1
|
El Bounkari O, Zan C, Yang B, Ebert S, Wagner J, Bugar E, Kramer N, Bourilhon P, Kontos C, Zarwel M, Sinitski D, Milic J, Jansen Y, Kempf WE, Sachs N, Maegdefessel L, Ji H, Gokce O, Riols F, Haid M, Gerra S, Hoffmann A, Brandhofer M, Avdic M, Bucala R, Megens RTA, Willemsen N, Messerer D, Schulz C, Bartelt A, Harm T, Rath D, Döring Y, Gawaz M, Weber C, Kapurniotu A, Bernhagen J. An atypical atherogenic chemokine that promotes advanced atherosclerosis and hepatic lipogenesis. Nat Commun 2025; 16:2297. [PMID: 40055309 PMCID: PMC11889166 DOI: 10.1038/s41467-025-57540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Atherosclerosis is the underlying cause of myocardial infarction and ischemic stroke. It is a lipid-triggered and cytokine/chemokine-driven arterial inflammatory condition. We identify D-dopachrome tautomerase/macrophage migration-inhibitory factor-2 (MIF-2), a paralog of the cytokine MIF, as an atypical chemokine promoting both atherosclerosis and hepatic lipid accumulation. In hyperlipidemic Apoe-/- mice, Mif-2-deficiency and pharmacological MIF-2-blockade protect against lesion formation and vascular inflammation in early and advanced atherogenesis. MIF-2 promotes leukocyte migration, endothelial arrest, and foam-cell formation, and we identify CXCR4 as a receptor for MIF-2. Mif-2-deficiency in Apoe-/- mice leads to decreased plasma lipid levels and suppressed hepatic lipid accumulation, characterized by reductions in lipogenesis-related pathways, tri-/diacylglycerides, and cholesterol-esters, as revealed by hepatic transcriptomics/lipidomics. Hepatocyte cultures and FLIM-FRET-microscopy suggest that MIF-2 activates SREBP-driven lipogenic genes, mechanistically involving MIF-2-inducible CD74/CXCR4 complexes and PI3K/AKT but not AMPK signaling. MIF-2 is upregulated in unstable carotid plaques from atherosclerotic patients and its plasma concentration correlates with disease severity in patients with coronary artery disease. These findings establish MIF-2 as an atypical chemokine linking vascular inflammation to metabolic dysfunction in atherosclerosis.
Collapse
Affiliation(s)
- Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
| | - Chunfang Zan
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Bishan Yang
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Simon Ebert
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jonas Wagner
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Elina Bugar
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Naomi Kramer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Priscila Bourilhon
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christos Kontos
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Marlies Zarwel
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Dzmitry Sinitski
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Jelena Milic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Yvonne Jansen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Wolfgang E Kempf
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
| | - Nadja Sachs
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Lars Maegdefessel
- Institute of Molecular Vascular Medicine, TUM Klinikum, Technische Universität München (TUM), Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Hao Ji
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Ozgun Gokce
- Systems Neuroscience Lab, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn Venusberg-Campus 1, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn, Munich, Germany
| | - Fabien Riols
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Mark Haid
- Metabolomics and Proteomics Core, Helmholtz Zentrum, Neuherberg, Germany
| | - Simona Gerra
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Adrian Hoffmann
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Anaesthesiology, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Markus Brandhofer
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Maida Avdic
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | | | - Remco T A Megens
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nienke Willemsen
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Denise Messerer
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine I, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alexander Bartelt
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tobias Harm
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- Division of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Meinrad Gawaz
- Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Tübingen, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, TUM School of Life Sciences, Technische Universität München (TUM), Freising, Germany
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig Maximilian University (LMU) Munich, Munich, Germany.
- German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
2
|
Wang YX, Reyes-García J, Di Mise A, Zheng YM. Role of ryanodine receptor 2 and FK506-binding protein 12.6 dissociation in pulmonary hypertension. J Gen Physiol 2023; 155:e202213100. [PMID: 36625865 PMCID: PMC9836826 DOI: 10.1085/jgp.202213100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/29/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells (SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH. More specifically, dissociation of the RyR2-FKBP12.6 complex is a consequence of increased mitochondrial ROS generation mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6 dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.
Collapse
Affiliation(s)
- Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Jorge Reyes-García
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México,Ciudad de México, México
| | - Annarita Di Mise
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Yun-Min Zheng
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
The Spatiotemporal Patterns of Climate Asymmetric Warming and Vegetation Activities in an Arid and Semiarid Region. CLIMATE 2020. [DOI: 10.3390/cli8120145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asymmetric warming was bound to have a major impact on terrestrial ecosystems in arid regions during global warming. Further study was necessary to reveal the spatiotemporal patterns of asymmetric warming in Xinjiang; this study analyzed the climate and normalized difference vegetation index (NDVI) data (2000–2020). The change trends of the day and nighttime warming (DNW), seasonal warming, and the diurnal temperature range in northern Xinjiang (S1) and southern Xinjiang (S2) were determined. The findings indicated that the DNW rate showed a significant (p < 0.05) upward trend, especially in winter. The nighttime warming rate (0.65 °C (decade)−1) was faster than the daytime warming rate (0.4 °C (decade)−1), and the diurnal temperature range between daytime and nighttime exhibited a decreasing trend. The diurnal temperature range was the highest in spring and the lowest in winter. Extreme values of the diurnal temperature range appeared in autumn (48.6 °C) and winter (12.3 °C) and both in S1. The Tmin in S1 had an abruption trend in 2006–2017, the Tmax in S2 had an abruption trend in 2005–2011, and the probability of spatial abruption in S1 was higher than that in S2. The partial correlation between the NDVI and Tmin was significantly higher than that between the NDVI and Tmax in the area where the significance test passed; therefore, asymmetric nighttime warming had a greater impact on the NDVI than the asymmetric daytime warming.
Collapse
|
4
|
Luo X, Li W, Künzel K, Henze S, Cyganek L, Strano A, Poetsch MS, Schubert M, Guan K. IP3R-Mediated Compensatory Mechanism for Calcium Handling in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes With Cardiac Ryanodine Receptor Deficiency. Front Cell Dev Biol 2020; 8:772. [PMID: 32903370 PMCID: PMC7434870 DOI: 10.3389/fcell.2020.00772] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/22/2020] [Indexed: 02/03/2023] Open
Abstract
In adult cardiomyocytes (CMs), the type 2 ryanodine receptor (RYR2) is an indispensable Ca2+ release channel that ensures the integrity of excitation-contraction coupling, which is fundamental for every heartbeat. However, the role and importance of RYR2 during human embryonic cardiac development are still poorly understood. Here, we generated two human induced pluripotent stem cell (iPSC)-based RYR2 knockout (RYR2–/–) lines using the CRISPR/Cas9 gene editing technology. We found that RYR2–/–-iPSCs could differentiate into CMs with the efficiency similar to control-iPSCs (Ctrl-iPSCs); however, the survival of iPSC-CMs was markedly affected by the lack of functional RYR2. While Ctrl-iPSC-CMs exhibited regular Ca2+ handling, we observed significantly reduced frequency and intense abnormalities of Ca2+ transients in RYR2–/–-iPSC-CMs. Ctrl-iPSC-CMs displayed sensitivity to extracellular Ca2+ ([Ca2+ ]o) and caffeine in a concentration-dependent manner, while RYR2–/–-iPSC-CMs showed inconsistent reactions to [Ca2+ ]o and were insensitive to caffeine, indicating there is no RYR2-mediated Ca2+ release from the sarcoplasmic reticulum (SR). Instead, compensatory mechanism for calcium handling in RYR2–/–-iPSC-CMs is partially mediated by the inositol 1,4,5-trisphosphate receptor (IP3R). Similar to Ctrl-iPSC-CMs, SR Ca2+ refilling in RYR2–/–-iPSC-CMs is mediated by SERCA. Additionally, RYR2–/–-iPSC-CMs showed a decreased beating rate and a reduced peak amplitude of L-type Ca2+ current. These findings demonstrate that RYR2 is not required for CM lineage commitment but is important for CM survival and contractile function. IP3R-mediated Ca2+ release is one of the major compensatory mechanisms for Ca2+ cycling in human CMs with the RYR2 deficiency.
Collapse
Affiliation(s)
- Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Karolina Künzel
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Sarah Henze
- Clinic for Cardiology and Pneumology, Universitätsmedizin Göttingen, Göttingen, Germany
| | - Lukas Cyganek
- Clinic for Cardiology and Pneumology, Universitätsmedizin Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Anna Strano
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mareike S Poetsch
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.,Clinic for Cardiology and Pneumology, Universitätsmedizin Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Vierra NC, Kirmiz M, van der List D, Santana LF, Trimmer JS. Kv2.1 mediates spatial and functional coupling of L-type calcium channels and ryanodine receptors in mammalian neurons. eLife 2019; 8:49953. [PMID: 31663850 PMCID: PMC6839919 DOI: 10.7554/elife.49953] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/29/2019] [Indexed: 12/16/2022] Open
Abstract
The voltage-gated K+ channel Kv2.1 serves a major structural role in the soma and proximal dendrites of mammalian brain neurons, tethering the plasma membrane (PM) to endoplasmic reticulum (ER). Although Kv2.1 clustering at neuronal ER-PM junctions (EPJs) is tightly regulated and highly conserved, its function remains unclear. By identifying and evaluating proteins in close spatial proximity to Kv2.1-containing EPJs, we discovered that a significant role of Kv2.1 at EPJs is to promote the clustering and functional coupling of PM L-type Ca2+ channels (LTCCs) to ryanodine receptor (RyR) ER Ca2+ release channels. Kv2.1 clustering also unexpectedly enhanced LTCC opening at polarized membrane potentials. This enabled Kv2.1-LTCC-RyR triads to generate localized Ca2+ release events (i.e., Ca2+ sparks) independently of action potentials. Together, these findings uncover a novel mode of LTCC regulation and establish a unique mechanism whereby Kv2.1-associated EPJs provide a molecular platform for localized somatodendritic Ca2+ signals in mammalian brain neurons.
Collapse
Affiliation(s)
- Nicholas C Vierra
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Michael Kirmiz
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - Deborah van der List
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States
| | - James S Trimmer
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, United States.,Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, United States
| |
Collapse
|
6
|
Nakamura Y, Yamamoto T, Kobayashi S, Tamitani M, Hamada Y, Fukui G, Xu X, Nishimura S, Kato T, Uchinoumi H, Oda T, Okuda S, Yano M. Ryanodine receptor-bound calmodulin is essential to protect against catecholaminergic polymorphic ventricular tachycardia. JCI Insight 2019; 4:126112. [PMID: 31167968 DOI: 10.1172/jci.insight.126112] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is caused by a single point mutation in the cardiac type 2 ryanodine receptor (RyR2). Using a knockin (KI) mouse model (R2474S/+), we previously reported that a single point mutation within the RyR2 sensitizes the channel to agonists, primarily mediated by defective interdomain interaction within the RyR2 and subsequent dissociation of calmodulin (CaM) from the RyR2. Here, we examined whether CPVT can be genetically rescued by enhancing the binding affinity of CaM to the RyR2. We first determined whether there is a possible amino acid substitution within the CaM-binding domain in the RyR2 (3584-3603 residues) that can enhance its binding affinity to CaM and found that V3599K substitution showed the highest binding affinity of CaM to the CaM-binding domain. Hence, we generated a heterozygous KI mouse model (V3599K/+) with a single amino acid substitution in the CaM-binding domain of the RyR2 and crossbred it with the heterozygous CPVT-associated R2474S/+-KI mouse to obtain a double-heterozygous R2474S/V3599K-KI mouse model. The CPVT phenotypes - bidirectional or polymorphic ventricular tachycardia, spontaneous Ca2+ transients, and Ca2+ sparks - were all inhibited in the R2474S/V3599K mice. Thus, enhancement of the CaM-binding affinity of the RyR2 is essential to prevent CPVT-associated arrhythmogenesis.
Collapse
Affiliation(s)
- Yoshihide Nakamura
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Takeshi Yamamoto
- Faculty of Health Sciences, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Shigeki Kobayashi
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Masaki Tamitani
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Yoriomi Hamada
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Go Fukui
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China
| | | | - Takayoshi Kato
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Hitoshi Uchinoumi
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Tetsuro Oda
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Shinichi Okuda
- Department of Medicine and Clinical Science, Division of Cardiology, and
| | - Masafumi Yano
- Department of Medicine and Clinical Science, Division of Cardiology, and
| |
Collapse
|
7
|
CaMKII-dependent phosphorylation of RyR2 promotes targetable pathological RyR2 conformational shift. J Mol Cell Cardiol 2016; 98:62-72. [PMID: 27318036 DOI: 10.1016/j.yjmcc.2016.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/27/2016] [Accepted: 06/14/2016] [Indexed: 01/27/2023]
Abstract
Diastolic calcium (Ca) leak via cardiac ryanodine receptors (RyR2) can cause arrhythmias and heart failure (HF). Ca/calmodulin (CaM)-dependent kinase II (CaMKII) is upregulated and more active in HF, promoting RyR2-mediated Ca leak by RyR2-Ser2814 phosphorylation. Here, we tested a mechanistic hypothesis that RyR2 phosphorylation by CaMKII increases Ca leak by promoting a pathological RyR2 conformation with reduced CaM affinity. Acute CaMKII activation in wild-type RyR2, and phosphomimetic RyR2-S2814D (vs. non-phosphorylatable RyR2-S2814A) knock-in mouse myocytes increased SR Ca leak, reduced CaM-RyR2 affinity, and caused a pathological shift in RyR2 conformation (detected via increased access of the RyR2 structural peptide DPc10). This same trio of effects was seen in myocytes from rabbits with pressure/volume-overload induced HF. Excess CaM quieted leak and restored control conformation, consistent with negative allosteric coupling between CaM affinity and DPc10 accessible conformation. Dantrolene (DAN) also restored CaM affinity, reduced DPc10 access, and suppressed RyR2-mediated Ca leak and ventricular tachycardia in RyR2-S2814D mice. We propose that a common pathological RyR2 conformational state (low CaM affinity, high DPc10 access, and elevated leak) may be caused by CaMKII-dependent phosphorylation, oxidation, and HF. Moreover, DAN (or excess CaM) can shift this pathological gating state back to the normal physiological conformation, a potentially important therapeutic approach.
Collapse
|
8
|
Lin AHY, Sun H, Paudel O, Lin MJ, Sham JSK. Conformation of ryanodine receptor-2 gates store-operated calcium entry in rat pulmonary arterial myocytes. Cardiovasc Res 2016; 111:94-104. [PMID: 27013634 DOI: 10.1093/cvr/cvw067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 03/18/2016] [Indexed: 12/31/2022] Open
Abstract
AIMS Store-operated Ca(2+) entry (SOCE) contributes to a multitude of physiological and pathophysiological functions in pulmonary vasculatures. SOCE attributable to inositol 1,4,5-trisphosphate receptor (InsP3R)-gated Ca(2+) store has been studied extensively, but the role of ryanodine receptor (RyR)-gated store in SOCE remains unclear. The present study aims to delineate the relationship between RyR-gated Ca(2+) stores and SOCE, and characterize the properties of RyR-gated Ca(2+) entry in pulmonary artery smooth muscle cells (PASMCs). METHODS AND RESULTS PASMCs were isolated from intralobar pulmonary arteries of male Wister rats. Application of the RyR1/2 agonist 4-chloro-m-cresol (4-CmC) activated robust Ca(2+) entry in PASMCs. It was blocked by Gd(3+) and the RyR2 modulator K201 but was unaffected by the RyR1/3 antagonist dantrolene and the InsP3R inhibitor xestospongin C, suggesting RyR2 is mainly involved in the process. siRNA knockdown of STIM1, TRPC1, and Orai1, or interruption of STIM1 translocation with ML-9 significantly attenuated the 4-CmC-induced SOCE, similar to SOCE induced by thapsigargin. However, depletion of RyR-gated store with caffeine failed to activate Ca(2+) entry. Inclusion of ryanodine, which itself did not cause Ca(2+) entry, uncovered caffeine-induced SOCE in a concentration-dependent manner, suggesting binding of ryanodine to RyR is permissive for the process. This Ca(2+) entry had the same molecular and pharmacological properties of 4-CmC-induced SOCE, and it persisted once activated even after caffeine washout. Measurement of Ca(2+) in sarcoplasmic reticulum (SR) showed that 4-CmC and caffeine application with or without ryanodine reduced SR Ca(2+) to similar extent, suggesting store-depletion was not the cause of the discrepancy. Moreover, caffeine/ryanodine and 4-CmC failed to initiate SOCE in cells transfected with the ryanodine-binding deficient mutant RyR2-I4827T. CONCLUSIONS RyR2-gated Ca(2+) store contributes to SOCE in PASMCs; however, store-depletion alone is insufficient but requires a specific RyR conformation modifiable by ryanodine binding to activate Ca(2+) entry.
Collapse
Affiliation(s)
- Amanda H Y Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Hui Sun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Omkar Paudel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | - Mo-Jun Lin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - James S K Sham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| |
Collapse
|
9
|
Abstract
The ryanodine receptor/Ca2+ release channel plays a pivotal role in skeletal and cardiac muscle excitation-contraction coupling. Defective regulation leads to neuromuscular disorders and arrhythmogenic cardiac disease. This mini-review focuses on channel regulation through structural intra- and inter-subunit interactions and their implications in ryanodine receptor pathophysiology.
Collapse
|
10
|
FRET-based trilateration of probes bound within functional ryanodine receptors. Biophys J 2015; 107:2037-48. [PMID: 25418089 DOI: 10.1016/j.bpj.2014.09.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/08/2014] [Accepted: 09/19/2014] [Indexed: 02/05/2023] Open
Abstract
To locate the biosensor peptide DPc10 bound to ryanodine receptor (RyR) Ca(2+) channels, we developed an approach that combines fluorescence resonance energy transfer (FRET), simulated-annealing, cryo-electron microscopy, and crystallographic data. DPc10 is identical to the 2460-2495 segment within the cardiac muscle RyR isoform (RyR2) central domain. DPc10 binding to RyR2 results in a pathologically elevated Ca(2+) leak by destabilizing key interactions between the RyR2 N-terminal and central domains (unzipping). To localize the DPc10 binding site within RyR2, we measured FRET between five single-cysteine variants of the FK506-binding protein (FKBP) labeled with a donor probe, and DPc10 labeled with an acceptor probe (A-DPc10). Effective donor positions were calculated from simulated-annealing constrained by both the RyR cryo-EM map and the FKBP atomic structure docked to the RyR. FRET to A-DPc10 was measured in permeabilized cardiomyocytes via confocal microscopy, converted to distances, and used to trilaterate the acceptor locus within RyR. Additional FRET measurements between donor-labeled calmodulin and A-DPc10 were used to constrain the trilaterations. Results locate the DPc10 probe within RyR domain 3, ?35 Å from the previously docked N-terminal domain crystal structure. This multiscale approach may be useful in mapping other RyR sites of mechanistic interest within FRET range of FKBP.
Collapse
|
11
|
Mahalingam M, Fessenden JD. Methods for labeling skeletal muscle ion channels site-specifically with fluorophores suitable for FRET-based structural analysis. Methods Enzymol 2015; 556:455-74. [PMID: 25857795 DOI: 10.1016/bs.mie.2014.11.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Skeletal muscle excitation-contraction coupling is triggered by the concerted action of two enormous Ca(2+) channel complexes, the dihydropyridine receptor and the type 1 ryanodine receptor. Recent advances in our understanding of the structure of these large Ca(2+) channels have been driven by fluorescence resonance energy transfer (FRET)-based analysis. A methodological challenge in conducting these FRET measurements is the ability to site-specifically label these huge ion channels with donor and acceptor fluorophores capable of undergoing energy transfer. In this chapter, we detail specific protocols for tagging large membrane proteins with these fluorescent probes using three orthogonal labeling methods: fluorescent protein fusions, biarsenical reagents directed to engineered tetracysteine tags, and Cy3/5 nitrilotriacetic acid conjugates that bind to poly-histidine tags.
Collapse
Affiliation(s)
- Mohana Mahalingam
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - James D Fessenden
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
12
|
Van Petegem F. Ryanodine Receptors: Allosteric Ion Channel Giants. J Mol Biol 2015; 427:31-53. [DOI: 10.1016/j.jmb.2014.08.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/02/2014] [Accepted: 08/05/2014] [Indexed: 01/27/2023]
|
13
|
Zhong X, Liu Y, Zhu L, Meng X, Wang R, Van Petegem F, Wagenknecht T, Chen SRW, Liu Z. Conformational dynamics inside amino-terminal disease hotspot of ryanodine receptor. Structure 2013; 21:2051-60. [PMID: 24139989 DOI: 10.1016/j.str.2013.09.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/22/2013] [Accepted: 09/11/2013] [Indexed: 11/15/2022]
Abstract
The N-terminal region of both skeletal and cardiac ryanodine receptor is a disease mutation hotspot. Recently, a crystal structure of the RyR1 fragment (residues 1-559) was solved. This N-terminal structure contains three separate domains, A, B, and C, and was docked into a central vestibule in a full-length RyR1 cryo-EM map. Here, we reconstructed three-dimensional cryo-EM structures of two GFP-tagged RyR2s with GFP inserted after residue Glu-310 and Ser-437, respectively. The structures of RyR2E310-GFP and RyR2S437-GFP displayed an extra mass on domain B and C, directly validating the predicted docking model. Next, we revealed domain movements in molecular dynamics flexible fitting models in both the closed and open state cryo-EM maps. To further probe the conformational changes, we generated FRET pairs by inserting CFP or YFP in two selected domains, FRET studies of three dual-insertion pairs and three co-expressed single-insertion pairs showed the dynamic structural changes within the N-terminal domains.
Collapse
Affiliation(s)
- Xiaowei Zhong
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Dawkar VV, Chikate YR, Lomate PR, Dholakia BB, Gupta VS, Giri AP. Molecular Insights into Resistance Mechanisms of Lepidopteran Insect Pests against Toxicants. J Proteome Res 2013; 12:4727-37. [DOI: 10.1021/pr400642p] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Vishal V. Dawkar
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Yojana R. Chikate
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Purushottam R. Lomate
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Bhushan B. Dholakia
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Vidya S. Gupta
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| | - Ashok P. Giri
- Plant Molecular
Biology Unit,
Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008 (MS), India
| |
Collapse
|
15
|
Okada H, Lai NC, Kawaraguchi Y, Liao P, Copps J, Sugano Y, Okada-Maeda S, Banerjee I, Schilling JM, Gingras AR, Asfaw EK, Suarez J, Kang SM, Perkins GA, Au CG, Israeli-Rosenberg S, Manso AM, Liu Z, Milner DJ, Kaufman SJ, Patel HH, Roth DM, Hammond HK, Taylor SS, Dillmann WH, Goldhaber JI, Ross RS. Integrins protect cardiomyocytes from ischemia/reperfusion injury. J Clin Invest 2013; 123:4294-308. [PMID: 24091324 DOI: 10.1172/jci64216] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/18/2013] [Indexed: 11/17/2022] Open
Abstract
Ischemic damage is recognized to cause cardiomyocyte (CM) death and myocardial dysfunction, but the role of cell-matrix interactions and integrins in this process has not been extensively studied. Expression of α7β1D integrin, the dominant integrin in normal adult CMs, increases during ischemia/reperfusion (I/R), while deficiency of β1 integrins increases ischemic damage. We hypothesized that the forced overexpression of integrins on the CM would offer protection from I/R injury. Tg mice with CM-specific overexpression of integrin α7β1D exposed to I/R had a substantial reduction in infarct size compared with that of α5β1D-overexpressing mice and WT littermate controls. Using isolated CMs, we found that α7β1D preserved mitochondrial membrane potential during hypoxia/reoxygenation (H/R) injury via inhibition of mitochondrial Ca2+ overload but did not alter H/R effects on oxidative stress. Therefore, we assessed Ca2+ handling proteins in the CM and found that β1D integrin colocalized with ryanodine receptor 2 (RyR2) in CM T-tubules, complexed with RyR2 in human and rat heart, and specifically bound to RyR2 amino acids 165-175. Integrins stabilized the RyR2 interdomain interaction, and this stabilization required integrin receptor binding to its ECM ligand. These data suggest that α7β1D integrin modifies Ca2+ regulatory pathways and offers a means to protect the myocardium from ischemic injury.
Collapse
|
16
|
Huang X, Liu Y, Wang R, Zhong X, Liu Y, Koop A, Chen SRW, Wagenknecht T, Liu Z. Two potential calmodulin-binding sequences in the ryanodine receptor contribute to a mobile, intra-subunit calmodulin-binding domain. J Cell Sci 2013; 126:4527-35. [PMID: 23868982 DOI: 10.1242/jcs.133454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calmodulin (CaM), a 16 kDa ubiquitous calcium-sensing protein, is known to bind tightly to the calcium release channel/ryanodine receptor (RyR), and modulate RyR function. CaM binding studies using RyR fragments or synthetic peptides have revealed the presence of multiple, potential CaM-binding regions in the primary sequence of RyR. In the present study, we inserted GFP into two of these proposed CaM-binding sequences and mapped them onto the three-dimensional structure of intact cardiac RyR2 by cryo-electron microscopy. Interestingly, we found that the two potential CaM-binding regions encompassing, Arg3595 and Lys4269, respectively, are in close proximity and are adjacent to the previously mapped CaM-binding sites. To monitor the conformational dynamics of these CaM-binding regions, we generated a fluorescence resonance energy transfer (FRET) pair, a dual CFP- and YFP-labeled RyR2 (RyR2R3595-CFP/K4269-YFP) with CFP inserted after Arg3595 and YFP inserted after Lys4269. We transfected HEK293 cells with the RyR2R3595-CFP/K4269-YFP cDNA, and examined their FRET signal in live cells. We detected significant FRET signals in transfected cells that are sensitive to the channel activator caffeine, suggesting that caffeine is able to induce conformational changes in these CaM-binding regions. Importantly, no significant FRET signals were detected in cells co-transfected with cDNAs encoding the single CFP (RyR2R3595-CFP) and single YFP (RyR2K4269-YFP) insertions, indicating that the FRET signal stemmed from the interaction between R3595-CFP and K4269-YFP that are in the same RyR subunit. These observations suggest that multiple regions in the RyR2 sequence may contribute to an intra-subunit CaM-binding pocket that undergoes conformational changes during channel gating.
Collapse
Affiliation(s)
- Xiaojun Huang
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Blayney L, Beck K, MacDonald E, D'Cruz L, Nomikos M, Griffiths J, Thanassoulas A, Nounesis G, Lai FA. ATP interacts with the CPVT mutation-associated central domain of the cardiac ryanodine receptor. Biochim Biophys Acta Gen Subj 2013; 1830:4426-32. [PMID: 23747301 DOI: 10.1016/j.bbagen.2013.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/20/2013] [Accepted: 05/29/2013] [Indexed: 02/03/2023]
Abstract
BACKGROUND This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). METHODS Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. RESULTS The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400μM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. CONCLUSIONS The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. GENERAL SIGNIFICANCE Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.
Collapse
Affiliation(s)
- Lynda Blayney
- Institute of Molecular and Experimental Medicine, Cardiff University, Cardiff, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fessenden JD, Mahalingam M. Site-specific labeling of the type 1 ryanodine receptor using biarsenical fluorophores targeted to engineered tetracysteine motifs. PLoS One 2013; 8:e64686. [PMID: 23724080 PMCID: PMC3665623 DOI: 10.1371/journal.pone.0064686] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/16/2013] [Indexed: 12/02/2022] Open
Abstract
The type 1 ryanodine receptor (RyR1) is an intracellular Ca2+ release channel that mediates skeletal muscle excitation contraction coupling. While the overall shape of RyR1 has been elucidated using cryo electron microscopic reconstructions, fine structural details remain elusive. To better understand the structure of RyR1, we have previously used a cell-based fluorescence resonance energy transfer (FRET) method using a fused green fluorescent protein (GFP) donor and a fluorescent acceptor, Cy3NTA that binds specifically to short poly-histidine ‘tags’ engineered into RyR1. However, the need to permeabilize cells to allow Cy3NTA entry as well as the noncovalent binding of Cy3NTA to the His tag limits future applications of this technique for studying conformational changes of the RyR. To overcome these problems, we used a dodecapeptide sequence containing a tetracysteine (Tc) motif to target the biarsenical fluorophores, FlAsH and ReAsH to RyR1. These compounds freely cross intact cell membranes where they then bind covalently to the tetracysteine motif. First, we used this system to conduct FRET measurements in intact cells by fusing a yellow fluorescent protein (YFP) FRET donor to the N-terminus of RyR1 and then targeting the FRET acceptor, ReAsH to an adjacent Tc tag. Moderate energy transfer (∼33%) was observed whereas ReAsH incubation of a YFPRyR1 fusion protein lacking the Tc tag resulted in no detectable FRET. We also developed a FRET-based system that did not require RyR fluorescent protein fusions by labeling N-terminal Tc-tagged RyR1 with FlAsH, a FRET donor and then targeting the FRET acceptor Cy3NTA to an adjacent decahistidine (His10) tag. A high degree of energy transfer (∼66%) indicated proper binding of both compounds to these unique recognition sequences in RyR1. Thus, these two systems should provide unprecedented flexibility in future FRET-based structural determinations of RyR1.
Collapse
Affiliation(s)
- James D Fessenden
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, United States of America.
| | | |
Collapse
|
19
|
Girgenrath T, Mahalingam M, Svensson B, Nitu FR, Cornea RL, Fessenden JD. N-terminal and central segments of the type 1 ryanodine receptor mediate its interaction with FK506-binding proteins. J Biol Chem 2013; 288:16073-84. [PMID: 23585572 DOI: 10.1074/jbc.m113.463299] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We used site-directed labeling of the type 1 ryanodine receptor (RyR1) and fluorescence resonance energy transfer (FRET) measurements to map RyR1 sequence elements forming the binding site of the 12-kDa binding protein for the immunosuppressant drug, FK506. This protein, FKBP12, promotes the RyR1 closed state, thereby inhibiting Ca(2+) leakage in resting muscle. Although FKBP12 function is well established, its binding determinants within the RyR1 protein sequence remain unresolved. To identify these sequence determinants using FRET, we created five single-Cys FKBP variants labeled with Alexa Fluor 488 (denoted D-FKBP) and then targeted these D-FKBPs to full-length RyR1 constructs containing decahistidine (His10) "tags" placed within N-terminal (amino acid residues 76-619) or central (residues 2157-2777) regions of RyR1. The FRET acceptor Cy3NTA bound specifically and saturably to these His tags, allowing distance analysis of FRET measured from each D-FKBP variant to Cy3NTA bound to each His tag. Results indicate that D-FKBP binds proximal to both N-terminal and central domains of RyR1, thus suggesting that the FKBP binding site is composed of determinants from both regions. These findings further imply that the RyR1 N-terminal and central domains are proximal to one another, a core premise of the domain-switch hypothesis of RyR function. We observed FRET from GFP fused at position 620 within the N-terminal domain to central domain His-tagged sites, thus further supporting this hypothesis. Taken together, these results support the conclusion that N-terminal and central domain elements are closely apposed near the FKBP binding site within the RyR1 three-dimensional structure.
Collapse
Affiliation(s)
- Tanya Girgenrath
- Department of Anesthesia, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
20
|
Tian X, Liu Y, Liu Y, Wang R, Wagenknecht T, Liu Z, Chen SRW. Ligand-dependent conformational changes in the clamp region of the cardiac ryanodine receptor. J Biol Chem 2012; 288:4066-75. [PMID: 23258540 DOI: 10.1074/jbc.m112.427864] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Global conformational changes in the three-dimensional structure of the Ca(2+) release channel/ryanodine receptor (RyR) occur upon ligand activation. A number of ligands are able to activate the RyR channel, but whether these structurally diverse ligands induce the same or different conformational changes in the channel is largely unknown. Here we constructed a fluorescence resonance energy transfer (FRET)-based probe by inserting a CFP after residue Ser-2367 and a YFP after residue Tyr-2801 in the cardiac RyR (RyR2) to yield a CFP- and YFP-dual labeled RyR2 (RyR2(Ser-2367-CFP/Tyr-2801-YFP)). Both of these insertion sites have previously been mapped to the "clamp" region in the four corners of the square-shaped cytoplasmic assembly of the three-dimensional structure of RyR2. Using this novel FRET probe, we monitored the extent of conformational changes in the clamp region of RyR2(Ser-2367-CFP/Tyr-2801-YFP) induced by various ligands. We also monitored the extent of Ca(2+) release induced by the same ligands in HEK293 cells expressing RyR2(Ser-2367-CFP/Tyr-2801-YFP). We detected conformational changes in the clamp region for the ligands caffeine, aminophylline, theophylline, ATP, and ryanodine but not for Ca(2+) or 4-chloro-m-cresol, although they all induced Ca(2+) release. Interestingly, caffeine is able to induce further conformational changes in the clamp region of the ryanodine-modified channel, suggesting that ryanodine does not lock RyR in a fixed conformation. Our data demonstrate that conformational changes in the clamp region of RyR are ligand-dependent and suggest the existence of multiple ligand dependent RyR activation mechanisms associated with distinct conformational changes.
Collapse
Affiliation(s)
- Xixi Tian
- Libin Cardiovascular Institute of Alberta, Department of Physiology and Pharmacology and Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Oda T, Yang Y, Nitu FR, Svensson B, Lu X, Fruen BR, Cornea RL, Bers DM. In cardiomyocytes, binding of unzipping peptide activates ryanodine receptor 2 and reciprocally inhibits calmodulin binding. Circ Res 2012; 112:487-97. [PMID: 23233753 DOI: 10.1161/circresaha.111.300290] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE One hypothesis for elevated Ca(2+) leak through cardiac ryanodine receptors (ryanodine receptor 2 [RyR2]) in heart failure is interdomain unzipping that can enhance aberrant channel activation. A peptide (domain peptide corresponding to RyR2 residues 2460-2495 [DPc10]) corresponding to RyR2 central domain residues 2460-2495 recapitulates this arrhythmogenic RyR2 leakiness by unzipping N-terminal and central domains. Calmodulin (CaM) and FK506-binding protein (FKBP12.6) bind to RyR2 and stabilize the closed channel. Little is known about DPc10 binding to the RyR2 and how that may interact with binding (and effects) of CaM and FKBP12.6 to RyR2. OBJECTIVE To measure, directly in cardiac myocytes, the kinetics and binding affinity of DPc10 to RyR2 and how that affects RyR2 interaction with FKBP12.6 and CaM. METHODS AND RESULTS We used permeabilized rat ventricular myocytes and fluorescently labeled DPc10, FKBP12.6, and CaM. DPc10 access to its binding site is extremely slow in resting RyR2 but is accelerated by promoting RyR opening or unzipping (by unlabeled DPc10). RyR2-bound CaM (but not FKBP12.6) drastically slowed DPc10 binding. Conversely, DPc10 binding significantly reduced CaM (but not FKBP12.6) binding to the RyR2. Fluorescence resonance energy transfer measurements indicate that DPc10-binding and CaM-binding sites are separate and allow triangulation of the structural DPc10 binding locus on RyR2 vs FKBP12.6-binding and CaM-binding sites. CONCLUSIONS DPc10-RyR2 binding is sterically limited by the resting zipped RyR2 state. CaM binding to RyR2 stabilizes this zipped state, whereas RyR2 activation or prebound DPc10 enhances DPc10 access. DPc10-binding and CaM-binding sites are distinct but are allosterically interacting RyR2 sites. Neither DPc10 nor FKBP12.6 influences RyR2 binding of the other.
Collapse
Affiliation(s)
- Tetsuro Oda
- Department of Pharmacology, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Zhu L, Zhong X, Chen SRW, Banavali N, Liu Z. Modeling a ryanodine receptor N-terminal domain connecting the central vestibule and the corner clamp region. J Biol Chem 2012. [PMID: 23204524 DOI: 10.1074/jbc.m112.429670] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ryanodine receptors (RyRs) form a class of intracellular calcium release channels in various excitable tissues and cells such as muscles and neurons. They are the major cellular mediators of the release of calcium ions from the sarcoplasmic reticulum, an essential step in muscle excitation-contraction coupling. Several crystal structures of skeletal muscle RyR1 peptide fragments have been solved, but these cover less than 15% of the full-length RyR1 sequence. In this study, by combining modeling techniques with sub-nanometer resolution cryo-electron microscopy (cryo-EM) maps, we obtained pseudo-atomic models for RyR fragments consisting of residues 850-1,056 in rabbit RyR1 or residues 861-1,067 in mouse RyR2. These fragments are docked into a domain that connects the central vestibule and corner clamp region of RyR, resulting in a good match of the secondary structure elements in the cryo-EM map and the pseudo-atomic models, which is also consistent with our previous mappings of GFP insertions by cryo-EM and with FRET measurements involving RyR and FK506-binding protein (FKBP). A combined model of the RyR fragment and FKBP docked into the cryo-EM map suggests that the fragment is positioned adjacent to the FKBP-binding site. Its predicted binding interface with FKBP consists primarily of electrostatic contacts and contains several disease-associated mutations. A dynamic interaction between the fragment and an RyR phosphorylation domain, characterized by FRET experiments, also supports the structural predictions of the pseudo-atomic models.
Collapse
Affiliation(s)
- Li Zhu
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, USA
| | | | | | | | | |
Collapse
|
23
|
Popova OB, Baker MR, Tran TP, Le T, Serysheva II. Identification of ATP-binding regions in the RyR1 Ca²⁺ release channel. PLoS One 2012; 7:e48725. [PMID: 23144945 PMCID: PMC3492408 DOI: 10.1371/journal.pone.0048725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 09/28/2012] [Indexed: 12/11/2022] Open
Abstract
ATP is an important modulator of gating in type 1 ryanodine receptor (RyR1), also known as a Ca2+ release channel in skeletal muscle cells. The activating effect of ATP on this channel is achieved by directly binding to one or more sites on the RyR1 protein. However, the number and location of these sites have yet to be determined. To identify the ATP-binding regions within RyR1 we used 2N3ATP-2′,3′-Biotin-LC-Hydrazone (BioATP-HDZ), a photo-reactive ATP analog to covalently label the channel. We found that BioATP-HDZ binds RyR1 specifically with an IC50 = 0.6±0.2 mM, comparable with the reported EC50 for activation of RyR1 with ATP. Controlled proteolysis of labeled RyR1 followed by sequence analysis revealed three fragments with apparent molecular masses of 95, 45 and 70 kDa that were crosslinked by BioATP-HDZ and identified as RyR1 sequences. Our analysis identified four glycine-rich consensus motifs that can potentially constitute ATP-binding sites and are located within the N-terminal 95-kDa fragment. These putative nucleotide-binding sequences include amino acids 699–704, 701–706, 1081–1084 and 1195–1200, which are conserved among the three RyR isoforms. Located next to the N-terminal disease hotspot region in RyR1, these sequences may communicate the effects of ATP-binding to channel function by tuning conformational motions within the neighboring cytoplasmic regulatory domains. Two other labeled fragments lack ATP-binding consensus motifs and may form non-canonical ATP-binding sites. Based on domain topology in the 3D structure of RyR1 it is also conceivable that the identified ATP-binding regions, despite their wide separation in the primary sequence, may actually constitute the same non-contiguous ATP-binding pocket within the channel tetramer.
Collapse
Affiliation(s)
- Olga B. Popova
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tina P. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Tri Le
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas at Houston Medical School, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Thakur P, Dadsetan S, Fomina AF. Bidirectional coupling between ryanodine receptors and Ca2+ release-activated Ca2+ (CRAC) channel machinery sustains store-operated Ca2+ entry in human T lymphocytes. J Biol Chem 2012; 287:37233-44. [PMID: 22948152 DOI: 10.1074/jbc.m112.398974] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression and functional significance of ryanodine receptors (RyR) were investigated in resting and activated primary human T cells. RyR1, RyR2, and RyR3 transcripts were detected in human T cells. RyR1/2 transcript levels increased, whereas those of RyR3 decreased after T cell activation. RyR1/2 protein immunoreactivity was detected in activated but not in resting T cells. The RyR agonist caffeine evoked Ca(2+) release from the intracellular store in activated T cells but not in resting T cells, indicating that RyR are functionally up-regulated in activated T cells compared with resting T cells. In the presence of store-operated Ca(2+) entry (SOCE) via plasmalemmal Ca(2+) release-activated Ca(2+) (CRAC) channels, RyR blockers reduced the Ca(2+) leak from the endoplasmic reticulum (ER) and the magnitude of SOCE, suggesting that a positive feedback relationship exists between RyR and CRAC channels. Overexpression of fluorescently tagged RyR2 and stromal interaction molecule 1 (STIM1), an ER Ca(2+) sensor gating CRAC channels, in HEK293 cells revealed that RyR are co-localized with STIM1 in the puncta formed after store depletion. These data indicate that in primary human T cells, the RyR are coupled to CRAC channel machinery such that SOCE activates RyR via a Ca(2+)-induced Ca(2+) release mechanism, which in turn reduces the Ca(2+) concentration within the ER lumen in the vicinity of STIM1, thus facilitating SOCE by reducing store-dependent CRAC channel inactivation. Treatment with RyR blockers suppressed activated T cell expansion, demonstrating the functional importance of RyR in T cells.
Collapse
Affiliation(s)
- Pratima Thakur
- Department of Physiology and Membrane Biology, University of California, Davis, California 95616, USA
| | | | | |
Collapse
|
25
|
Abstract
Ryanodine receptors (RyRs) are huge ion channels that are responsible for the release of Ca(2+) from the sarco/endoplasmic reticulum. RyRs form homotetramers with a mushroom-like shape, consisting of a large cytoplasmic head and transmembrane stalk. Ca(2+) is a major physiological ligand that triggers opening of RyRs, but a plethora of modulatory proteins and small molecules in the cytoplasm and sarco/endoplasmic reticulum lumen have been recognized. Over 300 mutations in RyRs are associated with severe skeletal muscle disorders or triggered cardiac arrhythmias. With the advent of high-resolution structures of individual domains, many of these can be mapped onto the three-dimensional structure.
Collapse
Affiliation(s)
- Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver V6T 1Z3, Canada.
| |
Collapse
|
26
|
Raina SA, Tsai J, Samsó M, Fessenden JD. FRET-based localization of fluorescent protein insertions within the ryanodine receptor type 1. PLoS One 2012; 7:e38594. [PMID: 22719904 PMCID: PMC3374828 DOI: 10.1371/journal.pone.0038594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 05/11/2012] [Indexed: 11/21/2022] Open
Abstract
Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) insertions within the ryanodine receptor type 1 (RyR1), a large intracellular Ca(2+) release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK)-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.
Collapse
Affiliation(s)
- Shweta A. Raina
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Jeffrey Tsai
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| | - Montserrat Samsó
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - James D. Fessenden
- Boston Biomedical Research Institute, Watertown, Massachusetts, United States of America
| |
Collapse
|
27
|
Hamada K, Mikoshiba K. Revisiting Channel Allostery: A Coherent Mechanism in IP3 and Ryanodine Receptors. Sci Signal 2012; 5:pe24. [DOI: 10.1126/scisignal.2003148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Structural and functional conservation of key domains in InsP3 and ryanodine receptors. Nature 2012; 483:108-12. [PMID: 22286060 PMCID: PMC3378505 DOI: 10.1038/nature10751] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 12/02/2011] [Indexed: 01/20/2023]
Abstract
Inositol 1,4,5-trisphosphate receptors (InsP3R) and ryanodine receptors (RyR) are tetrameric intracellular Ca2+ channels1. For each, the pore is formed by C-terminal transmembrane domains and regulated by signals detected by the large cytosolic structures. InsP3R gating is initiated by InsP3 binding to the InsP3-binding core (IBC, residues 224-604 of InsP3R1)2 and it requires the suppressor domain (SD, residues 1-223)2-8. We present structures of the N-terminal region (NT) of InsP3R1 with (3.6 Å) and without (3.0 Å) InsP3 bound. The arrangement of the three NT domains, the SD, IBC-β and IBC-α, identifies two discrete interfaces (α and β) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR19. The orientations of the three domains docked into a tetrameric structure of InsP3R10 and of the ABC domains in RyR9 are remarkably similar. The importance of the α-interface for activation of InsP3R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations9,11,12. InsP3 causes partial closure of the clam-like IBC, disrupting the β-interface and pulling the SD towards the IBC. This reorients an exposed SD loop (HS-loop) that is essential for InsP3R activation7. The loop is conserved in RyR and includes mutations associated with malignant hyperthermia and central core disease9,11,12. The HS-loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A-domain of RyR functionally replaced the SD in a full-length InsP3R, and an InsP3R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP3 and blocked by ryanodine. Activation mechanisms are conserved between InsP3R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit re-orients the first domain (SD or A-domain), allowing it, via interactions of the second domain of an adjacent subunit (IBC-β or B-domain), to gate the pore.
Collapse
|
29
|
Jung CB, Moretti A, Mederos y Schnitzler M, Iop L, Storch U, Bellin M, Dorn T, Ruppenthal S, Pfeiffer S, Goedel A, Dirschinger RJ, Seyfarth M, Lam JT, Sinnecker D, Gudermann T, Lipp P, Laugwitz KL. Dantrolene rescues arrhythmogenic RYR2 defect in a patient-specific stem cell model of catecholaminergic polymorphic ventricular tachycardia. EMBO Mol Med 2012; 4:180-91. [PMID: 22174035 PMCID: PMC3376852 DOI: 10.1002/emmm.201100194] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 12/01/2011] [Accepted: 12/05/2011] [Indexed: 12/23/2022] Open
Abstract
Coordinated release of calcium (Ca2+) from the sarcoplasmic reticulum (SR) through cardiac ryanodine receptor (RYR2) channels is essential for cardiomyocyte function. In catecholaminergic polymorphic ventricular tachycardia (CPVT), an inherited disease characterized by stress-induced ventricular arrhythmias in young patients with structurally normal hearts, autosomal dominant mutations in RYR2 or recessive mutations in calsequestrin lead to aberrant diastolic Ca2+ release from the SR causing arrhythmogenic delayed after depolarizations (DADs). Here, we report the generation of induced pluripotent stem cells (iPSCs) from a CPVT patient carrying a novel RYR2 S406L mutation. In patient iPSC-derived cardiomyocytes, catecholaminergic stress led to elevated diastolic Ca2+ concentrations, a reduced SR Ca2+ content and an increased susceptibility to DADs and arrhythmia as compared to control myocytes. This was due to increased frequency and duration of elementary Ca2+ release events (Ca2+ sparks). Dantrolene, a drug effective on malignant hyperthermia, restored normal Ca2+ spark properties and rescued the arrhythmogenic phenotype. This suggests defective inter-domain interactions within the RYR2 channel as the pathomechanism of the S406L mutation. Our work provides a new in vitro model to study the pathogenesis of human cardiac arrhythmias and develop novel therapies for CPVT.
Collapse
Affiliation(s)
- Christian B Jung
- Klinikum rechts der Isar, Technische Universität München, I. Medizinische Klinik, Kardiologie, München, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Techniques and Methodologies to Study the Ryanodine Receptor at the Molecular, Subcellular and Cellular Level. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 740:183-215. [DOI: 10.1007/978-94-007-2888-2_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Lobo PA, Kimlicka L, Tung CC, Van Petegem F. The deletion of exon 3 in the cardiac ryanodine receptor is rescued by β strand switching. Structure 2011; 19:790-8. [PMID: 21645850 DOI: 10.1016/j.str.2011.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/17/2011] [Accepted: 03/22/2011] [Indexed: 11/29/2022]
Abstract
Mutations in the cardiac Ryanodine Receptor (RYR2) are linked to triggered arrhythmias. Removal of exon 3 results in a severe form of catecholaminergic polymorphic ventricular tachycardia (CPVT). This exon encodes secondary structure elements that are crucial for folding of the N-terminal domain (NTD), raising the question of why the deletion is neither lethal nor confers a loss of function. We determined the 2.3 Å crystal structure of the NTD lacking exon 3. The removal causes a structural rescue whereby a flexible loop inserts itself into the β trefoil domain and increases thermal stability. The exon 3 deletion is not tolerated in the corresponding RYR1 domain. The rescue shows a novel mechanism by which RYR2 channels can adjust their Ca²⁺ release properties through altering the structure of the NTD. Despite the rescue, the deletion affects interfaces with other RYR2 domains. We propose that relative movement of the NTD is allosterically coupled to the pore region.
Collapse
Affiliation(s)
- Paolo A Lobo
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, room 2.320, Vancouver, BC V6T1Z3, Canada
| | | | | | | |
Collapse
|
32
|
Wang R, Zhong X, Meng X, Koop A, Tian X, Jones PP, Fruen BR, Wagenknecht T, Liu Z, Chen SRW. Localization of the dantrolene-binding sequence near the FK506-binding protein-binding site in the three-dimensional structure of the ryanodine receptor. J Biol Chem 2011; 286:12202-12. [PMID: 21262961 PMCID: PMC3069424 DOI: 10.1074/jbc.m110.194316] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 01/07/2011] [Indexed: 11/06/2022] Open
Abstract
Dantrolene is believed to stabilize interdomain interactions between the NH2-terminal and central regions of ryanodine receptors by binding to the NH2-terminal residues 590-609 in skeletal ryanodine receptor (RyR1) and residues 601-620 in cardiac ryanodine receptor (RyR2). To gain further insight into the structural basis of dantrolene action, we have attempted to localize the dantrolene-binding sequence in RyR1/RyR2 by using GFP as a structural marker and three-dimensional cryo-EM. We inserted GFP into RyR2 after residues Arg-626 and Tyr-846 to generate GFP-RyR2 fusion proteins, RyR2Arg-626-GFP and RyR2Tyr-846-GFP. Insertion of GFP after residue Arg-626 abolished the binding of a bulky GST- or cyan fluorescent protein-tagged FKBP12.6 but not the binding of a smaller, nontagged FKBP12.6, suggesting that residue Arg-626 and the dantrolene-binding sequence are located near the FKBP12.6-binding site. Using cryo-EM, we have mapped the three-dimensional location of Tyr-846-GFP to domain 9, which is also adjacent to the FKBP12.6-binding site. To further map the three-dimensional location of the dantrolene-binding sequence, we generated 10 FRET pairs based on four known three-dimensional locations (FKBP12.6, Ser-437-GFP, Tyr-846-GFP, and Ser-2367-GFP). Based on the FRET efficiencies of these FRET pairs and the corresponding distance relationships, we mapped the three-dimensional location of Arg-626-GFP or -cyan fluorescent protein, hence the dantrolene-binding sequence, to domain 9 near the FKBP12.6-binding site but distant to the central region around residue Ser-2367. An allosteric mechanism by which dantrolene stabilizes interdomain interactions between the NH2-terminal and central regions is proposed.
Collapse
Affiliation(s)
- Ruiwu Wang
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiaowei Zhong
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xing Meng
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - Andrea Koop
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xixi Tian
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Peter P. Jones
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bradley R. Fruen
- the Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, and
| | - Terence Wagenknecht
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
- the Department of Biomedical Sciences, School of Public Health, State University of New York, at Albany, Albany, New York 12201
| | - Zheng Liu
- the Wadsworth Center, New York State Department of Health, Albany, New York 12201
| | - S. R. Wayne Chen
- From the Libin Cardiovascular Institute of Alberta, Departments of Physiology & Pharmacology, and Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
33
|
Yengo CM, Berger CL. Fluorescence anisotropy and resonance energy transfer: powerful tools for measuring real time protein dynamics in a physiological environment. Curr Opin Pharmacol 2010; 10:731-7. [PMID: 20971683 PMCID: PMC2981669 DOI: 10.1016/j.coph.2010.09.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 01/14/2023]
Abstract
Fluorescence spectroscopy/microscopy is a versatile method for examining protein dynamics in vitro and in vivo that can be combined with other techniques to simultaneously examine complementary pharmacological parameters. The following review will highlight the advantages and challenges of using fluorescence spectroscopic methods for examining protein dynamics with a special emphasis on fluorescence resonance energy transfer and fluorescence anisotropy. Both of these methods are amenable to measurements on an ensemble of molecules as well as at the single molecule level, in live cells and in high throughput screening assays, providing a powerful set of tools to aid in the design and testing of new drugs under a variety of experimental conditions.
Collapse
Affiliation(s)
- Christopher M Yengo
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
34
|
Kobayashi S, Yano M, Uchinoumi H, Suetomi T, Susa T, Ono M, Xu X, Tateishi H, Oda T, Okuda S, Doi M, Yamamoto T, Matsuzaki M. Dantrolene, a therapeutic agent for malignant hyperthermia, inhibits catecholaminergic polymorphic ventricular tachycardia in a RyR2(R2474S/+) knock-in mouse model. Circ J 2010; 74:2579-84. [PMID: 20944434 DOI: 10.1253/circj.cj-10-0680] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Dantrolene, a specific agent for the treatment of malignant hyperthermia, was found to inhibit Ca(2+) leak through not only the skeletal ryanodine receptor (RyR1), but also the cardiac ryanodine receptor (RyR2) by correcting the defective inter-domain interaction between N-terminal (1-619 amino acid) and central (2,000-2,500 amino acid) domains of RyRs. Here, the in vivo anti-arrhythmic effect of dantrolene in a human catecholaminergic polymorphic ventricular tachycardia (CPVT)-associated RyR2(R2474S/+) knock-in (KI) mouse model was investigated. METHODS AND RESULTS ECG was monitored in KI mice (n=6) and wild-type (WT) mice (n=6), before and after an injection of epinephrine (1.0mg/kg) or on exercise using a treadmill. In all KI (but not WT) mice, bi-directional ventricular tachycardia (VT) was induced after an injection of epinephrine or on exercise. Pre-treatment with dantrolene (for 7-10 days) significantly inhibited the inducible VT (P<0.01). In KI cardiomyocytes, Ca(2+) spark frequency (SpF; s(-1)·100µm(-1): 5.8±0.3, P<0.01) was much more increased after the addition of isoproterenol than in WT cardiomyocytes (SpF: 3.6±0.2). The increase in SpF seen in KI cardiomyocytes was attenuated by 1.0µmol/L dantrolene (SpF: 3.6±0.5, P<0.01). CONCLUSIONS Dantrolene prevents CPVT, presumably by inhibiting Ca(2+) leak through the RyR2.
Collapse
Affiliation(s)
- Shigeki Kobayashi
- Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|