1
|
Wang X, Tian W, Banh BT, Statler BM, Liang J, Stone DE. Mating yeast cells use an intrinsic polarity site to assemble a pheromone-gradient tracking machine. J Cell Biol 2019; 218:3730-3752. [PMID: 31570500 PMCID: PMC6829655 DOI: 10.1083/jcb.201901155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/06/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
The mating of budding yeast depends on chemotropism, a fundamental cellular process. The two yeast mating types secrete peptide pheromones that bind to GPCRs on cells of the opposite type. Cells find and contact a partner by determining the direction of the pheromone source and polarizing their growth toward it. Actin-directed secretion to the chemotropic growth site (CS) generates a mating projection. When pheromone-stimulated cells are unable to sense a gradient, they form mating projections where they would have budded in the next cell cycle, at a position called the default polarity site (DS). Numerous models have been proposed to explain yeast gradient sensing, but none address how cells reliably switch from the intrinsically determined DS to the gradient-aligned CS, despite a weak spatial signal. Here we demonstrate that, in mating cells, the initially uniform receptor and G protein first polarize to the DS, then redistribute along the plasma membrane until they reach the CS. Our data indicate that signaling, polarity, and trafficking proteins localize to the DS during assembly of what we call the gradient tracking machine (GTM). Differential activation of the receptor triggers feedback mechanisms that bias exocytosis upgradient and endocytosis downgradient, thus enabling redistribution of the GTM toward the pheromone source. The GTM stabilizes when the receptor peak centers at the CS and the endocytic machinery surrounds it. A computational model simulates GTM tracking and stabilization and correctly predicts that its assembly at a single site contributes to mating fidelity.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Wei Tian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Bryan T Banh
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | | | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| |
Collapse
|
2
|
Tariqul Islam AFM, Yue H, Scavello M, Haldeman P, Rappel WJ, Charest PG. The cAMP-induced G protein subunits dissociation monitored in live Dictyostelium cells by BRET reveals two activation rates, a positive effect of caffeine and potential role of microtubules. Cell Signal 2018; 48:25-37. [PMID: 29698704 DOI: 10.1016/j.cellsig.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/17/2018] [Accepted: 04/22/2018] [Indexed: 02/01/2023]
Abstract
To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing.
Collapse
Affiliation(s)
- A F M Tariqul Islam
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Haicen Yue
- Department of Physics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Margarethakay Scavello
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA
| | - Pearce Haldeman
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA; Division of Biology and Biological Engineering, Joint Center for Transitional Medicine, California Institute of Technology, Pasadena, CA 91125, USA
| | - Wouter-Jan Rappel
- Department of Physics, University of California-San Diego, La Jolla, CA 92093, USA
| | - Pascale G Charest
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721-0088, USA.
| |
Collapse
|
3
|
Shi Y, Lai X, Ye L, Chen K, Cao Z, Gong W, Jin L, Wang C, Liu M, Liao Y, Wang JM, Zhou N. Activated niacin receptor HCA2 inhibits chemoattractant-mediated macrophage migration via Gβγ/PKC/ERK1/2 pathway and heterologous receptor desensitization. Sci Rep 2017; 7:42279. [PMID: 28186140 PMCID: PMC5301212 DOI: 10.1038/srep42279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/08/2017] [Indexed: 12/18/2022] Open
Abstract
The niacin receptor HCA2 is implicated in controlling inflammatory host responses with yet poorly understood mechanistic basis. We previously reported that HCA2 in A431 epithelial cells transduced Gβγ-protein kinase C- and Gβγ-metalloproteinase/EGFR-dependent MAPK/ERK signaling cascades. Here, we investigated the role of HCA2 in macrophage-mediated inflammation and the underlying mechanisms. We found that proinflammatory stimulants LPS, IL-6 and IL-1β up-regulated the expression of HCA2 on macrophages. Niacin significantly inhibited macrophage chemotaxis in response to chemoattractants fMLF and CCL2 by disrupting polarized distribution of F-actin and Gβ protein. Niacin showed a selected additive effect on chemoattractant-induced activation of ERK1/2, JNK and PI3K pathways, but only the MEK inhibitor UO126 reduced niacin-mediated inhibition of macrophage chemotaxis, while activation of ERK1/2 by EGF alone did not inhibit fMLF-mediated migration of HEK293T cells co-expressing HCA2 and fMLF receptor FPR1. In addition, niacin induced heterologous desensitization and internalization of FPR1. Furthermore, niacin rescued mice from septic shock by diminishing inflammatory symptoms and the effect was abrogated in HCA2-/- mice. These results suggest that Gβγ/PKC-dependent ERK1/2 activation and heterologous desensitization of chemoattractant receptors are involved in the inhibition of chemoattractant-induced migration of macrophages by niacin. Thus, HCA2 plays a critical role in host protection against pro-inflammatory insults.
Collapse
Affiliation(s)
- Ying Shi
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Xiangru Lai
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Lingyan Ye
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Keqiang Chen
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Zheng Cao
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Wanghua Gong
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Lili Jin
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Chunyan Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.,Xuzhou Yes Biotech Laboratories Ltd. Xuzhou, Jiangsu, PR China
| | - Mingyong Liu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA.,Department of Spine Surgery, Daping Hospital, Third Military Medical University, Chongqing, PR China
| | - Yuan Liao
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| | - Ji Ming Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute-Frederick, NIH, Frederick, MD 21702, USA
| | - Naiming Zhou
- College of Life Sciences, Zhejiang University, Yu Hang Tang Load 388, Hangzhou, PR China
| |
Collapse
|
4
|
Lee HM, Kim JS, Kang SO. Glutathione upregulates cAMP signalling via G protein alpha 2 during the development of Dictyostelium discoideum. FEBS Lett 2016; 590:4361-4371. [PMID: 27718249 DOI: 10.1002/1873-3468.12453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/12/2016] [Accepted: 09/23/2016] [Indexed: 11/06/2022]
Abstract
Despite the importance of glutathione in Dictyostelium, the role of glutathione synthetase (gshB/GSS) has not been clearly investigated. In this study, we observed that increasing glutathione content by constitutive expression of gshB leads to mound-arrest and defects in 3',5'-cyclic adenosine monophosphate (cAMP)-mediated aggregation and developmental gene expression. The overexpression of gpaB encoding G protein alpha 2 (Gα2), an essential component of the cAMP signalling pathway, results in a phenotype similar to that caused by gshB overexpression, whereas gpaB knockdown in gshB-overexpressing cells partially rescues the above-mentioned phenotypic defects. Furthermore, Gα2 is highly enriched at the plasma membrane of gshB-overexpressing cells compared to wild-type cells. Therefore, our findings suggest that glutathione upregulates cAMP signalling via Gα2 modulation during Dictyostelium development.
Collapse
Affiliation(s)
- Hyang-Mi Lee
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Ji-Sun Kim
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| |
Collapse
|
5
|
Ismael A, Tian W, Waszczak N, Wang X, Cao Y, Suchkov D, Bar E, Metodiev MV, Liang J, Arkowitz RA, Stone DE. Gβ promotes pheromone receptor polarization and yeast chemotropism by inhibiting receptor phosphorylation. Sci Signal 2016; 9:ra38. [PMID: 27072657 DOI: 10.1126/scisignal.aad4376] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Gradient-directed cell migration (chemotaxis) and growth (chemotropism) are processes that are essential to the development and life cycles of all species. Cells use surface receptors to sense the shallow chemical gradients that elicit chemotaxis and chemotropism. Slight asymmetries in receptor activation are amplified by downstream signaling systems, which ultimately induce dynamic reorganization of the cytoskeleton. During the mating response of budding yeast, a model chemotropic system, the pheromone receptors on the plasma membrane polarize to the side of the cell closest to the stimulus. Although receptor polarization occurs before and independently of actin cable-dependent delivery of vesicles to the plasma membrane (directed secretion), it requires receptor internalization. Phosphorylation of pheromone receptors by yeast casein kinase 1 or 2 (Yck1/2) stimulates their internalization. We showed that the pheromone-responsive Gβγ dimer promotes the polarization of the pheromone receptor by interacting with Yck1/2 and locally inhibiting receptor phosphorylation. We also found that receptor phosphorylation is essential for chemotropism, independently of its role in inducing receptor internalization. A mathematical model supports the idea that the interaction between Gβγ and Yck1/2 results in differential phosphorylation and internalization of the pheromone receptor and accounts for its polarization before the initiation of directed secretion.
Collapse
Affiliation(s)
- Amber Ismael
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Wei Tian
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Nicholas Waszczak
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xin Wang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Youfang Cao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Dmitry Suchkov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Eli Bar
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Metodi V Metodiev
- School of Biological Sciences, University of Essex, Essex CO4 3SQ, UK
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Robert A Arkowitz
- CNRS UMR7277/INSERM UMR1091/Université Nice-Sophia Antipolis, Institute of Biology Valrose, 06108 Nice Cedex 2, France
| | - David E Stone
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Beletkaia E, Fenz SF, Pomp W, Snaar-Jagalska BE, Hogendoorn PW, Schmidt T. CXCR4 signaling is controlled by immobilization at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:607-16. [DOI: 10.1016/j.bbamcr.2015.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 12/23/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022]
|
7
|
Abstract
Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors.
Collapse
|
8
|
Dascal N, Kahanovitch U. The Roles of Gβγ and Gα in Gating and Regulation of GIRK Channels. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 123:27-85. [DOI: 10.1016/bs.irn.2015.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Unraveling adaptation in eukaryotic pathways: lessons from protocells. PLoS Comput Biol 2013; 9:e1003300. [PMID: 24204235 PMCID: PMC3812047 DOI: 10.1371/journal.pcbi.1003300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 09/08/2013] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems. Adaptation is a common feature in sensory systems, well familiar to us from light and dark adaptation of our visual system. Biological cells, ranging from bacteria to complex eukaryotes, including single-cell organisms and human sensory receptors, adopt different strategies to fulfill this property. However, all of them require substantial amounts of energy to adapt. Here, we compare the different biological strategies and design two minimal models which allow adaptation without requiring energy consumption. Schemes similar to the ones we proposed in our minimal models could have been adopted by ancient protocells, that have evolved into the pathways we now know and study. Analyzing our models can thus help elucidate the advantages brought to the cells by consumption of energy, including the bypassing of hard-wired cell parameters such as diffusion constants with increased control over time scales.
Collapse
|
10
|
van de Stolpe A, den Toonder J. Workshop meeting report Organs-on-Chips: human disease models. LAB ON A CHIP 2013; 13:3449-70. [PMID: 23645172 DOI: 10.1039/c3lc50248a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The concept of "Organs-on-Chips" has recently evolved and has been described as 3D (mini-) organs or tissues consisting of multiple and different cell types interacting with each other under closely controlled conditions, grown in a microfluidic chip, and mimicking the complex structures and cellular interactions in and between different cell types and organs in vivo, enabling the real time monitoring of cellular processes. In combination with the emerging iPSC (induced pluripotent stem cell) field this development offers unprecedented opportunities to develop human in vitro models for healthy and diseased organ tissues, enabling the investigation of fundamental mechanisms in disease development, drug toxicity screening, drug target discovery and drug development, and the replacement of animal testing. Capturing the genetic background of the iPSC donor in the organ or disease model carries the promise to move towards "in vitro clinical trials", reducing costs for drug development and furthering the concept of personalized medicine and companion diagnostics. During the Lorentz workshop (Leiden, September 2012) an international multidisciplinary group of experts discussed the current state of the art, available and emerging technologies, applications and how to proceed in the field. Organ-on-a-chip platform technologies are expected to revolutionize cell biology in general and drug development in particular.
Collapse
|
11
|
Snaar-Jagalska BE, Cambi A, Schmidt T, de Keijzer S. Single-molecule imaging technique to study the dynamic regulation of GPCR function at the plasma membrane. Methods Enzymol 2013; 521:47-67. [PMID: 23351733 DOI: 10.1016/b978-0-12-391862-8.00003-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The lateral diffusion of a G-protein-coupled receptor (GPCR) in the plasma membrane determines its interaction capabilities with downstream signaling molecules and critically modulates its function. Mechanisms that control GPCR mobility, like compartmentalization, enable a cell to fine-tune its response through local changes in the rate, duration, and extent of signaling. These processes are known to be highly dynamic and tightly regulated in time and space, usually not completely synchronized in time. Therefore, bulk studies such as protein biochemistry or conventional confocal microscopy will only yield information on the average properties of the interactions and are compromised by poor time resolution. Single-particle tracking (SPT) in living cells is a key approach to directly monitor the function of a GPCR within its natural environment and to obtain unprecedented detailed information about receptor mobility, binding kinetics, aggregation states, and domain formation. This review provides a detailed description on how to perform single GPCR tracking experiments.
Collapse
Affiliation(s)
- B E Snaar-Jagalska
- Cell Biology, Leiden Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | |
Collapse
|
12
|
Millius A, Watanabe N, Weiner OD. Diffusion, capture and recycling of SCAR/WAVE and Arp2/3 complexes observed in cells by single-molecule imaging. J Cell Sci 2012; 125:1165-76. [PMID: 22349699 DOI: 10.1242/jcs.091157] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The SCAR/WAVE complex drives lamellipodium formation by enhancing actin nucleation by the Arp2/3 complex. Phosphoinositides and Rac activate the SCAR/WAVE complex, but how SCAR/WAVE and Arp2/3 complexes converge at sites of nucleation is unknown. We analyzed the single-molecule dynamics of WAVE2 and p40 (subunits of the SCAR/WAVE and Arp2/3 complexes, respectively) in XTC cells. We observed lateral diffusion of both proteins and captured the transition of p40 from diffusion to network incorporation. These results suggest that a diffusive 2D search facilitates binding of the Arp2/3 complex to actin filaments necessary for nucleation. After nucleation, the Arp2/3 complex integrates into the actin network and undergoes retrograde flow, which results in its broad distribution throughout the lamellipodium. By contrast, the SCAR/WAVE complex is more restricted to the cell periphery. However, with single-molecule imaging, we also observed WAVE2 molecules undergoing retrograde motion. WAVE2 and p40 have nearly identical speeds, lifetimes and sites of network incorporation. Inhibition of actin retrograde flow does not prevent WAVE2 association and disassociation with the membrane but does inhibit WAVE2 removal from the actin cortex. Our results suggest that membrane binding and diffusion expedites the recruitment of nucleation factors to a nucleation site independent of actin assembly, but after network incorporation, ongoing actin polymerization facilitates recycling of SCAR/WAVE and Arp2/3 complexes.
Collapse
Affiliation(s)
- Arthur Millius
- Cardiovascular Research Institute and Department of Biochemistry, University of California, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
13
|
Abstract
Chemotaxis of tumour cells and stromal cells in the surrounding microenvironment is an essential component of tumour dissemination during progression and metastasis. This Review summarizes how chemotaxis directs the different behaviours of tumour cells and stromal cells in vivo, how molecular pathways regulate chemotaxis in tumour cells and how chemotaxis choreographs cell behaviour to shape the tumour microenvironment and to determine metastatic spread. The central importance of chemotaxis in cancer progression is highlighted by discussion of the use of chemotaxis as a prognostic marker, a treatment end point and a target of therapeutic intervention.
Collapse
Affiliation(s)
- Evanthia T Roussos
- Department of Anatomy and Structural Biology, Program in Tumor Microenvironment and Metastasis, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | |
Collapse
|
14
|
Huber T, Sakmar TP. Escaping the flatlands: new approaches for studying the dynamic assembly and activation of GPCR signaling complexes. Trends Pharmacol Sci 2011; 32:410-9. [PMID: 21497404 DOI: 10.1016/j.tips.2011.03.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/01/2011] [Accepted: 03/10/2011] [Indexed: 01/17/2023]
Abstract
Despite significant recent advances in molecular and structural studies of G protein-coupled receptors (GPCRs), an understanding of transmembrane signal transduction with chemical precision requires new approaches. Simple binary receptor-ligand or receptor-G protein complex models cannot adequately describe the relevant macromolecular signaling machineries. GPCR signalosomes undergo complex dynamic assembly-disassembly reactions to create allosteric signaling conduits whose properties cannot necessarily be predicted from individual elements alone. The combinatorial possibilities inherent in a system with hundreds of potential components suggest that high-content miniaturized experimental platforms and computational approaches will be required. To study allosteric effects involved in signalosome reaction pathways, a bottom-up approach using multicolor single-molecule detection fluorescence experiments in biochemically defined systems and complemented by molecular dynamics models of macromolecular complexes is proposed. In bridging the gap between molecular and systems biology, this synthetic approach suggests a way forward from the flatlands to multi-dimensional data collection.
Collapse
Affiliation(s)
- Thomas Huber
- Laboratory of Molecular Biology & Biochemistry, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | | |
Collapse
|
15
|
Xu X, Meckel T, Brzostowski JA, Yan J, Meier-Schellersheim M, Jin T. Coupling mechanism of a GPCR and a heterotrimeric G protein during chemoattractant gradient sensing in Dictyostelium. Sci Signal 2010; 3:ra71. [PMID: 20876874 DOI: 10.1126/scisignal.2000980] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The coupling of heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) with G proteins is fundamental for GPCR signaling; however, the mechanism of coupling is still debated. Moreover, how the proposed mechanisms affect the dynamics of downstream signaling remains unclear. Here, through experiments involving fluorescence recovery after photobleaching and single-molecule imaging, we directly measured the mobilities of cyclic adenosine monophosphate (cAMP) receptor 1 (cAR1), a chemoattractant receptor, and a G protein βγ subunit in live cells. We found that cAR1 diffused more slowly in the plasma membrane than did Gβγ. Upon binding of ligand to the receptor, the mobility of cAR1 was unchanged, whereas the speed of a fraction of the faster-moving Gβγ subunits decreased. Our measurements showed that cAR1 was relatively immobile and Gβγ diffused freely, suggesting that chemoattractant-bound cAR1 transiently interacted with G proteins. Using models of possible coupling mechanisms, we computed the temporal kinetics of G protein activation. Our fluorescence resonance energy transfer imaging data showed that fully activated cAR1 induced the sustained dissociation of G protein α and βγ subunits, which indicated that ligand-bound cAR1 activated G proteins continuously. Finally, simulations indicated that a high-affinity coupling of ligand-bound receptors and G proteins was essential for cAR1 to translate extracellular gradient signals into directional cellular responses. We suggest that chemoattractant receptors use a ligand-induced coupling rather than a precoupled mechanism to control the activation of G proteins during chemotaxis.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signal Section, National Institutes of Health, Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|