining the episomal forms of EBV DNA in latently infected cells and suggest that DNA replication fork protection is integrally linked to the mechanism of plasmid maintenance.
Collapse
|
36
|
Salsman J, Wang X, Frappier L. Nuclear body formation and PML body remodeling by the human cytomegalovirus protein UL35. Virology 2011; 414:119-29. [PMID: 21489587 DOI: 10.1016/j.virol.2011.03.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 03/01/2011] [Accepted: 03/18/2011] [Indexed: 12/18/2022]
Abstract
The human cytomegalovirus (HCMV) UL35 gene encodes two proteins, UL35 and UL35a. Expression of UL35 in transfected cells results in the formation of UL35 nuclear bodies that associate with promyelocytic leukemia (PML) protein. PML forms the basis for PML nuclear bodies that are important for suppressing viral lytic gene expression. Given the important relationship between PML and viral infection, we have further investigated the association of UL35 with PML bodies. We demonstrate that UL35 bodies form independently of PML and subsequently recruit PML, Sp100 and Daxx. In contrast, UL35a did not form bodies; however, it could bind UL35 and inhibit the formation of UL35 bodies. The HCMV tegument protein pp71 promoted the formation of UL35 bodies and the cytoplasmic localization of UL35a. Similarly, UL35a shifted pp71 to the cytoplasm. These results indicate that the interplay between UL35, UL35a and pp71 affects their subcellular localization and likely their functions throughout infection.
Collapse
Affiliation(s)
- Jayme Salsman
- Department of Molecular Genetics, 1 Kings College Circle, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
37
|
Lu J, Murakami M, Verma SC, Cai Q, Haldar S, Kaul R, Wasik MA, Middeldorp J, Robertson ES. Epstein-Barr Virus nuclear antigen 1 (EBNA1) confers resistance to apoptosis in EBV-positive B-lymphoma cells through up-regulation of survivin. Virology 2011; 410:64-75. [PMID: 21093004 PMCID: PMC4287362 DOI: 10.1016/j.virol.2010.10.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/10/2010] [Accepted: 10/18/2010] [Indexed: 12/30/2022]
Abstract
Resistance to apoptosis is an important component of the overall mechanism which drives the tumorigenic process. EBV is a ubiquitous human gamma-herpesvirus which preferentially establishes latent infection in viral infected B-lymphocytes. EBNA1 is typically expressed in most forms of EBV-positive malignancies and is important for replication of the latent episome in concert with replication of the host cells. Here, we investigate the effects of EBNA1 on survivin up-regulation in EBV-infected human B-lymphoma cells. We present evidence which demonstrates that EBNA1 forms a complex with Sp1 or Sp1-like proteins bound to their cis-element at the survivin promoter. This enhances the activity of the complex and up-regulates survivin. Knockdown of survivin and EBNA1 showed enhanced apoptosis in infected cells and thus supports a role for EBNA1 in suppressing apoptosis in EBV-infected cells. Here, we suggest that EBV encoded EBNA1 can contribute to the oncogenic process by up-regulating the apoptosis suppressor protein, survivin in EBV-associated B-lymphoma cells.
Collapse
Affiliation(s)
- Jie Lu
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. Phone: (215) 746-0114. Fax: (215) 898-9557
| | - Masanao Murakami
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. Phone: (215) 746-0114. Fax: (215) 898-9557
| | - Subhash C. Verma
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. Phone: (215) 746-0114. Fax: (215) 898-9557
| | - Qiliang Cai
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. Phone: (215) 746-0114. Fax: (215) 898-9557
| | - Sabyasachi Haldar
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. Phone: (215) 746-0114. Fax: (215) 898-9557
| | - Rajeev Kaul
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. Phone: (215) 746-0114. Fax: (215) 898-9557
| | - Mariusz A. Wasik
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jaap Middeldorp
- Department of Pathology, Cancer Center Amsterdam, Vrije Universiteit University Medical Center, 1081HV Amsterdam, The Netherlands
| | - Erle S. Robertson
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, School of Medicine, University of Pennsylvania, 202E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104. Phone: (215) 746-0114. Fax: (215) 898-9557
| |
Collapse
|
38
|
Nucleolar targeting of the fbw7 ubiquitin ligase by a pseudosubstrate and glycogen synthase kinase 3. Mol Cell Biol 2011; 31:1214-24. [PMID: 21220517 DOI: 10.1128/mcb.01347-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
E3 ubiquitin ligases catalyze protein degradation by the ubiquitin-proteasome system, and their activity is tightly controlled. One level of regulation involves subcellular localization, and the Fbw7 tumor suppressor exemplifies this type of control. Fbw7 is the substrate-binding component of an SCF ubiquitin ligase that degrades critical oncoproteins. Alternative splicing produces three Fbw7 protein isoforms that occupy distinct compartments: Fbw7α is nucleoplasmic, Fbw7β is cytoplasmic, and Fbw7γ is nucleolar. We found that cancer-associated Fbw7 mutations that disrupt substrate binding prevent Fbw7γ nucleolar localization, implicating a substrate-like interaction in nucleolar targeting. We identified EBNA1-binding protein 2 (Ebp2) as the critical nucleolar factor that directly mediates Fbw7 nucleolar targeting. Ebp2 binds to Fbw7 like a substrate, and this is mediated by an Ebp2 degron that is phosphorylated by glycogen synthase kinase 3. However, despite these canonical substrate-like interactions, Fbw7 binding is largely uncoupled from Ebp2 turnover in vivo. Ebp2 thus acts like a pseudosubstrate that directly recruits Fbw7 to nucleoli.
Collapse
|
39
|
Saha A, Kaul R, Murakami M, Robertson ES. Tumor viruses and cancer biology: Modulating signaling pathways for therapeutic intervention. Cancer Biol Ther 2010; 10:961-78. [PMID: 21084867 DOI: 10.4161/cbt.10.10.13923] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Tumor viruses have provided relatively simple genetic systems, which can be manipulated for understanding the molecular mechanisms of the cellular transformation process. A growing body of information in the tumor virology field provides several prospects for rationally targeted therapies. However, further research is needed to better understand the multiple mechanisms utilized by these viruses in cancer progression in order to develop therapeutic strategies. Initially viruses were believed to be associated with cancers as causative agents only in animals. It was almost half a century before the first human tumor virus, Epstein-Barr virus (EBV), was identified in 1964. Subsequently, several human tumor viruses have been identified including Kaposi sarcoma associated herpesvirus (KSHV), human Papillomaviruses (HPV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human T lymphotropic virus (HTLV-1) and recently identified Merkel cell Polyomavirus (MCPyV). Tumor viruses are sub-categorized as either DNA viruses, which include EBV, KSHV, HPV, HBV, and MCPyV, or RNA viruses such as HCV and HTLV-1. Tumor-viruses induce oncogenesis through manipulating an array of different cellular pathways. These viruses initiate a series of cellular events, which lead to immortalization and proliferation of the infected cells by disrupting the mitotic checkpoint upon infection of the host cell. This is often accomplished by functional inhibition or proteasomal degradation of many tumor suppressor proteins by virally encoded gene products. The virally infected cells can either be eliminated via cell-mediated apoptosis or persist in a state of chronic infection. Importantly, the chronic persistence of infection by tumor viruses can lead to oncogenesis. This review discusses the major human tumor associated viruses and their ability to modulate numerous cell signaling pathways, which can be targeted for potential therapeutic approaches.
Collapse
Affiliation(s)
- Abhik Saha
- Department of Microbiology and Tumor Virology, University of Pennsylvania School of Medicine, Philadelphia, USA
| | | | | | | |
Collapse
|
40
|
Lu F, Wikramasinghe P, Norseen J, Tsai K, Wang P, Showe L, Davuluri RV, Lieberman PM. Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1). Virol J 2010; 7:262. [PMID: 20929547 PMCID: PMC2964674 DOI: 10.1186/1743-422x-7-262] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 10/07/2010] [Indexed: 11/12/2022] Open
Abstract
The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA1 binding sites.
Collapse
Affiliation(s)
- Fang Lu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Pérez-Luz S, Díaz-Nido J. Prospects for the use of artificial chromosomes and minichromosome-like episomes in gene therapy. J Biomed Biotechnol 2010; 2010:642804. [PMID: 20862363 PMCID: PMC2938438 DOI: 10.1155/2010/642804] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/02/2010] [Accepted: 07/05/2010] [Indexed: 01/19/2023] Open
Abstract
Artificial chromosomes and minichromosome-like episomes are large DNA molecules capable of containing whole genomic loci, and be maintained as nonintegrating, replicating molecules in proliferating human somatic cells. Authentic human artificial chromosomes are very difficult to engineer because of the difficulties associated with centromere structure, so they are not widely used for gene-therapy applications. However, OriP/EBNA1-based episomes, which they lack true centromeres, can be maintained stably in dividing cells as they bind to mitotic chromosomes and segregate into daughter cells. These episomes are more easily engineered than true human artificial chromosomes and can carry entire genes along with all their regulatory sequences. Thus, these constructs may facilitate the long-term persistence and physiological regulation of the expression of therapeutic genes, which is crucial for some gene therapy applications. In particular, they are promising vectors for gene therapy in inherited diseases that are caused by recessive mutations, for example haemophilia A and Friedreich's ataxia. Interestingly, the episome carrying the frataxin gene (deficient in Friedreich's ataxia) has been demonstrated to rescue the susceptibility to oxidative stress which is typical of fibroblasts from Friedreich's ataxia patients. This provides evidence of their potential to treat genetic diseases linked to recessive mutations through gene therapy.
Collapse
Affiliation(s)
- Sara Pérez-Luz
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | | |
Collapse
|
42
|
The chromosome peripheral proteins play an active role in chromosome dynamics. Biomol Concepts 2010; 1:157-64. [DOI: 10.1515/bmc.2010.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractThe chromosome periphery is a chromosomal structure that covers the surface of mitotic chromosomes. The structure and function of the chromosome periphery has been poorly understood since its first description in 1882. It has, however, been proposed to be an insulator or barrier to protect chromosomes from subcellular substances and to act as a carrier of nuclear and nucleolar components to direct their equal distribution to daughter cells because most chromosome peripheral proteins (CPPs) are derived from the nucleolus or nucleus. Until now, more than 30 CPPs were identified in mammalians. Recent immunostaining analyses of CPPs have revealed that the chromosome periphery covers the centromeric region of mitotic chromosomes in addition to telomeres and regions between two sister chromatids. Knockdown analyses of CPPs using RNAi have revealed functions in chromosome dynamics, including cohesion of sister chromatids, kinetochore-microtubule attachments, spindle assembly and chromosome segregation. Because most CPPs are involved in various subcellular events in the nucleolus or nuclear at interphase, a temporal and spatial-specific knockdown method of CPPs in the chromosome periphery will be useful to understand the function of chromosome periphery in cell division.
Collapse
|
43
|
Abstract
Latency is a state of cryptic viral infection associated with genomic persistence and highly restricted gene expression. Its hallmark is reversibility: under appropriate circumstances, expression of the entire viral genome can be induced, resulting in the production of infectious progeny. Among the small number of virus families capable of authentic latency, the herpesviruses stand out for their ability to produce such infections in every infected individual and for being completely dependent upon latency as a mode of persistence. Here, we review the molecular basis of latency, with special attention to the gamma-herpesviruses, in which the understanding of this process is most advanced.
Collapse
Affiliation(s)
- Samuel H Speck
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
44
|
Abstract
Viruses that establish lifelong latent infections must ensure that the viral genome is maintained within the latently infected cell throughout the life of the host, yet at the same time must also be capable of avoiding elimination by the immune surveillance system. Gammaherpesviruses, which include the human viruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, establish latent infections in lymphocytes. Infection of this dynamic host-cell population requires that the viruses have appropriate strategies for enabling the viral genome to persist while these cells go through rounds of mitosis, but at the same time must avoid detection by host CD8(+) cytotoxic T lymphocytes (CTLs). The majority of gammaherpesviruses studied have been found to encode a specific protein that is critical for maintenance of the viral genome within latently infected cells. This protein is termed the genome maintenance protein (GMP). Due to its vital role in long-term latency, this offers the immune system a crucial target for detection and elimination of virus-infected cells. GMPs from different gammaherpesviruses have evolved related strategies that allow the protein to be present within latently infected cells, but to remain effectively hidden from circulating CD8(+) CTLs. In this review, I will summarize the role of the GMPs and highlight the available data describing the immune-evasion properties of these proteins.
Collapse
Affiliation(s)
- Neil Blake
- Division of Medical Microbiology, School of Infection and Host Defence, University of Liverpool, Liverpool L69 3GA, UK
| |
Collapse
|